Уравнения метод узловых потенциалов как решить

Уравнения метод узловых потенциалов как решить

Рассмотренные методы расчета электрических цепей – непосредственно по законам Кирхгофа, методы контурных токов и узловых потенциалов – позволяют принципиально рассчитать любую схему. Однако их применение без использования введенных ранее топологических матриц рационально для относительно простых схем. Использование матричных методов расчета позволяет формализовать процесс составления уравнений электромагнитного баланса цепи, а также упорядочить ввод данных в ЭВМ, что особенно существенно при расчете сложных разветвленных схем.

Переходя к матричным методам расчета цепей, запишем закон Ома в матричной форме.

Пусть имеем схему по рис. 1, где — источник тока. В соответствии с рассмотренным нами ранее законом Ома для участка цепи с ЭДС для данной схемы можно записать:

.(1)

Однако, для дальнейших выкладок будет удобнее представить ток как сумму токов k -й ветви и источника тока, т.е.:

.(2)

Подставив (2) в (1), получим:

.(3)

Формула (3) представляет собой аналитическое выражение закона Ома для участка цепи с источниками ЭДС и тока (обобщенной ветви).

Соотношение (3) запишем для всех n ветвей схемы в виде матричного равенства

,(4)

где Z – диагональная квадратная (размерностью матрица сопротивлений ветвей, все элементы которой (взаимную индуктивность не учитываем), за исключением элементов главной диагонали, равны нулю.

Соотношение (4) представляет собой матричную запись закона Ома.

Если обе части равенства (4) умножить слева на контурную матрицу В и учесть второй закон Кирхгофа, согласно которому

,(5)
,(6)

то есть получили новую запись в матричной форме второго закона Кирхгофа.

Метод контурных токов в матричной форме

В соответствии с введенным ранее понятием матрицы главных контуров В , записываемой для главных контуров, в качестве независимых переменных примем токи ветвей связи, которые и будут равны искомым контурным токам.

Уравнения с контурными токами получаются на основании второго закона Кирхгофа; их число равно числу независимых уравнений, составляемых для контуров, т.е. числу ветвей связи c = n m +1 . Выражение (6) запишем следующим образом:

.(7)

В соответствии с методов контурных токов токи всех ветвей могут быть выражены как линейные комбинации контурных токов или в рассматриваемом случае токов ветвей связи. Если элементы j –го столбца матрицы В умножить соответствующим образом на контурные токи, то сумма таких произведений и будет выражением тока j –й ветви через контурные токи (через токи ветвей связи). Сказанное может быть записано в виде матричного соотношения

,(8)

где — столбцовая матрица контурных токов; — транспонированная контурная матрица.

С учетом (8) соотношение (7) можно записать, как:

(9)

Полученное уравнение представляет собой контурные уравнения в матричной форме. Если обозначить

,(10)
.(11)

то получим матричную форму записи уравнений, составленных по методу контурных токов:

,(12)

где — матрица контурных сопротивлений; — матрица контурных ЭДС.

В развернутой форме (12) можно записать, как:

,(13)

то есть получили известный из метода контурных токов результат.

Рассмотрим пример составления контурных уравнений.

Пусть имеем схему по рис. 2. Данная схема имеет четыре узла ( m =4) и шесть обобщенных ветвей ( n =6). Число независимых контуров, равное числу ветвей связи,

Граф схемы с выбранным деревом (ветви 1, 2, 3) имеет вид по рис. 3.

Запишем матрицу контуров, которая будет являться матрицей главных контуров, поскольку каждая ветвь связи входит только в один контур. Принимая за направление обхода контуров направления ветвей связи, получим:

B

Диагональная матрица сопротивлений ветвей

Z

Матрица контурных сопротивлений

Zk=BZB T

.

Матрицы ЭДС и токов источников

Тогда матрица контурных ЭДС

.

Матрица контурных токов

.

Таким образом, окончательно получаем:

,

где ; ; ; ; ; ; ; ; .

Анализ результатов показывает, что полученные три уравнения идентичны тем, которые можно записать непосредственно из рассмотрения схемы по известным правилам составления уравнений по методу контурных токов.

Метод узловых потенциалов в матричной форме

На основании полученного выше соотношения (4), представляющего собой, как было указано, матричную запись закона Ома, запишем матричное выражение:

,(14)

где — диагональная матрица проводимостей ветвей, все члены которой, за исключением элементов главной диагонали, равны нулю.

Умножив обе части равенства (14) на узловую матрицу А и учитывая первый закон Кирхгофа, согласно которому

,(15)
..(16)

Выражение (16) перепишем, как:

.(17)

Принимая потенциал узла, для которого отсутствует строка в матрице А , равным нулю, определим напряжения на зажимах ветвей:

.(18)

Тогда получаем матричное уравнение вида:

.(19)

Данное уравнение представляет собой узловые уравнения в матричной форме. Если обозначить

(20)
,(21)

то получим матричную форму записи уравнений, составленных по методу узловых потенциалов:

(22)

где — матрица узловых проводимостей; — матрица узловых токов.

В развернутом виде соотношение (22) можно записать, как:

(23)

то есть получили известный из метода узловых потенциалов результат.

Рассмотрим составление узловых уравнений на примере схемы по рис. 4.

Данная схема имеет 3 узла ( m =3) и 5 ветвей ( n =5) . Граф схемы с выбранной ориентацией ветвей представлен на рис. 5.

А

Диагональная матрица проводимостей ветвей:

Y

где .

Матрица узловых проводимостей

.

Матрицы токов и ЭДС источников

Следовательно, матрица узловых токов будет иметь вид:

Таким образом, окончательно получаем:

,

где ; ; ; ; .

Анализ результатов показывает, что полученные уравнения идентичны тем, которые можно записать непосредственно из рассмотрения схемы по известным правилам составления уравнений по методу узловых потенциалов.

  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.

Контрольные вопросы и задачи

  1. В чем заключаются преимущества использования матричных методов расчета цепей?
  2. Запишите выражения матрицы контурных сопротивлений и матрицы контурных ЭДС.
  3. Запишите выражения матрицы узловых проводимостей и матрицы узловых токов.
  4. Составить узловые уравнения для цепи на рис. 2.

Составить контурные уравнения для цепи рис. 4, приняв, что дерево образовано ветвями 3 и 4 (см. рис. 5).

Метод узловых (потенциалов) напряжений

При изучении основ электротехники приходится сталкиваться с необходимостью расчета тех или иных параметров различных схем. И самое простое, что приходится делать – это расчет токов ветвей в цепях постоянного тока.

Существует несколько наиболее применяемых методов расчетов для таких цепей: с помощью законов Кирхгофа, методом контурных токов, узловых потенциалов, методом эквивалентного генератора, эквивалентного источника тока, методом наложения. Для расчета более сложных цепей, например, в нелинейных схемах, могут применяться метод аппроксимации, графические методы и другие.
В данном разделе рассмотрим один из методов определения токов в цепи постоянного тока – метод узловых потенциалов.

Метод узловых потенциалов примеры решения задач

Для того, чтобы лучше разобраться в этом вопросе, рассмотрим конкретный пример схемы, показанной на рис.1.

Рис.1. Схема постоянного тока

Для начала обозначают направления токов в ветвях. Направление можно выбирать любым. Если в результате вычислений какой-то из токов получится с отрицательным значением, значит, его направление в действительности будет направлено в противоположную сторону относительно ранее обозначенного. Если в ветви имеется источник, то для удобства лучше обозначить направление тока в этой ветви совпадающим с направлением источника в этой ветви, хотя и не обязательно. Далее один из узлов схемы заземляем. Заземленный узел будет называться опорным, или базисным. Такой метод заземления на общее токораспределение в схеме влияния не оказывает.

Каждый из этих узлов будет обладать своим значением потенциала относительно узла 4. Именно значения этих потенциалов для дальнейшего определения токов и находят. Соответственно, для удобства этим потенциалам присваивают номера в соответствии с номером узла, т.е. φ1, φ2, φ3. Далее составляется система уравнений для оставшихся узлов 1, 2, 3.

В общем виде система имеет вид:

Использованные в этой системе уравнений буквенно-цифровые обозначения

имеют следующий смысл:

– сумма проводимостей ветвей, сходящихся в узле 1. В данном случае

– сумма проводимостей ветвей, сходящихся в узле 2. В данном случае

– сумма проводимостей ветвей, сходящихся в узле 3. В данном случае

– сумма проводимостей ветвей, соединяющих узлы 1 и 2, взятая со знаком «минус». Для этого единица и взята с отрицательным знаком:

– сумма проводимостей ветвей, соединяющих узлы 1 и 3, взятая со знаком «минус». Для этого единица и в этом случае взята с отрицательным знаком:

Аналогично находятся и остальные проводимости:

J11 – узловой ток узла 1, в котором участвуют ветви, подходящие именно к этому узлу, и содержащие в своем составе ЭДС. При этом, если ЭДС ветви, входящий в узел, направлена к рассматриваемому узлу (в данном случае к узлу 1), то такой узловой ток записывается с плюсом, если от узла, то с минусом. В данном случае

В результате всех ранее приведенных вычисленных значений исходная система уравнений примет вид:

Решать данную систему можно всеми доступными методами, мы же для упрощения решим ее в пакете Mathcad:

В результате получены следующие значения потенциалов в узлах цепи:

Токи в ветвях находятся в соответствии с законом Ома. Поясним это простыми словами.

В ветви с сопротивлением и источником, учитывая ранее обозначенное направление тока в рассматриваемой ветви, необходимо из потенциала узла, находящегося у начала стрелки направления тока, вычесть потенциал узла, находящегося у конца стрелки направления тока, а затем прибавить значение ЭДС в этой ветви. Далее все это разделить на сопротивление, имеющееся в ветви. Если бы ток и ЭДС в рассматриваемой ветви не совпадали по направлению, тогда значение ЭДС вычиталось. В ветви без ЭДС действует то же самое правило, только ЭДС в числителе, разумеется, отсутствует. В нашем примере получим, что

Значение тока первой ветви, как видно из расчета, получилось отрицательным. Значит, в действительности, этот ток направлен в противоположную сторону относительно его обозначенного направления на рис.1.

Правильность расчетов можно проверить, например, составлением баланса мощностей либо, к примеру, моделированием, схемы. Выполним моделирование в программе Multisim.

Рис.2. Моделирование в Multisim

Как видим, результаты моделирования совпадают с расчетными значениями. Незначительная разница в тысячных долях из-за округлений промежуточных вычислений.

Расчёт электрических цепей по методу узловых потенциалов: методика

В дополнение к выводу метода рассмотрим методику расчёта электрических цепей по методу узловых потенциалов.

Воспользуйтесь программой онлайн-расчёта электрических цепей. Программа позволяет рассчитывать электрические цепи по закону Ома, по законам Кирхгофа, по методам контурных токов, узловых потенциалов и эквивалентного генератора, а также рассчитывать эквивалентное сопротивление цепи относительно источника питания.

Последовательность расчёта следующая.

  1. Пронумеровать все узлы и задать произвольное направление токов в схеме.
  2. Стянуть узлы с одинаковым потенциалом. Узлы будут иметь одинаковый потенциал, если между ними находится чистая ветвь с нулевым сопротивлением – закоротка (ветви между узлами 2 − 4 и 3 − 5 на рис. 1). Перерисовывать схему со стянутыми узлами не обязательно, но тогда следует учесть, что потенциалы узлов по концам закоротки будут одинаковыми.


Рис. 1. Пример объединения узлов с одинаковым потенциалом

  1. Выбрать базисный узел (рис. 2) и приравнять его потенциал нулю $ \underline<\varphi>_ <3>= 0 \space \textrm <В>$. В качестве базисного узла можно выбрать любой, за исключением случая, когда имеются особые ветви. Если в схеме есть хотя бы одна особая ветвь, то за базисный узел следует принимать один из концов одной из таких ветвей. При этом потенциал другого конца будет равен ЭДС $ \underline<\varphi>_ <1>= \underline_ <1>$, если источник напряжения направлен в этот узел, и равен минус ЭДС $ \underline<\varphi>_ <6>=- \underline_ <2>$, если источник направлен к базисному узлу.


Рис. 2. Выбор базисного узла

Примечание. Зачастую для обозначения базисного узла используют символ заземления, так как принято считать, что «земля» имеет нулевой потенциал.

  1. Составить уравнения для узлов без особых ветвей, потенциалы которых неизвестны. Уравнения записываются по следующему принципу:
  • потенциал рассматриваемого узла умножается на сумму проводимостей всех примыкающих к нему ветвей;
  • вычитаются потенциалы узлов, находящихся на противоположных концах примыкающих ветвей, умноженные каждый на свою проводимость соединяющей их ветви;
  • приравнивается алгебраической сумме примыкающих к данному узлу источников тока и источников ЭДС, последние умножаются на проводимость ветви, в которой они расположены.
    Под алгебраической суммой подразумевается необходимость учёта направленности источников, если источник направлен в рассматриваемый узел, то он записывается со знаком «+», в противном случае со знаком «-».

В случае, если имеется более одной особой ветви, и они не имеют общие узлы, то уравнения для узлов, в состав которых входит особая ветвь, не примыкающая к базисному узлу, записываются следующим образом:

  • потенциал рассматриваемого узла умножается на сумму проводимостей всех примыкающих к нему ветвей и проводимостей ветвей, примыкающих к узлу противоположного конца особой ветви;
  • вычитаются потенциалы узлов, находящихся на противоположных концах примыкающих ветвей к узлам особой ветви, умноженные каждый на свою проводимость примыкающей ветви;
  • приравнивается алгебраической сумме примыкающих к узлам особой ветви источников тока и источников ЭДС, последние умножаются на проводимость ветви, в которой они расположены, за исключением источника ЭДС особой ветви, который умножается на сумму проводимости ветвей, примыкающих к узлу противоположного конца особой ветви.
  • При составлении уравнения проводимость особой ветви не учитывается ( 1 /0=∞). Следует также учитывать, что направление ЭДС особой ветви и соответственно её знак учитываются относительно рассматриваемого узла.
  1. Рассчитать токи в ветвях по закону Ома как алгебраическую сумму разности потенциалов и ЭДС в ветви с искомым током, делённую на сопротивление этой ветви. Вычитаемым будет тот потенциал, в который направлен ток, а знак ЭДС выбирается в зависимости от направления: в случае сонаправленности с током ЭДС берётся со знаком «+», в противном случае со знаком «-». Ток в закоротке следует искать по первому закону Кирхгофа, составленному для одного из узлов рассматриваемой ветви в исходной схеме, после расчета всех остальных токов в схеме.
  2. Правильность расчёта по методу узловых потенциалов проще всего проверить по первому закону Кирхгофа для уникальных узлов без особых ветвей, подставив полученные значения токов. Под уникальными узлами подразумеваются те узлы, при рассмотрении которых имеется хотя бы одна ветвь, не примыкающая к другим из рассмотренных узлов.

Пример решения. В качестве примера рассмотрим схему с двумя особыми ветвями и источником тока (рис. 3). Количество уравнений составляемых для нахождения узловых потенциалов равно

6 (всего узлов) – 1 (базисный узел) – 2 (узла особых ветвей) = 3.

Произвольно обозначим узлы и токи на схеме. Один из узлов одной из особой ветви (1-4 и 3-6) примем за базисный, к примеру узел 4, в таком случае $ \underline<\varphi>_ <4>= 0 $, а $ \underline<\varphi>_ <1>= \underline_ <1>$.


Рис. 3. Пример расчёта электрической схемы

В ветви 3-6 необходимо найти потенциал только одного из узлов (рассчитаем для узла 6), так как второй (потенциал узла 3) будет отличаться на значение ЭДС, т.е. $ \underline<\varphi>_ <3>= \underline<\varphi>_<6>— \underline_ <2>$. Далее необходимо составить уравнения для нахождения оставшихся потенциалов в узлах 2, 5 и 6. Следует отметить, что ёмкость ветви с источником тока не повлияет на расчёты, поскольку проводимость этой ветви бесконечно большая, а ток задаётся самим источником.

$$ \begin \underline<\varphi>_ <5>\cdot (\underline_ <7>+ \underline_ <5>+ \underline_<8>)- \underline<\varphi>_ <4>\cdot \underline_<7>— \underline<\varphi>_ <2>\cdot \underline_<5>— \underline<\varphi>_ <6>\cdot \underline_ <8>= 0 \\ \underline<\varphi>_ <2>\cdot (\underline_ <2>+ \underline_ <5>+ \underline_<3>)- \underline<\varphi>_ <1>\cdot \underline_<2>— \underline<\varphi>_ <5>\cdot \underline_<5>— \underline<\varphi>_ <3>\cdot \underline_ <3>= 0 \\ \underline<\varphi>_ <6>\cdot (\underline_ <8>+ \underline_ <3>+ \underline_<1>)- \underline<\varphi>_ <5>\cdot \underline_<8>— \underline<\varphi>_ <2>\cdot \underline_<3>— \underline<\varphi>_ <1>\cdot \underline_ <1>= \underline_ <2>\cdot (\underline_ <3>+ \underline_<1>) + \underline_ <1>\end $$

Подставим известные значения потенциалов, сократив количество неизвестных:

$$ \begin \underline<\varphi>_ <5>\cdot (\underline_ <7>+ \underline_ <5>+ \underline_<8>)- 0 \cdot \underline_<7>— \underline<\varphi>_ <2>\cdot \underline_<5>— \underline<\varphi>_ <6>\cdot \underline_ <8>= 0 \\ \underline<\varphi>_ <2>\cdot (\underline_ <2>+ \underline_ <5>+ \underline_<3>)- \underline_ <1>\cdot \underline_<2>— \underline<\varphi>_ <5>\cdot \underline_<5>— (\underline<\varphi>_<6>— \underline_<2>) \cdot \underline_ <3>= 0 \\ \underline<\varphi>_ <6>\cdot (\underline_ <8>+ \underline_ <3>+ \underline_<1>)- \underline<\varphi>_ <5>\cdot \underline_<8>— \underline<\varphi>_ <2>\cdot \underline_<3>— \underline_ <1>\cdot \underline_ <1>= \underline_ <2>\cdot (\underline_ <3>+ \underline_<1>) + \underline_ <1>\end $$

Перенесём все свободные составляющие в правую часть равенств и получим конечную систему уравнений с тремя неизвестными узловыми потенциалами:

$$ \begin \underline<\varphi>_ <5>\cdot (\underline_ <7>+ \underline_ <5>+ \underline_<8>)- \underline<\varphi>_ <2>\cdot \underline_<5>— \underline<\varphi>_ <6>\cdot \underline_ <8>= 0 \\ \underline<\varphi>_ <2>\cdot (\underline_ <2>+ \underline_ <5>+ \underline_<3>)- \underline<\varphi>_ <5>\cdot \underline_<5>— \underline<\varphi>_ <6>\cdot \underline_ <3>= \underline_ <1>\cdot \underline_<2>— \underline_ <2>\cdot \underline_ <3>\\ \underline<\varphi>_ <6>\cdot (\underline_ <8>+ \underline_ <3>+ \underline_<1>)- \underline<\varphi>_ <5>\cdot \underline_<8>— \underline<\varphi>_ <2>\cdot \underline_ <3>= \underline_ <1>\cdot \underline_ <1>+ \underline_ <2>\cdot (\underline_ <3>+ \underline_<1>) + \underline_ <1>\end $$

Для решения системы уравнений с неизвестными узловыми потенциалами, можно воспользоваться Matlab. Для этого представим систему уравнений в матричной форме:

$$ \begin \underline_ <7>+ \underline_ <5>+ \underline_ <8>& -\underline_ <5>& -\underline_ <8>\\ -\underline_ <5>& \underline_ <2>+ \underline_ <5>+ \underline_ <3>& -\underline_ <3>\\ -\underline_ <8>& -\underline_ <3>& \underline_ <8>+ \underline_ <3>+ \underline_ <1>\end \cdot \begin \underline<\varphi>_ <5>\\ \underline<\varphi>_ <2>\\ \underline<\varphi>_ <6>\end = \\ = \begin 0 \\ \underline_ <1>\cdot \underline_<2>— \underline_ <2>\cdot \underline_ <3>\\ \underline_ <1>\cdot \underline_ <1>+ \underline_ <2>\cdot (\underline_ <3>+ \underline_<1>) + \underline_ <1>\end $$

Запишем скрипт в Matlab для нахождения неизвестных:

Примечание. Для решения в численном виде необходимо заменить символьное задание переменных реальными значениями проводимостей, ЭДС и тока источника.

В результате получим вектор-столбец $ \underline<\boldsymbol<\varphi>> $ из трёх элементов, состоящий из искомых узловых потенциалов, при этом токи в ветвях через потенциалы узлов:

Для проверки правильности расчёта можно воспользоваться уравнениями по первому закону Кирхгофа: если суммы токов в узлах 2 и 5 равны нулям, значит расчёт выполнен верно:

$$ \underline_ <5>+ \underline_<3>— \underline_ <2>= 0, $$

$$ \underline_ <5>+ \underline_<7>— \underline_ <8>= 0. $$

Итак, метод узловых потенциалов позволяет рассчитывать меньшее количество сложных уравнений для расчёта электрической цепи в сравнении с другими методами при меньшем числе узлов в сравнении с количеством контуров.

Рекомендуемые записи

Наряду с решением электрических схем по законам Кирхгофа и методом контурных токов используется метод узловых…

При исследовании электрических цепей и моделировании часто пользуются векторными диаграммами токов и напряжений. Под векторной…

При расчёте электрических цепей, помимо законов Кирхгофа, часто применяют метод контурных токов. Метод контурных токов…

Добавить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.


источники:

http://electrikam.com/metod-uzlovyx-potencialov-napryazhenij/

http://faultan.ru/simulation/toe/node_voltages_method/