Уравнения механических колебаний 9 класс

Гармонические колебания

О чем эта статья:

9 класс, 11 класс, ЕГЭ/ОГЭ

Механические колебания

Механические колебания — это физические процессы, которые точно или приблизительно повторяются через одинаковые интервалы времени.

Колебания делятся на два вида: свободные и вынужденные.

Свободные колебания

Это колебания, которые происходят под действием внутренних сил в колебательной системе.

Они всегда затухающие, потому что весь запас энергии, сообщенный в начале, в конце уходит на совершение работы по преодолению сил трения и сопротивления среды (в этом случае механическая энергия переходит во внутреннюю). Из-за этого свободные колебания почти не имеют практического применения.

Вынужденные колебания

А вот вынужденные колебания восполняют запас энергии внешним воздействием. Если это происходит каждый период, то колебания вообще затухать не будут.

Вынужденные колебания — это колебания, которые происходят под действием внешней периодически меняющейся силы.

Частота, с которой эта сила воздействует, равна частоте, с которой система будет колебаться.

Например, качели. Если вас кто-то будет на них качать, каждый раз давая толчок, когда вы приходите в одну и ту же точку — такое колебание будет считаться вынужденным.

Это колебание все еще будет считаться вынужденным, если вас будут раскачивать из положения равновесия. Просто в данном случае амплитуда (о которой речь пойдет чуть ниже) будет увеличиваться с каждым колебанием.

Автоколебания

Иногда вынужденному колебанию не нужно внешнего воздействия, чтобы случиться. Бывают такие системы, в которых это внешние воздействие возникает само из-за способности регулировать поступление энергии от постоянного источника.

У автоколебательной системы есть три важных составляющих:

  • сама колебательная система
  • источник энергии
  • устройство обратной связи, обеспечивающей связь между источником и системой

Часы с кукушкой — пример автоколебательной системы. Гиря на ниточке (цепочке) стремится вращать зубчатое колесо (храповик). При колебаниях маятника анкер цепляет за зубец, и вращение приостанавливается.

Но в результате маятник получает толчок, компенсирующий потери энергии из-за трения. Потенциальная энергия гири, которая постепенно опускается, расходуется на поддержание незатухающих колебаний.

Характеристики колебаний

Чтобы перейти к гармоническим колебаниям, нам нужно описать величины, которые помогут нам эти колебания охарактеризовать. Любое колебательное движение можно описать величинами: период, частота, амплитуда, фаза колебаний.

Период — это время одного полного колебания. Измеряется в секундах и обозначается буквой T.

Формула периода колебаний

T = t/N

N — количество колебаний [—]

Также есть величина, обратная периоду — частота. Она показывает, сколько колебаний совершает система в единицу времени.

Формула частоты

ν = N/t = 1/T

N — количество колебаний [—]

Амплитуда — это максимальное отклонение от положения равновесия. Измеряется в метрах и обозначается либо буквой A, либо x max .

Она используется в уравнении гармонических колебаний:

Гармонические колебания

Простейший вид колебательного процесса — простые гармонические колебания, которые описывают уравнением:

Уравнение гармонических колебаний

x — координата в момент времени t [м]

t — момент времени [с]

(2πνt) в этом уравнении — это фаза. Ее обозначают греческой буквой φ

Фаза колебаний

t — момент времени [с]

Фаза колебаний — это физическая величина, которая показывает отклонение точки от положения равновесия. Посмотрите на рисунок, на нем изображены одинаковые фазы:

Например, в тех же самых часах с кукушкой маятник совершает колебания. Он качается слева направо и приходит в самую правую точку. В той же фазе он будет находиться, когда придет в ту же точку, идя справа налево. Если мы возьмем точку на сантиметр левее самой правой, то идя в нее не слева направо, а справа налево, мы получим уже другую фазу.

На рисунке ниже показаны положения тела через одинаковые промежутки времени при гармонических колебаниях. Такую картину можно получить при освещении колеблющегося тела короткими периодическими вспышками света (стробоскопическое освещение). Стрелки изображают векторы скорости тела в различные моменты времени.

Если изменить период, начальную фазу или амплитуду колебания, графики тоже изменятся.

На рисунке ниже во всех трех случаях для синих кривых начальная фаза равна нулю, а в последнем (с) — красная кривая имеет меньшую начальную фазу.

В первом случае (а) красная кривая описывает колебание, у которого амплитуда больше колебания, описанного синей линией.

Во втором случае (b) красная кривая отличается от синей только значением периода — у красной период в два раза меньше.

Математический маятник

Математический маятник — отличный пример гармонических колебаний. Если мы подвесим шарик на нити, то это еще не будет математическим маятником — пока он только физический.

Математическим этот маятник станет, если размеры шарика много меньше длины нити (тогда этими размерами можно пренебречь и рассматривать шарик как материальную точку), растяжение нити очень мало, а масса нити во много раз меньше массы шарика.

Математическим маятником называется система, которая состоит из материальной точки массой m и невесомой нерастяжимой нити длиной l, на которой материальная точка подвешена, и которая находится в поле силы тяжести (или других сил).

Период малых колебаний математического маятника в поле силы тяжести Земли определяется по формуле:

Формула периода колебания математического маятника

l — длина нити [м]

g — ускорение свободного падения [м/с 2 ]

На планете Земля g = 9,8 м/с 2

Пружинный маятник

Пружинный маятник — это груз, прикрепленный к пружине, массой которой можно пренебречь.

В пружинном маятнике колебания совершаются под действием силы упругости.
Пока пружина не деформирована, сила упругости на тело не действует.

Формула периода колебания пружинного маятника

m — масса маятника [кг]

k — жесткость пружины [Н/м]

Закон сохранения энергии для гармонических колебаний

Физика — такая клевая наука, в которой ничего не исчезает бесследно и не появляется из ниоткуда. Эту особенность описывает закон сохранения энергии.

Рассмотрим его на примере математического маятника.

  • Когда маятник отклоняют на высоту h, его потенциальная энергия максимальна.
  • Когда маятник опускается, потенциальная энергия переходит в кинетическую. Причем в нижней точке, где потенциальная энергия равна нулю, кинетическая энергия максимальна и равна потенциальной энергии в верхней точке. Скорость груза в этой точке максимальна.

Онлайн-курсы физики в Skysmart не менее увлекательны, чем наши статьи!

Колебательное движение. Свободные колебания. Колебательные системы (Ерюткин Е.С.)

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Тема данного урока: «Колебательное движение. Свободные колебания. Колебательные системы». Вначале дадим определение нового вида движения, который мы начинаем изучать, – колебательного движения. Рассмотрим в качестве примера колебания пружинного маятника и определим понятие свободных колебаний. Также изучим, что такое колебательные системы, и обсудим условия, необходимые для существования колебаний.

Уравнения механических колебаний 9 класс

Движение, при котором состояния движущегося тела с течением времени повторяются, причём тело проходит через положение своего устойчивого равновесия поочерёдно в противоположных направлениях, называется механическим колебанием.

Условием возникновения колебания является наличие в системе возвращающей силы, всегда направленной к положению устойчивого равновесия. Каждый законченный цикл колебательного движения, после которого оно вновь повторяется, называется полным колебанием.

Смещением х называется отклонение колеблющейся точки от положения равновесия в данный момент времени.

Амплитудой колебаний хm называется модуль наибольшего смещения тела от положения равновесия при колебательном движении.

Периодом колебания Т называется время, за которое совершается одно полное колебание: Т = t/N.

Величину, равную числу колебаний, совершаемых за единицу времени, называют частотой колебаний

Затухающими называются колебания, амплитуда которых уменьшается с течением времени. Затухание свободных механических гармонических колебаний связано с уменьшением механической энергии колебательной системы за счёт работы сил сопротивления (трения).

Гармонические колебания

Механическое колебание, при котором координата тела меняется по закону синуса или косинуса, называется гармоническим колебанием. Если момент начала отсчета времени колебаний совпадает с максимальным отклонением маятника от положения равновесия, то колебания являются косинусоидальными и их начальная фаза равна нулю. Если момент начала отсчета времени колебаний совпадает с прохождением маятником положения равновесия, то колебания являются синусоидальными и их начальная фаза тоже равна нулю.

Графики косинусоидальных гармонических колебаний смещения х, скорости v, ускорения а, силы F, потенциальной Ер, кинетической Ек и полной Е энергий, когда начальная фаза равна нулю:

Гармонические колебания происходят под действием переменной силы, пропорциональной смещению маятника от положения равновесия и всегда направленной к положению равновесия. Поскольку в процессе колебаний эта сила изменяется, изменяется и ускорение маятника, возникающее под действием этой силы. Поэтому к колебательному движению нельзя применять формулы равномерного или равноускоренного движений, с их помощью можно определять только средние скорость и ускорение за определенный промежуток времени. Чтобы найти мгновенную скорость, надо брать первую производную смещения по времени, а чтобы найти мгновенное ускорение — первую производную скорости по времени.

Если дано уравнение гармонических колебаний с цифровыми значениями параметров и требуется из него найти какую-либо величину, то запишите рядом уравнение гармонических колебаний в общем виде и сопоставьте его с данным уравнением. Та величина, что стоит между знаком «равно» и синусом или косинусом, есть амплитуда, в каком бы виде она ни была записана. Та, что стоит между синусом или косинусом и временем t, есть циклическая частота, а та, что без t, есть начальная фаза.

Если наоборот, даны числовые значения параметров, а требуется записать уравнение колебаний, подставьте в уравнение в общем виде все числа, а время t оставьте в буквенном виде.

Математический маятник

Математическим маятником называют материальную точку, подвешенную на тонкой нерастяжимой нити. Маленький металлический шарик, подвешенный на длинной нити, можно условно считать математическим маятником.

При колебаниях математического маятника (в отсутствие сил трения) выполняется закон сохранения механической энергии и периодически происходит переход потенциальной энергии в кинетическую и обратно.

В положении максимального отклонения от положения равновесия потенциальная энергия маятника максимальна, а кинетическая равна нулю. При приближении к положению равновесия потенциальная энергия уменьшается, а кинетическая увеличивается, достигая максимального значения в положении равновесия, в котором потенциальная становится равной нулю: Wполн = Wп + Wк = const Eполн = Eк max = Еп maх.

Если маятник не является ни пружинным, ни математическим, то к такому — физическому — маятнику формулы периода и частоты пружинного и математического маятников неприменимы. Для решения задач на физический маятник следует пользоваться законами Ньютона, сохранения импульса и сохранения энергии.

Механические волны

Если в упругой среде (газ, жидкость или твёрдое тело) имеется источник колебаний, то в ней с течением времени происходит процесс распространения колебаний, этот процесс называется волной.

Волны, распространяющиеся в упругой среде, называются механическими волнами. В волне осуществляется перенос энергии колебательного движения без переноса вещества (массы) среды, в которой распространяется волна.

Периодом Т волны является период колебаний точек среды при распространении волны. Длиной волны λ называется расстояние, на которое распространяется волна за один период колебаний: λ = ʋT; ʋ = λv.

Продольными волнами называются волны, в которых направление колебаний частиц происходит в направлении распространения волны. Продольные механические волны могут распространяться в твёрдых, в жидких и в газообразных средах.

Поперечными называются волны, в которых направление колебаний частиц происходит перпендикулярно направлению распространения волны. Поперечные механические волны могут распространяться только в твёрдых телах и на свободной поверхности жидкости.

В вакууме механические волны распространяться не могут. Поэтому, каким бы сильным ни был взрыв в космосе, на Земле его не услышат.

Вследствие отставания колебаний одних частиц среды от других в поперечных волнах возникают гребни и впадины, а в продольных — сгущения и разрежения. Механические волны не переносят вещество среды, но переносят ее форму: гребни и впадины в поперечной волне и сгущения и разрежения в продольной.

Механические волны переносят механическую энергию, которая складывается из кинетической энергии движения частиц среды и потенциальной энергии ее упругой деформации.

Скорость волны υ — это скорость перемещения гребней или впадин в поперечной волне и сгущений или разрежений в продольной. Скорость волны в данной среде — постоянная величина, т.к. волны в однородной среде распространяются равномерно и прямолинейно. Скорость волны не равна скорости колебаний ее частиц, т.к. частицы волны колеблются с переменной скоростью.

Подтверждением волнового процесса в среде являются интерференция, дифракция, дисперсия и поляризация волн.

Волны, частицы которых колеблются с постоянной разностью фаз или с одинаковой частотой, называются когерентными. При наложении когерентных волн друг на друга возникает интерференция волн.

Звук. Характеристики звука

Звуковыми волнами называются механические волны, вызывающие у человека ощущение звука.

Звуковые волны — продольные волны звуковой частоты. Звуковой частотой, т.е. частотой, при которой человеческое ухо слышит звук, является частота от 16 Гц до 20 000 Гц. Звук с частотой меньше 16 Гц называется инфразвуком, а звук с частотой выше 20 000 Гц — ультразвуком.

Громкость (интенсивность) звука зависит от амплитуды колебаний звучащего тела. Чем больше амплитуда колебаний, тем громче звук.

Высота тона звука зависит от частоты колебаний звучащего тела (вибратора). Чем больше частота колебаний, тем выше тон. Частота колебаний крыльев мухи меньше частоты колебаний крыльев комара, поэтому муха жужжит, а комар пищит.

Скорость звука зависит от плотности среды. Скорость звука в твёрдых телах больше, чем в жидкостях, а в жидкостях больше, чем в газах. Скорость звука увеличивается с ростом температуры среды.

В случае, когда отражающая поверхность перпендикулярна распространению волны, звуковая волна после отражения возвращается обратно к источнику звука. Такой случай отражения называется эхом.

В гидролокации эхо используется для определения глубин, расстояний до преград и других судов.

Уравнения механических колебаний и волн

Конспект урока «Механические колебания и механические волны. Звук». Выберите дальнейшее действие:


источники:

http://interneturok.ru/lesson/physics/9-klass/mehanicheskie-kolebaniya-i-volny/kolebatelnoe-dvizhenie-svobodnye-kolebaniya-kolebatelnye-sistemy-eryutkin-e-s

http://uchitel.pro/%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5-%D0%BA%D0%BE%D0%BB%D0%B5%D0%B1%D0%B0%D0%BD%D0%B8%D1%8F-%D0%B8-%D0%B2%D0%BE%D0%BB%D0%BD%D1%8B-%D0%B7%D0%B2%D1%83%D0%BA/