Уравнения методы их решения 6 класс

Решение линейных уравнений. 6-й класс

Разделы: Математика

Класс: 6

Цели урока:

  • повторить правила раскрытия скобок и приведения подобных слагаемых;
  • ввести определение линейного уравнения с одним неизвестным;
  • познакомить учащихся со свойствами равенств;
  • научить решать линейные уравнения;
  • научить решать задачи на «было − стало».

Оборудование: компьютер, проектор.

Ход урока

I. Проверка предыдущего домашнего задания.

II. Повторение теоретического материала.

  1. Как найти неизвестное слагаемое? [От суммы отнять известное слагаемое]
  2. Как найти неизвестное уменьшаемое? [К вычитаемому прибавить разность]
  3. Как найти неизвестное вычитаемое? [От уменьшаемого отнять разность]
  4. Как найти неизвестный множитель? [Произведение разделить на известный множитель]
  5. Как найти неизвестное делимое? [Делитель умножить на частное]
  6. Как найти неизвестный делитель? [Делимое разделить на частное]
  7. Как раскрыть скобки, перед которыми стоит знак плюс? [Опустить скобки и этот знак плюс, переписать слагаемые с теми же знаками]
  8. Как раскрыть скобки, перед которыми стоит знак минус? [Опустить скобки и этот знак минус, переписать слагаемые с противоположными знаками]
  9. Как выглядит распределительное свойство умножения? [(a+b)∙c=ac+bc]

III. Устные задания по слайдам.

(слайд 2, слайд 3).

1) Раскройте скобки:

3+(х+2); 3-(х+2); 3+(х-7); 3-(х-7); 3+(-х+5); 3-(-х+5); -4(-5-х); 9(; 9(; 2(7+9х); 4(2-3х); -6(9-5х); -3(1+4х).

2) Приведите подобные слагаемые:

6b-b; 9,5m+3m; a —a; m-m; -4x-x+3; 7x-6y-3x+8y.

3) Упростите выражение:

IV. Новая тема. Решение линейных уравнений.

До сегодняшнего урока мы не умели решать уравнения, в которых неизвестное находилось слева и справа от знака равенства: 3x+7=x+15. Некоторые из нас постоянно забывают правила нахождения неизвестного слагаемого, уменьшаемого, вычитаемого. Сегодня мы постараемся разрешить все эти затруднения.

Уравнение, которое можно привести к виду ax=b, где a и b − некоторые числа (a0), называется линейным уравнением с одним неизвестным.

Линейные уравнения обладают свойствами:

  1. Корни уравнения не изменяются, если обе части уравнения умножить или разделить на одно и то же число, не равное нулю (стр. 229 учебника).
  2. Корни уравнения не изменяются, если какое-нибудь слагаемое перенести из одной части уравнения в другую, изменив при этом его знак (стр. 230 учебника).

Рассмотрим план решения линейного уравнения:

х-1+(х+2)=-4(-5-х)-5
х-1+х+2=20+4х-5
х+х-4х=20-5+1-2
-2х=14
х=14:(-2)
х=-7
Ответ: -7.
1) раскрыть скобки, если они есть;
2) слагаемые, содержащие неизвестное, перенести в левую часть равенства, а не содержащие неизвестное − в правую;
3) привести подобные слагаемые;
4) найти неизвестный множитель.

Какими из свойств равенств мы воспользовались для решения уравнения? (вторым)

Рассмотрим примеры уравнений, при решении которых будет удобно воспользоваться и первым свойством.

х+3=х+5 │∙9 Удобно умножить на наименьшее общее кратное знаменателей дробей.

(х+3)∙9=(х+5)∙9 Далее − по плану.

Линейные уравнения — алгоритмы и примеры решений с объяснением для 6 класса

Простые равенства с неизвестными — первоначальный этап знакомства с линейными уравнениями. Примеры с объяснением для 6 класса основываются не только на решении последних, но и на базовых определениях, а также использования формул сокращенного умножения для понижения степени до единицы. Математики рекомендуют начать с теории, а затем перейти к ее практическому применению.

Общие сведения

Уравнение — совокупность чисел и переменных. Иными словами, тождеством, содержащим неизвестные величины, называется математическая запись, в которой следует определить значения переменных, превращающих это выражение в истинное. Например, переменная t в выражении 2t=6 эквивалентна 3, поскольку 2*3=6.

Линейное — тождество, в котором максимальный показатель степени при неизвестной величине всегда эквивалентен единице.

В математике существует термин «корень уравнения». Он означает, что для решения равенства необходимо найти все допустимые значения, превращающие его в истинное тождество. Далее следует разобрать классификацию линейных выражений с переменными.

Классификация уравнений

Прежде чем рассматривать примеры уравнений по алгебре в 7 классе (изучаются подробнее, чем в 6-м), необходимо разобрать их классификацию, поскольку она влияет на алгоритм нахождения корней. Они бывают трех типов:

  • Обыкновенные.
  • С параметром.
  • Высшей степени.

    Первый вид — обыкновенные приведенные линейные уравнения, состоящие из числовых величин и переменных с единичным степенным показателем. Они являются наиболее распространенными не только в математике и физике, но и в других дисциплинах с физико-математическим уклоном. Графиком их функции является прямая линия, которую также называют прямо пропорциональной зависимостью.

    Ко второму типу относятся любые многочлены линейного типа, имеющие переменную, а также некоторый параметр. Последний влияет на решение и нахождение корней. Обычно он задается на начальном этапе решения, но бывают и исключения. В последнем случае необходимо указывать диапазон допустимых значений параметра.

    Суть решения второго вида уравнений — предотвратить превращение тождества в пустое множество. Для этой цели требуется исключить при помощи записи в виде неравенства все ложные значения параметра. Выражения с параметром применяются в программировании при написании и разработке различных алгоритмов. Кроме того, их можно встретить при описании физических процессов и явлений.

    Последний тип — выражения высшей степени, которые при помощи математических преобразований превращаются в первый или второй тип. Для их решения необходимо знать формулы сокращенного умножения, понижающие степень до единицы, а также навык раскрытия скобок и приведения подобных компонентов.

    Обыкновенные тождества

    Простое линейное уравнение записывается в таком виде: At+Bt+Ct+As+Bs+Cs=0. Некоторых коэффициентов может и не быть. Кроме того, тождество может записываться в виде выражения, включающего в свой состав скобки. Алгоритм решения имеет следующий вид:

  • Раскрыть скобки.
  • Произвести математические преобразования над компонентами уравнения.
  • Сгруппировать элементы: перенести неизвестные в одну, а известные — в другую сторону.
  • Найти корень или доказать его отсутствие (учитывать и знаменатель при его наличии).
  • Выполнить проверку, подставив решение в исходное равенство.

    Следует отметить, что также составляются примеры линейных уравнений для тренировки в 7 классе. Необходимо разобрать решение одного из них «7 (t-1)(t+1)-7t (t-1)=8». Решать его нужно по вышеописанному алгоритму:

  • 7 (t 2 −1)-7t 2 +7t=7t 2 −7-7t 2 +7t=8.
  • 7t 2 −7t 2 +7t-7=7t-7=8.
  • 7t=15.
  • t=2,5.
  • 7 (2,5−1)(2,5+1)-7*2,5 (2,5−1)=8. При расчете можно получить следующее тождество, которое является истинным: 8=8.

    Последний пункт реализации методики свидетельствует о том, что корень тождества найден правильно. Далее нужно рассмотреть выражения с параметром.

    Выражения с параметром

    Уравнения с некоторым параметром решаются немного по другой методике. Ее суть заключается в нахождении корня, дополнительно зависящего от некоторого значения. Алгоритм имеет следующий вид:

  • Записать равенство.
  • Раскрыть скобки и привести подобные элементы к общему виду.
  • Выполнить математические преобразования, при помощи которых следует отделить некоторый параметр от переменной.
  • Записать диапазон значений, при которых неизвестная величина в третьем пункте не превращает уравнение в пустое множество.
  • Записать формулу определения корня.
  • При необходимости подставить значение параметра.
  • Проверить результат.

    Реализацию методики необходимо рассмотреть на практическом примере «t-2+pt=0», где р — параметр тождества. Решать выражение нужно по такому алгоритму:

  • t-2+pt=0.
  • Опускается, поскольку в выражении нет скобок.
  • (t+pt)=t (1+p)=2.
  • p не должен быть -1: (-inf;-1)U (-1;+inf), где -inf и +inf — минус и плюс бесконечность соответственно.
  • t=2/(1+p).
  • При p=0: t=2.
  • 2−2+0*2=0.

    Иногда в некоторых задачах нет необходимости подставлять значение параметра. В этом случае следует просто записать формулу корня, указав допустимый интервал (диапазон) последнего. Например, в вышеописанном примере решение записывается следующим образом: t=2/(1+p). Каждый ученик должен понять основной смысл решения уравнений этого типа — научиться находить область значений параметра, не превращающие выражение в пустое множество.

    Понижение степени

    Некоторые уравнения представлены степенью при неизвестной, превышающую единицу. К ним относятся следующие виды: квадратные, кубические и бикубические. Каждый из трех видов имеет собственный алгоритм нахождения корней.

    Однако некоторые из них можно свести к линейному типу. Для этого применяется метод разложения на множители. Он подразумевает алгебраические соотношения, при помощи которых выражение легко записывается в обыкновенной линейной форме. К ним относятся следующие:

    Первая и вторая формула называется квадратом суммы или разности соответственно. Третья — разность квадратов. Кроме того, бывают случаи, при которых невозможно применить эти тождества. Для этого требуется выносить общий множитель за скобки, тем самым понижая степень. Для нахождения корней существует определенная методика:

  • Написать равенство с неизвестным.
  • Выполнить анализ его структуры и сопоставить с одним из соотношений. Если операцию выполнить невозможно, то следует осуществить математические преобразования по вынесению общего множителя.
  • Решить линейные уравнения.
  • Произвести проверку, подставив корни или корень в исходное выражение в первом пункте методики.

    Реализация алгоритма нужно проверить на практическом примере, т. е. следует решить уравнение «3t^2-3=0». Найти его корни можно, воспользовавшись вышеописанной методикой:

  • 3t^2-3=0.
  • 3(t^2-1)=0.
  • Сократить обе части на 3: t^2-1=0.
  • Воспользоваться формулой сокращенного умножения (разность квадратов): (t-1)(t+1)=0.
  • У уравнения два корня: t1=1 и t2=-1.
  • Подставить t1 и t2: 3*1-3=0 и 3*(-1)^2-3=0. Оба решения являются верными, поскольку не обращают искомое тождество в пустое множество.

    Кубические и бикубические должны сводиться к квадратным, а затем преобразовываться в линейные, поскольку формулы кубов суммы и разности, при их разложении на множители, дают вторую степень. Однако существует еще один частный случай, о котором не упоминалось при классификации линейных выражений с неизвестными — системы уравнений.

    Системы линейного типа

    Система уравнений — совокупность выражений с неизвестными, которые имеют общие решения. Методика для вычисления корней имеет следующий вид:

  • Записать систему уравнений.
  • Выбрать наиболее простое тождество и выразить одну величину через другую.
  • Подставить в любое выражение переменную, выраженную во втором пункте алгоритма.
  • Раскрыть скобки и выполнить математические преобразования.
  • Решить уравнение в четвертом пункте.
  • Подставить корень, полученный на пятом шаге алгоритма, во 2 пункт.
  • Найти вторую переменную.
  • Записать результат.
  • Выполнить проверку.

    Однако для практического применения вышеописанной методики необходимо разобрать систему уравнений, состоящую из двух тождеств (5t-2s=1 и 4t^2-s^2=0). Решать ее нужно по вышеописанной методике:

  • 5t-2s=1 и 4t^2-s^2=0.
  • Простое выражение: 5t-2s=1. Выразить s: s=(5t-1)/2.
  • (2t-s)(2t+s)=[4t/2-(5t-1)/2][4t/2+(5t-1)/2]=8t=8.
  • 8t=8=>t=1.
  • 5*1-2s=1. Отсюда s=2.
  • 5*1-2*2=1=1 (равенство действительное).

    В третьем пункте математики рекомендуют разложить тождество на множители, поскольку необходимо всегда понижать степень при неизвестной величине. Во всех трех случаях описаны простые примеры, которые позволяют перейти к более сложным заданиям.

    Следует отметить, что еще одним методом решения системы уравнений считается построение графиков функций, входящих в ее состав. Методика поиска решений сводится к простым шагам, которые можно править относительно предыдущего алгоритма таким образом:

  • Упростить все выражения, входящие в систему.
  • Выразить одну величину через другую в каждом выражении. Следует учитывать, что искомая переменная должна быть обязательно без степени и коэффициентов.
  • Построить отдельно для каждой функции специальные таблицы значений зависимости одной переменной от другой.
  • Начертить прямоугольную систему координат.
  • Отметить точки, исходя из таблицы, в системе координат.
  • Соединить точки плавными линиями при помощи карандаша.
  • Проделать аналогичные действия над другими тождествами (5 и 6).
  • Определить точки пересечения функций и записать их координаты.

    В последнем пункте методики находятся корни системы уравнений. Далее рекомендуется их подставить в исходные выражения для проверки.

    Таким образом, линейные уравнения применяются в различных физико-математических дисциплинах и прикладных науках. Для их решения существуют определенные методики, позволяющие выполнить эту операцию за короткий промежуток времени и не допустить ошибок.

    Решение уравнений в 6 классе

    Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

    Муниципальное бюджетное образовательное учреждение средняя общеобразовательная школа № 6

    Проектно-исследовательская работа на тему:

    «Решение уравнений в 6 классе»

    Исследователь : Жугина Анна

    Руководитель: Никитенко Ольга

    Методы решения уравнений…………………………………………. 7

    Список использованных ресурсов……………………………………..14

    Как известно математика — это наука о структурах, порядке и отношениях, исторически сложившаяся на основе операций подсчёта, измерения и описания формы объектов.

    В школьном курсе математика представлена таким разделом как: арифметика, алгебра, геометрия, тригонометрия и начала анализа. Большую часть школьной математики занимает алгебра. Ее элементы начинают изучать уже в начальной школе (равенства, простейшие уравнения, неравенства) и продолжаются до 11 класса до логарифмических, показательных и дифференциальных уравнений.

    Самый большой материал, который рассматривают на протяжении всех лет изучения алгебры – это различные уравнения и способы их решения. Уравнения уже сами по себе представляет интерес для изучения, так как в известном смысле именно с их помощью на символическом языке записываются важнейшие задачи, связанные с познанием реальной действительности, очевидно, что роль уравнений в естествознании определяет и их роль в школьном курсе математики. Большое значение в алгебре играет метод уравнений в решении задач жизненного содержания: это задачи, связанные с основами современного производства, экономика народного хозяйства, задач в смежных дисциплинах (физики, химии, биомеханики, астрономии и т.д.) Целью являются изучение истории возникновения уравнений, понятия решения уравнений и виды их упрощения, а также рассмотрение способов решения ряда занимательных задач с помощью уравнений.

    Актуальность: чтобы перейти к исследованию данной темы, нам необходимо было ответить на вопрос: «Зачем нужно изучать уравнения?», и познакомить учащихся 6 класса с новой темой — перенос слагаемых из одной части уравнения в другую и свойства уравнений. Этот материал в курсе математики -6 рассматривается позже .

    Проблема: углубить представления об уравнениях. Ответить на вопрос: «Как решить уравнения: 4х – 8 = 6 — 3х , (х — 3) : 4 = 6 и дробными коэффициентами?» Показать где, когда и какие уравнения приходится решать современному человеку.

    Данная работа является попыткой обобщить и систематизировать изученный материал и изучить новый. В проект включены уравнения с переносом слагаемых из одной части уравнения в другую и с применением свойства уравнений, так же задачи, решаемые уравнением и дополнительный материал.

    Математика. выявляет порядок,

    симметрию и определенность,

    а это – важнейшие виды прекрасного.

    Представим, что в очень легком – практически невесомом – кошельке содержится какое-то количество монет одинакового достоинства. Как узнать, сколько монет в кошельке, не заглядывая внутрь? Есть очень простой способ: положим кошелек на одну чашу рычажных весов и уравновесим его монетками на другой чаше. Сколько монет для этого потребуется – столько же их и в кошельке.

    В те далекие времена, когда мудрецы впервые стали задумываться о равенствах содержащих неизвестные величины, наверное, еще не было ни монет, ни кошельков. Но зато были кучи, а также горшки, корзины, которые прекрасно подходили на роль тайников-хранилищ, вмещающих неизвестное количество предметов. «Ищется куча, которая вместе с двумя третями ее, половиной и одной седьмой составляет 37. «, — поучал во II тысячелетии до новой эры египетский писец Ахмес. В древних математических задачах Междуречья, Индии, Китая, Греции неизвестные величины выражали число павлинов в саду, количество быков в стаде, совокупность вещей, учитываемых при разделе имущества. Хорошо обученные науке счета писцы, чиновники и посвященные в тайные знания жрецы довольно успешно справлялись с такими задачами.

    Дошедшие до нас источники свидетельствуют, что древние ученые владели какими-то общими приемами решения задач с неизвестными величинами. Однако ни в одном папирусе, ни в одной глиняной табличке не дано описания этих приемов. Авторы лишь изредка снабжали свои числовые выкладки скупыми комментариями типа: «Смотри!», «Делай так!», «Ты правильно нашел». В этом смысле исключением является «Арифметика» греческого математика Диофанта Александрийского (III в.) – собрание задач на составление уравнений с систематическим изложением их решений.

    Однако первым руководством по решению задач, получившим широкую известность, стал труд багдадского ученого IX в. Мухаммеда бен Мусы аль-Хорезми. Слово «аль-джебр» из арабского названия этого трактата – «Китаб аль-джебер валь-мукабала» («Книга о восстановлении и противопоставлении») – со временем превратилось в хорошо знакомое всем слово «алгебра», а само сочинение аль-Хорезми послужило отправной точкой в становлении науки о решении уравнений.

    Методы решения уравнений

    Что такое уравнение?

    Существуют уравнение в правах, уравнение времени (перевод истинного солнечного времени в среднее солнечное время, принятое в общежитии и в науке; астр.) и т.д..

    В математике – это математическое равенство, содержащее одну или несколько неизвестных величин и сохраняющее свою силу только при определенных значениях этих неизвестных величин.

    В уравнениях с одной переменной неизвестное обычно обозначают буквой «х».

    Уравнения бывают разных видов:

    Существуют такие способы решения уравнений как: алгебраический, арифметический и геометрический. Рассмотрим алгебраический способ.

    Решить уравнение — это найти такие значения икса, которые при подстановке в исходное выражение, дадут нам верное равенство или доказать, что решений нет. Решение уравнений, пусть это и сложно, захватывает нас. Ведь это, действительно, удивительно, когда от одного неизвестного числа зависит целый поток чисел.

    В уравнениях для нахождения неизвестного надо преобразовать и упростить исходное выражение. Причем так, чтобы при смене внешнего вида суть выражения не менялась. Такие преобразования называются тождественными или равносильными. Сейчас мы с вами рассмотрим решение уравнения из учебника для 6 класса из раздела повторения уравнений за 5 класс. Задание 206, уравнение «а».

    (х + 36,1) . 5,1 = 245,82

    х + 361= 245,82 : 5,1

    Значение переменной, обращающее уравнение в верное равенство называется корнем уравнения.

    Выполнив проверку получим:

    (12,1 + 36,1) . 5,1 = 245,82

    Значит 12,1 – корень уравнения.

    Таким способом решают уравнения учащиеся до 6-ого класса. А в 6-ом классе они знакомятся с новым способом решения уравнении, таким как перенос слагаемых из одной части уравнения в другую. При этом знак слагаемых меняется на противоположный и применяют свойства уравнений – обе части уравнения можно умножить (разделить) на одно и то же отличное от нуля число или выражение. Рассмотрим решение уравнений с отрицательными числами. Возьмём пример №1341 «а»:

    – 20 · (х – 13) = – 220

    [– 20 · (х – 13) ] : [– 20 ] = – 220 : [– 20 ]

    Мир уравнений очень богат. При помощи них можно решить самые сложные задачи. С помощью уравнений в задачах мы находим связь между величинами, получаем опыт применения математики к решению практических задач.

    Решение задач на проценты – в медицине, криминалистике, биохимии и т.д.

    Решение уравнений применяется в строительстве (дороги, мосты и т.д.), архитектуре. При составлении прогноза погоды, геологии и т.д. В построении графика годового цикла состояния человека.

    Рассмотрим некоторые из них, которые можно применить на уроках математики или на занятиях математического кружка.

    Уравнение – это не только сухой математический термин, это язык алгебры!

    «Чтобы решить вопрос, относящийся к числам или отвлеченным отношениям величин, нужно лишь перевести задачу с родного языка на язык алгебраический», — писал великий И. Ньютон в своем учебнике алгебры, который называется «Всеобщая арифметика». Под алгебраическим языком понимают язык уравнений и неравенств. Большинство текстовых задач решается именно этим способом. Посмотрим на примере, как выполняется такой перевод с родного языка на алгебраический.

    В III—IV веках нашей эры жил в городе Александрии знаменитый греческий математик Диофант. До нас дошли шесть из тринадцати книг «Арифметики», написанных Диофантом. История сохранила нам мало черт биографии замечательного древнего математика Диофанта. Все, что известно о нем, почерпнуто из надписи на его гробнице — надписи, составленной в форме математической задачи. Эта надпись дает возможность определить продолжительность жизни математика, которого позднее назвали «отцом греческой алгебры». Надпись эта в переводе, подражающем древним стихам, такова:

    Часть шестую его представляло
    прекрасное детство.

    Двенадцатая часть протекла еще жизни –
    покрылся пухом тогда подбородок.

    Седьмую в бездетном браке
    провел Диофант.

    Прошло пятилетие;
    он был осчастливлен рождением
    прекрасного первенца сына.

    Коему рок половину лишь
    жизни прекрасной и светлой
    дал на земле по сравненью с отцом.

    И в печали глубокой
    старец земного удела конец воспринял,
    переживши года четыре
    с тех пор, как сына лишился.

    Скажи, сколько лет жизни достигнув,
    смерть воспринял Диофант?»

    Приведем условие к уравнению.
    Вся жизнь принимается за х
    Прекрасное детство: х
    Юность: х
    Бездетный брак: х
    Прошло пятилетие: 5
    Половина жизни прекрасной: х

    Переживши года четыре: 4

    х + х + х + 5 + х + 4 = х

    х + х + х + х – х = – 9

    Решив уравнение и найдя, что х=84, узнаем следующие черты биографии Диофанта; он женился в возрасте 21года, стал отцом на 38 году, потерял сына на 80 году и умер, достигнув возраста 84 лет.

    Решение уравнений – зачастую дело нетрудное; составление уравнений по данным задачи затрудняет больше. Искусство составлять уравнения действительно сводится к умению переводить «с родного языка» на «алгебраический». Для примера рассмотрим задачу № 652 из учебника:

    «Масса винограда в первом ящике составляет массы винограда во втором ящике. Сколько килограммов винограда было в двух ящиках, если в первом ящике был 21 кг винограда?»

    Пусть: х кг будет количество во 2-ом ящике.

    х = кг количество в 1-ом ящике.

    Всего 21 кг винограда.

    Ответ: 11 килограммов винограда было в двух ящиках.


    источники:

    http://kupuk.net/uroki/algebra/lineinye-yravneniia-algoritmy-i-primery-reshenii-s-obiasneniem-dlia-6-klassa/

    http://infourok.ru/reshenie-uravneniy-v-klasse-2065533.html