Уравнения материального баланса химического взаимодействия

Материальный и тепловой балансы химического процесса (стр. 1 )

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3

МАТЕРИАЛЬНЫЙ И ТЕПЛОВОЙ БАЛАНСЫ ХИМИЧЕСКОГО ПРОЦЕССА

Материальный и тепловой балансы химического процесса: составляются на основе законов сохранения массы и энергии.

Уравнения материального и теплового балансов служат ос­новой расчета реакционного объема аппарата (при заданной степени превращения) или степени превращения в реакторе (при заданных условиях). При расчете чаще всего пользуются выражением общего баланса, составленного по одному из ис­ходных веществ, участвующих в химическом процессе. Вид уравнения зависит от типа реактора, в котором протекает про­цесс химического превращения веществ. Материальный баланс представляет собой основу для вывода зависимости связи ме­жду степенью превращения, скоростью и временем химического процесса, которая является необходимым элементом его расчета и носит название характеристического уравнения реактора. Если химическое превращение вещества протекает в неизотер­мических условиях, тепловой баланс процесса следует рассмат­ривать совместно с его материальным балансом.

1. Общий материальный баланс реакционной системы равен сумме материальных балансов по каждому из реагирующих веществ:

где М — общее количество реакционной смеси, кмоль; t — время реакции, с;. D Мобщ — изменение общего количества реакционной смеси, кмоль×с-1.

2. Общее уравнение материального баланса для i-ro вещества, участвующего в реакции:

где Mi количество i-го вещества в системе, кмоль; DMi — изменение коли­чества i-го вещества, кмоль×с-1; ri —скорость химической реакции, выражен­ная по i-му веществу, кмоль×м-3×с-1; V реакционный объем, м3.

3. Уравнения материального баланса для различных типов. химических реакторов.

Периодически действующий реактор идеального смешения:

где Ci концентрация i-го вещества в системе, кмоль×м-3.

Непрерывнодействующий реактор идеального смешения:

,

где , —концентрация i-го вещества в системе на входе в реактор и выходе из него, соответственно, кмоль×м-3; ri — скорость химической реак­ции по i-му веществу в системе, кмоль×м-3×с-1.

Каскад n непрерывнодействующих реакторов идеального смешения:

,

.где ,- концентрация i-ro вещества в системе на выходе из п-го реактора, кмоль×м-3; rin скорость реакции по i-му веществу в n-м реакторе, кмоль×м-3×с-1

Непрерывнодействующий реактор идеального вытеснения:

где S — площадь поперечного сечения потока реагирующей системы, м2; L длина реактора, м.

Полунепрерывнодействующий реактор идеального смешения:

По i-му веществу для этого реактора имеем:

где , концентрация i-го вещества в системе на входе в реактор и выходе из него, соответственно, кмоль×м-3; —скорость химической реакции по i-му веществу в системе на выходе из реактора, кмоль×м-3×с-1.

4. Общий вид уравнения теплового баланса:

где U внутренняя энергия реакционной системы, кДж-кмоль»1; / — энталь­пия системы, кДж×кмоль-1; . — коэффициент теплопередачи, Вт(м2×К)-1; F площадь поверхности теплопередачи, м2; Тр — температура реакции, К или °С; Тх—температура теплоносителя (хладоагента), К или °С; р — дав­ление в системе, Па.

5. Уравнения теплового баланса для различных типов хими­ческих реакторов.

Периодически действующий реактор идеального смешения при V = const:

где сu удельная теплоемкость смеси реагирующих веществ при постоянном объеме, кДж(кмоль×К)-1; DHr — тепловой эффект реакции, кДж×кмоль-1.

Непрерывнодействующий реактор идеального смешения с внешним теплообменом:

,

где u0 объемная скорость подачи реагирующих веществ, м3×с-1; Со — начальная концентрация реагирующих веществ, кмоль×м-3; х — степень превращения; То—начальная температура реакционной смеси, К или °С; Т1 — конечная температура реакционной смеси, К или °С; ср — удельная теплоемкость смеси реагирующих веществ при постоянном давлении, кДж(кг×К)-1

Непрерывнодействующий реактор идеального вытеснения с внешним теплообменом при постоянных температуре и соста­ве по поперечному сечению потока:

где S — площадь поперечного сечения, м2; Rr гидравлический радиус, м..

Непрерывнодействующий реактор идеального смешения, работающий в автотермическом режиме:

Адиабатический yепрерывнодействующий реактор идеального вытеснения с теплообменом между реагентом и продуктами реакции (система теплообменник — реактор):

где =С0(DНr)/(rcp),

u0rcp(T0)+KF((T1T0),

где — разность температур в адиабатическом реакторе при х = 1;.. Т0 — температура исходной смеси на входе в реактор, К или °С; температура исходной смеси на входе в теплообменник, К или oС.

Непрерывнодействующий реактор идеального вытеснения с внутренним теплообменом между исходными веществами и ре­акционной смесью (при подогреве исходных веществ):

где Ti температура реакционной смеси во внутреннем подогревателе, К или °С.

Пример 2-1. В реакторе идеального смешения происходят следующие реакции:

где D — целевой продукт реакции; СRа = CSo = СТo = CDo = 0 — начальные концентрации промежуточных и конечных продуктов.

Начальная концентрация исходного вещества СА = 1 кмоль × м-3; текущие концентрации веществ (в кмоль × м-3); СА = 0,44; Св=1,06; СR = 0,05; CS = 0,33; СT = 0,14. Скорость подачи исходных веществ u0 = 5 × 10-3 м3 × с-1.

Определить производительность реактора GB по веществу В:

Решение. Составляем материальный баланс для реактора смешения. На основании стехиометрических соотношений реакций (а) и (г); (а) и (б); (а), (б), (в) и (г); (г) запишем:

CBo-CB = (3/2)CT + 2C’R+ C’S + CD, (3)

Комбинируя уравнения (1), (2), (4) и (5), а также (2) — (5), получаем:

CAo-CA = CR + CS + CD, (6)
CBo-CB=(3/2)CT + 2CR + 3CS-2CD. (7)

Из уравнения (6) определяем концентрацию продукта D:

CD = 1 — (0,44 + 0,05 + 0,33) = 0,18 кмоль × м-3.

Тогда производительность по продукту D будет равна:

Из уравнения (7) определяем концентрацию исходного вещества В

СВо= (3/2) 0,14 + 2 × 0,05 — 2 × 0,18+ 1,06 = 2 кмоль × м-3,

а затем производительность по веществу В:

Пример 2-2. В реакторе идеального смешения, работающем в адиабатических условиях, происходят реакции:

2R®S, (в)
где R — продукт реакции.

Начальные концентрации исходных веществ и продуктов (в кмоль × м-3): САо = 0,1; СВо=0,3; CRo = CDa = СРо =CSo = 0. Текущие концентрации взаимодействующих веществ (в кмоль х м-3): СА = 0,016; СР = 0,028; CS = 0,012; CD = 0,034.

Тепловой эффект реакции —DНr= 1,5 × 108 Дж (кмоль × В) -1. Плотность смеси r = 860 кг× м-3, теплоемкость смеси ср = = 2,85 × 103 Дж(кг×К)-1, скорость подачи u0 = 2,6×10-2×м3 ×с-1.

Определить производительность реактора по продукту R и температуру на выходе реактора, если начальная температура 12 °С (285 К).

Решение. Составляем уравнения материального и теплового баланса. Из стехиометрических соотношений уравнений реакции (а), (б) и (в) следует:

Тогда из уравнений (1) и (3) получим:

= 0,026 кмоль • м -3.

Из уравнений (2) и (3) находим:

СB = СВо — (СAо — СA) — 2СР = 0,30 — (0,1 —0,016) —2 • 0,028 =

= 0,160 кмоль • м -3.

Таким образом, производительность реактора по продукту R:

GR = CRu0 = 0,026 • 2,6 •10 -2 = 6,76•10 -4 кмоль • с -1.

где QP = (—DНr) (CBoCB) u0 тепловой поток, который выделяется в результате реакций; QH = cppu0 DT— тепловой поток, который затрачивается на нагревание реакционной смеси при адиабатических условиях работы реактора идеального смешения.

Из уравнения (4) после преобразования получаем:

Следовательно, температура на выходе из реактора равна 285 + 8,6 = 393,6 К или 20,6 °С.

Пример 2-3. В реакторе идеального вытеснения, работающем т адиабатических условиях, происходит жидкофазная реакция первого порядка

Константа скорости реакции kA (в с -1):

Начальные концентрации веществ (в кмоль×м-3): СAо=4,5; СB = 0. Тепловой эффект реакции—DHr=2×107 Дж(кмоль×А)-1, теплоемкость реакционной смеси ср:=2,2×103 Дж(кг×К)-1, плотность реакционной смеси r = 850 кг×м-3, температура исходной смеси Т0 = 300 К, скорость подачи uо= 10-3 м3 × с-1, объем реактора V = 5 м3.

Определить производительность реактора по продукту В и температуру смеси на выходе.

Решение. Тепловой баланс:

где QP = (—DHr) (СAоCA) uо — тепловой поток, который выделяется в результате реакции; QH = срruо (Tк Т0) — тепловой поток, который затрачивается на нагревание исходных веществ и продуктов реакции; Тк — температура реакционной смеси на выходе из реактора; Т0 — температура исходной смеси, подаваемой в реактор.

Характеристическое уравнение для необратимой реакции первого порядка, протекающей в реакторе идеального вытеснения:

, (1)

Так как процесс протекает при адиабатических условиях, константа скорости реакции будет изменяться по ходу реакции. Используем метод конечных разностей:

, (2)
где ki = 1013ехр(—1,2-104 Ti-1).

Для определения концентрации вещества А на выходе из реактора проводим последовательные приближения по Ti при шаге DT = 2 К. Тогда из уравнения материального баланса

определяем для каждого значения Тi соответствующее значение и по уравнению (2) рассчитываем сумму до значения i = n, при котором t= V/V0 =5/(1 •=5 × 103 с. Расчеты сведены в табл. 2-1. Из табл. 2-1 получаем при Ti=23 = 344 К:

c.

Тогда производительность реактора по продукту В:

= 1/2 (4,500 — 0,386) •= 2,06 •кмоль • с.

Пример 2-4. Установка состоит из следующих последовательно соединенных реакторов: идеального смешения (V1 = 2 м3), идеального вытеснения (V2 = 2 м3) и идеального смешения (V3 = 3 м3). Начальная концентрация вещества САo = = 1 кмоль • м -3, скорость подачи uо = 5×10-2 м3×с-1, скорость реакции (-rA) =5,1 • 10-3CA0,28. В начальный момент времени продукт в системе отсутствует. Плотность реакционной смеси не меняется.

Определить концентрацию исходного вещества после каждого реактора и рассчитать графически производительность установки по продукту, если известно, что 1 моль исходного вещества дает 2 моль продукта.

Решение. Составляем материальный баланс по веществу А для 1-го реактора смешения:

Для нахождения времени пребывания в реакторе идеального вытеснения интегрируем кинетическое уравнение:

,

Составляем материальный баланс по веществу А для 2-го реактора смешения:

.

Уравнение материального баланса для элементарного объема проточного химического реактора

Прежде чем рассмотреть отдельные типы химических реакторов в соответствии с приведенной классификацией, составим уравнение материального баланса по произвольному участнику реакции – веществу J – для элементарного объема произвольного проточного химического реактора и элементарного промежутка времени.

Рассмотрим поток жидкости, протекающей через реактор. О ходе химического процесса в реакторе будем судить по изменению молярной концентрации вещества J в жидкости сJ. Так как, в общем случае, в реакторе имеет место то, или иное распределение концентрации сJ по объему, а в каждой произвольно выбранной точке еще и распределение концентрации во времени, то считается, что сJ является функцией четырех переменных: трех пространственных координат х, у, z и времени τ: сJ = сJ(х, у, z, τ).

В соответствии с рассмотренными в § 4.2 требованиями к размеру элементарного объема и значению элементарного промежутка времени выберем в качестве элементарного промежутка времени бесконечно малый интервал dτ (dτ 0), а в качестве элементарного промежутка пространства – параллелепипед с бесконечно малыми сторонами dx, dy и dz и объемом dV = dxdydz (рис. 4.1).

В уравнении материального баланса по веществу J должны быть отражены, как указано выше, все изменения, которые произойдут за время dτ с веществом J при прохождении потоком элементарного объема. Эти изменения могут быть связаны с тремя причинами: конвективным переносом, диффузионным переносом и химической реакцией.

Рис. 4.1. Элементарный объем химического реактора:

1, 1 / – конвективный и 2, 2 / – диффузионный потоки соответственно
на входе в элементарный объем и на выходе из него

Конвективный перенос, или перенос импульса, вызван движением потока со скоростью u в результате какого-либо внешнего воздействия (например, из-за перепада давления, созданного насосом или компрессором). При макроскопическом движении жидкости каждый данный ее участок передвигается как целое с неизменным составом, и в результате происходит чисто механическое перемешивание: хотя состав каждого передвигающегося участка жидкости может оставаться неизменным (если нет химической реакции) в каждой неподвижной точке пространства (неподвижном элементарном объеме), концентрация жидкости будет со временем меняться. Охарактеризовать конвективный перенос можно изменением импульса единицы объема жидкости с, и.

Диффузионный перенос вызван наличием неравномерного распределения вещества J в пространстве. Вследствие выравнивания концентрации молекулярным переносом веществ реакционной смеси из одного участка жидкости в другой также происходит изменение состава внутри элементарного объема. Охарактеризовать диффузионный перенос можно в соответствии с законами Фика изменением диффузионного потока вещества J, равного D grad cJ (D – коэффициент диффузии).

Протекание химической реакции в элементарном объеме – неотъемлемая часть любого химического процесса. Расход или образование вещества J в ходе химической реакции пропорционален скорости реакции wrJ.

Алгебраическая сумма всех этих трех изменений должна быть равна накоплению (положительному или отрицательному) вещества J в элементарном объеме, т. е. изменению количества вещества J, находящегося внутри элементарного объема, за тот промежуток времени, для которого составляется материальный баланс.

Запишем теперь отдельные составляющие уравнения материального баланса.

Количество вещества, попадающее за время dτ в элементарный объем с конвективным потоком, можно рассматривать как сумму составляющих потока, которые войдут через отдельные грани параллелепипеда. В направлении оси z через грань dx dy за время dτ войдет cJ иz dx dy dt моль вещества J.

Аналогично через грань dy dz войдет cJ ux dy dz dτмоль вещества J, а через грань dx dz cJ uy dx dz dτмоль J.

Суммарно с конвективным потоком в элементарный объем будет внесено

При прохождении элементарного объема произойдет изменение импульса единицы объема (так как в общем случае и сJ и скорость и имеют неравномерное распределение в пространстве). В результате количество вещества J, которое будет вынесено за тот же промежуток времени dτ через противоположные грани параллелепипеда, составит:

· в направлении оси z

· в направлении оси у

· в направлении оси х

Суммарно по всем осям:

где .

После вычитания выражения (4.2) из (4.1) получим (с учетом того, что для несжимаемой жидкости div u = 0) изменение количества вещества в элементарном объеме в результате конвективного переноса за время dτ:

Аналогично получим член уравнения материального баланса, описывающий изменение количества вещества J в результате диффузионного переноса. Диффузионный поток на входе в параллелепипед через грань dxdy (в направлении оси z)в соответствии с первым законом Фика равен

При прохождении потока через элементарный объем произойдет изменение градиента концентрации dcJ/dz на величину (d 2 cJ /dz 2 )dz,следовательно, диффузионный поток на выходе из параллелепипеда через противоположную грань составит

Изменение количества вещества J в результате диффузионного переноса через все грани параллелепипеда за время dτ

(4.4)

Расход вещества на химическую реакцию (или его образование в ходе химической реакции) внутри элементарного объема dV заэлементарный промежуток времени dτ пропорционален скорости реакции wrJ (она определяется концентрацией вещества JcJ,установившейся внутри элементарного объема), объему dV ивремени dτ:

. (4.5)

Следует отметить, что в соответствии с формальным правилом о знаках при составлении кинетических уравнений (см. §3.2) ∆nJ,хрположительно, если вещество J – реагент, и отрицательно, если J – продукт. Поэтому для сохранения физического смысла в уравнение материального баланса член ∆nJ,хрдолжен всегда входить со знаком «минус».

Накопление вещества J за время dτ внутри элементарного объема может произойти в результате приращения концентрации сJ при изменении времени на величину dτ. Это изменение концентрации равно (дcjτ)dτ. Соответственно накопление вещества в элементарном объеме dV

(4.6)

Таким образом, уравнение материального баланса по веществу J в соответствии с выражениями (4.3)–(4.6) можно записать как:

или, сократив все его члены на dFdx,

(4.7)

Уравнение (4.7) достаточно полно описывает химический процесс, протекающий в любом химическом реакторе (при его выводе не было принято никаких допущений об его применимости только к какому-то одному определенному типу химических реакторов). В нем отражен перенос импульса (первый член уравнения), диффузионный перенос (второй член) и протекание химической реакции (третий член).

Уравнение (4.7) вместе с уравнением теплового баланса, учитывающим явления теплопереноса в элементарном объеме реактора, составят полную математическую модель реактора. Таким образом, будет решен вопрос и о небольшом числе уравнений, составляющих математическую модель, и об ее полноте.

Однако уравнение (4.7) слишком сложно для решения (дифференциальное уравнение второго порядка в частных производных). Следовательно, реальный путь создания математических моделей, пригодных для решения практических инженерных задач по расчету и проектированию химических реакторов, заключается в упрощении математической модели, которое можно провести для различных частных случаев.

В соответствии с такой концепцией рассмотрим математические модели различных типов реакторов:

· реакторов для гомогенных процессов, работающих в изотермическом режиме;

Методичка ОХТ_2006. Методическое пособие по практическим занятиям для студентов специальностей 148 01 01 Химическая технология производства и переработки неорганических материалов

НазваниеМетодическое пособие по практическим занятиям для студентов специальностей 148 01 01 Химическая технология производства и переработки неорганических материалов
АнкорМетодичка ОХТ_2006.doc
Дата23.10.2017
Размер1.11 Mb.
Формат файла
Имя файлаМетодичка ОХТ_2006.doc
ТипМетодическое пособие
#9744
страница3 из 9
Подборка по базе: Пневматика пособие.pdf, О. Ф. Алехина О. С. Гапонова основы менеджмента учебное пособие., Метод указания к семинарским занятиям по Педагогике.docx, Учебно-метод. пособие по истории 2021.pdf, учебное пособие профессиональная этика.pdf, Задания к практическим занятиям.docx, учебное пособие по диагностике оппортунистов от 19.02.21 г..docx, ОТВЕТЫ НА ЗАДАНИЯ ПО ПРАКТИЧЕСКИМ ЗАНЯТИЯМ .docx, Отчет по практическим работам.docx, Сагинова Уч пособие _zhylzhymaytyn mulik_ekonomikasy (1).pdf

2. материальный баланс

химико-технологических процессов
Химико-технологические расчеты составляют главную часть проекта новых химических производств, они же являются завершающей стадией научных исследований и выполняются при обследовании работающих цехов и установок. Основой технологических расчетов является составление материальных и тепловых балансов.

Материальный баланс основан на законе сохранения массы вещества, согласно которому масса веществ, поступивших в замкнутую систему, равна массе веществ на выходе из нее. Применительно к материальному балансу любого технологического процесса это означает, что масса веществ, поступивших на технологическую операцию, – приход, равна массе всех веществ, получившихся в результате ее, – расходу.

Материальный баланс может быть представлен уравнением, левую часть которого составляет масса всех видов сырья и материалов, поступающих на переработку (Σmприх), а правую – масса получаемых продуктов плюс производственные потери (Σmрасх):

Уравнение материального баланса может быть представлено в следующем виде:

m + m + m + m = m + m+ m + m+ m7, (25)

где m1 и m2  массы поступившего газообразного, жидкого и твердого сырья и вспомогательного материала; m3, m4, m5  полученные целевой продукт, побочный продукт, отход соответственно; m6  непрореагировавшее сырье; m7 производственные потери. Слагаемые прихода и расхода, число которых зависит от состава производственных потоков, называют статьями материального баланса.

Материальный баланс – зеркало технологического процесса, отражающее расходные коэффициенты по сырью, наличие твердых отходов, газообразных выбросов, жидких стоков, состав образующихся продуктов. Чем подробнее изучен процесс, тем более полно можно составить материальный баланс. Составляют его по уравнению основной суммарной реакции с учетом параллельных и побочных реакций. Поскольку на практике приходится иметь дело не с чистыми веществами, а с сырьем сложного химического состава, то для составления материального баланса следует учитывать массу всех компонентов, входящих в его состав. Для этого пользуются данными химических анализов.
2.1. Стехиометрический материальный баланс
Теоретический (стехиометрический) материальный баланс рассчитывают на основе стехиометрических уравнений реакции. Часто стехиометрический баланс составляется для реакции, выражающей полный ход процесса и являющейся суммой промежуточных этапов, т. е. для такой реакции, которой в действительности не существует. Удобнее всего составлять материальный баланс, отнеся все расчеты к 1 моль или 1 кмоль основного исходного вещества. После этого по числу моль или кмоль находят объемы и массы исходных веществ и продуктов (кг, т, м 3 , л).

Стехиометрические коэффициенты в химических уравнениях показывают количество моль компонентов, вступивших в химическое взаимодействие. Их можно выразить в массовых величинах, умножая стехиометрические коэффициенты на молярную массу. Например, окисление диоксида серы описывается уравнением SO2 + 0,5O2  SO3. Молярные массы, г/моль или кг/кмоль: SO2 – 64; O2 – 32; SO3 – 80, и это же уравнение с «массовыми» стехиометрическими коэффициентами будет иметь вид 64SO2 + 16O2  80SO3. В такой записи очевиден материальный баланс: суммарная масса исходных веществ равна массе продукта.

Рассмотрим пример: в производстве азотной кислоты определить количество HNO3, образующейся из 1 т аммиака. В химико-технологическом процессе протекают следующие реакции:

(принимаем, что NH3 полностью окисляется до NO);

 окисление оксида азота

 хемосорбция диоксида азота

В абсорбционную колонну подается кислород, и образующийся оксид азота повторно окисляется до NO2 по реакции (27).

Таким образом, образование азотной кислоты представлено стехиометрическими уравнениями (2628). Умножим первое из них на 1, второе – на 3, третье – на 2 и сложим их. Получим суммарное стехиометрическое уравнение (брутто-уравнение)

Конечно, такая реакция не известна. Но стехиометрическое уравнение показывает, в каких соотношениях реагенты вступают во взаимодействие друг с другом, и этому определению отвечает уравнение (29). Умножим стехиометрические коэффициенты в (29) на мольные массы соответствующих компонентов (г/моль или кг/кмоль) (NH3 – 17; O2 – 32; HNO3 – 63; Н2О – 18) и получим

Из уравнения (30) видно, что для производства 63 кг азотной кислоты надо затратить 17 кг аммиака, а на 1 т (1 000 кг) азотной кислоты пойдет 17  1000 / 63 = 270 кг NH3.

Удобство записи суммарного стехиометрического уравнения очевидно.
2.2. Примеры составления стехиометрических балансов
Пример 1.

Сожжено 100 м 3 газовой смеси, содержащей 50 об. % пропана и 50 об. % бутана. Избыток воздуха по отношению к теоретически необходимому для сгорания составляет 20%. Составить материальный баланс процесса горения и рассчитать состав продуктов сгорания (об. %).

При расчете принимаем, что воздух является смесью одного объема кислорода и 3,76 объема азота (т. е. молярное отношение О2 : N2 составляет 1 : 3,76). Объем 1 кмоль О2, N2 при н. у. равен 22,4 м 3 .

Уравнения реакций горения имеют следующий вид:

Исходя из состава воздуха и с учетом его избытка при сжигании газовой смеси, запишем общее уравнение реакции, принимая во внимание, что молярное соотношение пропана и бутана в смеси такое же,

как объемное соотношение (т. е. 1 : 1):

воздух для воздух для избыток воздуха

сжигания пропана сжигания бутана

Данное уравнение можно записать в следующем виде:

Результаты материального баланса представлены в табл. 1. Стехиометрические балансы могут быть представлены в виде уравнений, согласно которым можно рассчитать степень превращения реагентов и их концентрацию в данный момент времени (табл. 2).
Так, например, общий вид уравнения реакции

где   стехиометрический коэффициент;    абсолютное значение стехиометрического коэффициента (для исходных веществ  0).

Обозначим количество исходных веществ (в моль) перед началом реакции через na 0, nb 0, …, ni 0, …, а количество исходных веществ в данный момент реакции na, nb, …, ni, … . Когда исходные реагенты берутся в стехиометрическом соотношении, степени превращения каждого из них одинаковы. Если же исходные реагенты вступают в реакции не в стехиометрическом соотношении, то значение степени превращения х зависит от того, для какого вещества эта величина рассчитывается. Следовательно, так как соотношения количеств исходных реагентов могут быть нестехиометрическими, расчет будем вести по степени превращения одного, произвольно выбранного, исходного реагента, например K.

хk = .

В соответствии со стехиометрическим уравнением (31), когда превращению подвергается 1 моль исходного вещества K, одновременно превращение претерпевает число молей исходного вещества I, равное

ni 0ni = nk 0хk.
Мгновенное значение концентрации исходного вещества J (мольной доли Nj) равно отношению числа молей J, содержащихся в данный момент в системе, реагирующей согласно уравнению (31), к числу всех молей, находящихся в данный момент в системе (сумма в четвертой графе табл. 2):

Nj = . (32)

В числителе и знаменателе выражения (32) написан знак «+», так как вместо i  использовано i (для исходных веществ i

Т, С50100150
Кр17,290,90420,0948

реакции получения хлористого изопропила из стехиометрической смеси пропилена и хлористого водорода по уравнению

Общее давление Р = 1 атм.

Рассчитать степень превращения пропилена = x.

Принимаем, что в реакцию вступают 1 моль пропилена и 1 моль хлористого водорода. После установления равновесия будет (1 – x) моль пропилена, (1 – x) моль хлористого водорода и x моль хлористого изопропила. Всего


источники:

http://helpiks.org/3-86530.html

http://topuch.ru/metodicheskoe-posobie-po-prakticheskim-zanyatiyam-dlya-student/index3.html