Уравнения на ограниченность синуса и косинуса

Уравнения на ограниченность синуса и косинуса

Методы решения тригонометрических уравнений.

1. Алгебраический метод.

( метод замены переменной и подстановки ).

2. Разложение на множители.

П р и м е р 1. Решить уравнение: sin x + cos x = 1 .

Р е ш е н и е . Перенесём все члены уравнения влево:

sin x + cos x – 1 = 0 ,

преобразуем и разложим на множители выражение в

левой части уравнения:

П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.

Р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 ,

sin x · cos x – sin 2 x = 0 ,

sin x · ( cos x – sin x ) = 0 ,

П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.

Р е ш е н и е . cos 2 x + cos 6 x = 1 + cos 8 x ,

2 cos 4x cos 2x = 2 cos ² 4x ,

cos 4x · ( cos 2x – cos 4x ) = 0 ,

cos 4x · 2 sin 3x · sin x = 0 ,

1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 ,

3. Приведение к однородному уравнению.

а) перенести все его члены в левую часть;

б) вынести все общие множители за скобки;

в) приравнять все множители и скобки нулю;

г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на

cos ( или sin ) в старшей степени;

д) решить полученное алгебраическое уравнение относительно tan .

П р и м е р . Решить уравнение: 3 sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.

Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,

sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,

tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 ,

корни этого уравнения: y 1 = — 1, y 2 = — 3, отсюда

1) tan x = –1, 2) tan x = –3,

4. Переход к половинному углу.

П р и м е р . Решить уравнение: 3 sin x – 5 cos x = 7.

Р е ш е н и е . 6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) =

= 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,

2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,

tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 ,

5. Введение вспомогательного угла.

где a , b , c – коэффициенты; x – неизвестное.

Теперь коэффициенты уравнения обладают свойствами синуса и косинуса , а именно : модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1 . Тогда можно обозначить их соответственно как cos и sin ( здесь — так называемый вспомогательный угол ), и наше уравнение прини мает вид:

6. Преобразование произведения в сумму.

П р и м е р . Решить уравнение: 2 sin x · sin 3 x = cos 4 x .

Р е ш е н и е . Преобразуем левую часть в сумму:

Ограниченность (или метод оценок)

Аналитические способы решения задач с параметрами. Ограниченность. Метод оценок.

Ещё один распространённый метод аналитического решения задач с параметрами — это метод оценок. Или по-другому — метод мажорант. Основывается он на таком важном свойстве многих функций, как ограниченность. Для начала пробежимся по самому понятию ограниченности.

Что такое ограниченность? Ограниченные функции.

То что это слово происходит от слова «граница», вопросов, думаю, ни у кого не вызывает.) Многое в нашем окружении обладает ограниченностью: сутки ограничены 24 часами, проезжая часть дороги ограничена тротуаром или обочиной, секретная территория ограничена забором с колючей проволокой. 🙂 А в математике бывают ограниченные функции.

Что же такое ограниченная функция? Это функция, область значений которой ограничена каким-то числом (или двумя числами). Что такое область значений функции? Это те значения, которые может принимать функция в принципе. Обозначается она, как мы помним, E(y).

Например, для линейной функции y = kx+b областью значений будет вся числовая прямая:

Для параболы y = x 2 областью значений будет множество всех неотрицательных чисел:

Для синуса или косинуса областью значений служит отрезок [-1; 1]. То есть, E(y) = [-1; 1].

Для константы y = C область значений вообще состоит всего лишь из одной точки: E(y) = .

Одних только этих примеров уже достаточно, чтобы понять, что бывают функции, графики которых неограниченно простираются сверху вниз (или снизу вверх), либо которые ограничены только сверху (снизу), либо которые «зажаты» между какими-то двумя числами. А также константы.

Так вот, функция f(x) , определённая на множестве X , называется ограниченной сверху числом А , если f(x)≤A для любого .

Например, сверху ограничена любая квадратичная функция y = ax 2 +bx+c с отрицательным коэффициентом «a» (то есть, с параболой ветвями вниз). Каким же именно числом? Значением в вершинке:

Функция f(x) , определённая на множестве X , называется ограниченной снизу числом А , если f(x)≥A для любого .

Например, наши любимые парабола y = x 2 и модуль y = |x| ограничены снизу числом 0.

А вот функция, ограниченная как сверху, так и снизу, называется просто ограниченная функция. Например, любой синус и любой косинус ограничены числами Арктангенс ограничен числами ± π /2. Константа, ясен перец, ограничена сама собой же.)

И так далее. Что такое ограниченность и какие у неё бывают разновидности, в общих чертах теперь, думаю, понятно. ) Мы не будем здесь углубляться в густые дебри теории множеств, заикаться про точную верхнюю и нижнюю грани (называемые красивыми словами «супремум» и «инфимум»), ибо для решения нестандартных задач (с параметрами и без) приведённой выше информации про ограниченность вполне достаточно.)

А теперь составим небольшой список наиболее часто встречающихся ограниченных конструкций.

Квадратный трёхчлен

Любой квадратный трёхчлен ограничен сверху (снизу) значением в вершине соответствующей параболы:

В частности, и .

Модуль

Любой модуль всегда неотрицателен: |x| ≥ 0.

Синус и косинус

Любой синус и любой косинус всегда лежит в отрезке от -1 до 1:

и

Обратные тригонометрические функции

π /2 ≤ arcsin x ≤ π /2 0 ≤ arccos x ≤ π

π /2 arctg x π /2 0 arcctg x π

Полезные неравенства

Что ещё очень часто применяется при решении задач с использованием метода оценок, так это некоторые весьма и весьма нетривиальные, но очень полезные неравенства. Сейчас мы их выпишем и разберём (в том числе и докажем).

Неравенство о среднем арифметическом и среднем геометрическом (неравенство Коши)

Первое полезное неравенство, которое мы рассмотрим, — это неравенство, связывающее среднее арифметическое и среднее геометрическое двух чисел. Называется оно неравенством Коши и выглядит так:

А по-русски это неравенство звучит так: « Среднее арифметическое двух неотрицательных чисел не меньше их среднего геометрического. »

Здесь есть ограничение: оба числа должны быть неотрицательными. Иначе либо корень справа вообще потеряет смысл, либо неравенство будет неверно.

Доказывается оно довольно просто. Для этого перенесём влево и умножим обе части на 2:

Из свойств корней мы знаем, что:

.

Если теперь вставить эти выражения в наше неравенство, то слева получится полный квадрат разности:

Последнее неравенство возражений, думаю, не вызывает: квадрат любого выражения всегда неотрицателен. 🙂 Тем самым, неравенство Коши доказано.

Обратим внимание, что неравенство здесь нестрогое — больше, либо равно. А вот когда достигается это самое «равно»? Только в единственном случае — когда .

Кстати говоря, неравенство Коши справедливо не только для двух, а для любого количества чисел. В более общей форме оно записывается вот так:

Важное следствие из неравенства Коши:

Сумма двух взаимно обратных величин

Следующее неравенство, на которое мы обратим внимание, — это сумма двух положительных взаимно обратных величин. При a > 0 справедливо вот такое неравенство:

Доказывается оно довольно легко с использованием предыдущего неравенства Коши.)

Положив в нём b=1/a, получим:

Что и требовалось доказать.)

Здесь неравенство снова нестрогое и превращается в равенство только при a = 1/a, то есть при a = 1.

Связь квадрата и модуля

Третья группа полезных неравенств — связь квадрата какой-то величины с модулем этой самой величины:

при

при

Тут доказательство довольно просто провести графически. Вспомните график параболы y = x 2 и график модуля y = |x| . И всё станет ясно.)

Оценка некоторых тригонометрических выражений

А теперь рассмотрим одно полезное неравенство из тригонометрии. Очень полезное для метода мажорант! Основано оно на так называемом методе вспомогательного аргумента. Про этот метод будет отдельный урок в разделе по тригонометрии, а здесь — просто краткие сведения.)

Итак, пусть у нас есть вот такое выражение с синусом и косинусом:

Здесь a и b – просто какие-то числа, одновременно не равные нулю. Нам теперь надо оценить это выражение. Для этого проделываем вот такую манипуляцию: умножаем и тут же делим всю конструкцию на вот такой корень :

Казалось бы, что это ещё за выкрутасы такие? Ничего, сейчас интересно будет. 🙂 Теперь делим числитель почленно на этот самый корень:

А теперь — самое интересное! Вводим вот такие обозначения:

Правомерна ли такая замена? Проверим по основному тригонометрическому тождеству:

Итак, основное тригонометрическое тождество выполнено, а это значит, что наши загадочные числа

и впрямь есть косинус и синус некоторого угла . Этот новый угол «фи» и называется тем самым вспомогательным углом. 🙂 Кстати, можно точно определить, чему равен этот самый угол «фи». Для этого поделим друг на друга его синус и косинус. Как мы знаем, это будет тангенс:

Что ж, перепишем наше выражение с учётом доказанных фактов:

А теперь — сворачиваем наше выражение по формуле синуса суммы двух углов. Вот так:

.

Любой синус, как нам известно, заключён в пределах [-1; 1], а это значит, что всё наше выражение заключено вот в таких пределах:

Это неравенство довольно часто применяется при оценке тригонометрических выражений. Полезно запомнить.)

Принцип оценки левой и правой части (или принцип разделяющего числа)

И, наконец, последнее что мы рассмотрим — это вот такую типичную ситуацию. Пусть у нас имеется уравнение f(x) = g(x). Допустим, мы каким-то образом установили, что левая часть не больше какого-то числа А:

Также мы установили, что правая часть не меньше этого же числа:

Или всё наоборот — не суть важно. Важно другое — одна из функций ограничена сверху числом А, а вторая функция ограничена снизу этим же самым числом.) Когда возможно равенство левой и правой части? Да! Когда одновременно и левая, и правая части равны этому граничному числу А!

То есть, наше исходное уравнение f(x) = g(x) будет равносильно вот такой системе:

Решается такая системка, как правило, уже без особого труда.

Этот метод часто применяется в той ситуации, когда слева и справа стоят функции разной природы. Скажем, синус и многочлен. Или косинус и логарифм… Это намёк.) Попробуйте оценить левую и правую части! В 99% случаев помогает!

Теперь кратко о задачах, которые будут рассматриваться в настоящем материале. Большинство из этих задач НЕ решаются стандартными способами — сведением к простейшим уравнениям или неравенствам, разложением на множители, возведением в квадрат и подобными преобразованиями. Однако, если попытаться оценить конструкции, входящие в задачу, как дорога к ответу становится простой, понятной и красивой, а задача из монстра становится белой и пушистой.) «Внешний вид» задач, где явно напрашивается метод оценок, примерно следующий:

— наличие слева и справа «разнородных» функций (синуса и логарифма, косинуса и квадратного трёхчлена и т.п.);

— присутствие ограниченных конструкций (синусов/косинусов, квадратных трёхчленов, модулей, суммы взаимно обратных величин и т.д.).

Распознавать такие задачи после некоторой тренировки труда не составит. Если тренироваться, конечно. 🙂

Уравнения (неравенства) без параметра, решаемые методом оценок

Что ж, хватит грузной теории, перейдём теперь к конкретным задачам и посмотрим на метод оценок в действии. Для начала рассмотрим задачи без параметра, но с одной или несколькими неизвестными, а уже потом будем рассматривать конкретные параметрические задачи из вариантов ЕГЭ.

Начнём пока что с такого задания.

Пример 1

Решить уравнение:

Если мы сейчас начнём решать это уравнение по стандартным шаблонам и напишем какую-нибудь ересь типа

,

то погрязнем в вычислениях и выкладках, что называется, всерьёз и надолго. 🙂

Как же подступиться к этому уравнению? Путём недолгих размышлений, можно, конечно, догадаться, что число x = 0 является его корнем. А вдруг, кроме нуля, у него есть ещё корни? Так и будем гадать на кофейной гуще? Так как мы не гадалки, то попробуем применить обещанный метод мажорант или оценок.

Внешний вид уравнения (слева косинус, справа — многочлен) намекает на оценку левой и правой частей. Вот и попробуем оценить левую и правую части нашего злого уравнения.

Во-первых, про косинус мы знаем, что он всегда лежит в диапазоне от -1 до 1:

А про квадрат мы также знаем, что он всегда неотрицателен:

А, стало быть, если к квадрату прибавить 1, то вся правая часть будет не меньше единички:

А теперь осмысливаем результат: левая часть не больше единицы, а правая часть — не меньше единицы. А это значит, что равенство обеих частей возможно только в единственном случае — когда обе части равны единице! И наше зверское уравнение превращается в эквивалентную систему:

Нетрудно убедиться, что единственным решением этой системки является x = 0. И, следовательно, других корней, кроме нуля, это уравнение не имеет. Вот это строгое обоснование того факта, что других корней нет.

Пример 2

Снова совершенно немыслимый набор функций: слева логарифм от какой-то белиберды с синусом, а справа — корень из квадратного трёхчлена.) Значит, стандартные приёмы (типа возведения в квадрат, ликвидации логарифмов) бесполезны. Значит, пример заточен под какой-то нестандартный ход. Какой? Слева и справа стоят функции совершенно разного рода — корень и логарифм. Такой внешний вид примера — своего рода сигнал к применению метода мажорант. Попробуем оценить обе части? 🙂

Итак, берём сначала логарифм

Что можно сказать про выражение |sin0,5 π x| , которое сидит внутри логарифма? Смотрим нашу сводку неравенств и находим похожее:

Но у нас аргумент синуса не просто икс, а ! Ну и что? Запоминаем: каким бы сложным аргумент синуса (косинуса) ни был, любой синус (косинус) всё равно будет от -1 до 1 (или по модулю от 0 до 1).

Значит, для синуса можно записать:

Если теперь это неравенство помножить на (-1), то получим:

Следующим шагом прибавляем 17 ко всем трём частям:

И, наконец, последнее усилие — берём логарифм по основанию 2. Так как в основании логарифма стоит двойка (т.е. число, большее 1), то знаки нашего двойного неравенства от логарифмирования не поменяются:

Вот так. Значит, вся конструкция слева заключена в отрезке [4; log217]. Иначе быть не может.

Теперь берёмся за правую часть, с корнем .

Квадратный трёхчлен следует оценивать, предварительно выделив полный квадрат. Вот так:

Зачем мы привели трёхчлен именно к такому виду? А затем, что теперь стало всё видно: если от 16 отнять что-то в квадрате (неотрицательное!), то это выражение будет в любом случае не больше 16:

Значит, если из этого выражения извлечь корень, то он точно будет не больше , т.е. 4. Итак,

А нулём мы дополнительно ограничиваем просто в силу неотрицательности арифметического корня.)

А теперь — состыковываем результаты наших оценок левой и правой частей:

Теперь уже видно, что нашим разделяющим числом (т.е. мажорантой) является четвёрка: левая часть не меньше 4, а правая — не больше 4. А значит, для того чтобы наше уравнение имело корни, левая и правая части одновременно должны быть равны 4. Таким образом, наше злое уравнение равносильно вот такой системе:

А решение этой системы уже не представляет никаких трудностей. Из второго уравнения легко можно получить единственный корень x = 1:

(возводим обе части в квадрат)

Проверим первое уравнение при x = 1:

Гуд.) Всё совпало!

Итак, единственным корнем уравнения является x = 1.

Идея ясна? Отлично! Тогда разбираем похожую задачку. Для тренировки.)

Пример 3

Ну, с корнем справа всё ясно. Его оцениваем с помощью выделения полного квадрата у подкоренного трёхчлена. 🙂 Полная аналогия с предыдущим примером:

.

Тогда и, следовательно, .

Итак, правая часть не больше четвёрки. 🙂

А вот левую часть на этот раз будем оценивать с помощью неравенства Коши. Зря, что ли, мы его выводили? 🙂 Перепишем его ещё разочек, умножив обе части на 2:

.

Если теперь положить в нём и , то получим следующее:

Итого , т.е. левая часть не меньше четвёрки.

И снова нашим разделяющим числом оказалась четвёрка. 🙂 То есть, всё наше уравнение равносильно системе:

Единственным решением этой системы (а значит, и исходного уравнения) является x=1.

Разберём теперь уравнение с двумя переменными. Казалось бы, всё гораздо сложнее, однако внешность обманчива. Если уметь грамотно проводить оценку. 🙂

Пример 4

Найти все пары чисел (x; y), удовлетворяющих уравнению:

Уравнение одно, а переменных две — икс и игрек. Как тут не испугаться… Однако, глаза боятся, а руки делают. 🙂 Оцениваем квадратный трёхчлен справа. Это нам уже знакомо:

Значит, 2(y-1) 2 +13 ≥ 13 , причём равенство достигается только при y = 1, т.е. когда обнуляется скобка (y-1) 2 . Запомним этот важный факт. 🙂

А что можно сказать про левую часть ? Пока — ничего определённого. Но! Если присмотреться, то можно увидеть, что данное выражение — это конструкция вида . Метод вспомогательного угла нам в помощь! 🙂

Первым делом считаем выражение

Число 13 здесь всплыло неспроста. 🙂 Ниже сами увидите. Итак, умножаем и делим наше выражение на 13:

А теперь — вводим новый угол вот с такими характеристиками: cos φ = 12/13; sin φ = 5/13.

Определим теперь сам угол. Через тангенс. 🙂

Значит, вся наша левая часть запишется вот так:

Стало быть, .

Без введения вспомогательного угла так красиво оценить левую часть вряд ли получилось бы. 🙂 Именно поэтому метод введения вспомогательного угла надо знать. В подобных задачах только он и спасает положение. Намёк понятен?)

Вот мы и вышли на разделяющее число. Тринадцать. Левая часть не больше тринадцати, а правая — не меньше тринадцати. Заменяем уравнение на равносильную систему:

Вспоминаем все наши преобразования:

Второе уравнение системы выполняется только при y = 1. А вот в первом уравнении, как и в обычном тригонометрическом, получается серия решений:

Решаем это простенькое тригонометрическое уравнение с синусом и получаем:

Вспомнив, что же такое это самое , окончательно получим:

Получили бесконечную серию пар (x; y).

Ответ: ( π /2+arctg5/12+2 π n; 1 ), n Z

Итак, с уравнениями потренировались, рассмотрим теперь и что-нибудь из неравенств. Для неравенств применение метода мажорант полностью совпадает с таковым для уравнений. 🙂 Например, такое задание.

Пример 5

Внешний вид неравенства (слева логарифмы, справа — синусы) явно намекает на метод мажорант. Начнём с оценки левой части.

По одному очень хорошему свойству логарифмов, можно перевернуть второй из них:

Получили сумму двух взаимно обратных величин. Которая, как мы помним из нашей сводки, не меньше двойки. Вот и это неравенство нам тоже пригодилось! 🙂 Вперёд! Оцениваем:

Причём равенство достигается только при

Оба этих числа входят в ОДЗ нашего выражения слева.

Что же касается правой части, то в знаменателе нашей дроби сидит самый обычный квадратный трёхчлен. Только относительно синуса. 🙂 Всё как обычно, выделяем полный квадрат и оцениваем:

Раз знаменатель дроби не меньше единицы, то вся дробь не больше двойки:

Причём равенство этой дроби двойке достигается только когда её знаменатель равен единице, т.е. (sin(x+y)-1) 2 +1 = 1 или sin(x+y) = 1.

А теперь состыковываем результаты наших оценок. Для простоты как-нибудь обозначим наши функции:

Мы получили, что:

, .

При этом у нас есть вот такое нестрогое неравенство:

Левая функция должна быть не больше правой. Но при этом левая функция находится выше двойки (либо равна), а правая — ниже двойки (либо равна). Как вы думаете, когда такое неравенство может выполняться? Ну, конечно! Только в одном единственном случае — когда обе части будут равны двойке! Иными словами, наше нестрогое неравенство может выполняется только в случае равенства. Бывает.)

Итак, заменяем всё наше страшное неравенство уже привычной нам системой:

Рассматриваем теперь два отдельных случая — х = π /3 и х = — π /3.

Случай 1 ( х = π /3 )

Получили первую пачку решений:

Разбираем второй случай:

Случай 2 ( х = — π /3 )

Вторая пачка решений:

Вот и вся задача. 🙂

Как видите, когда разделяющее число (мажоранта) найдено, то дальнейшее решение труда в таких задачах, как правило, уже не составляет. Вопрос — а как искать такое число? К сожалению, универсального секретного заклинания на все случаи жизни здесь дать нельзя, но я надеюсь, что знание тех неравенств, что я привёл в самом начале урока, резко повысит ваши шансы на успех. Ну и плюс практика и опыт. Без них в сложных нестандартных задачах делать нечего. Увы.

Что ж, перейдём теперь к задачам с параметрами. В том числе и из ЕГЭ.

Задачи с параметрами на ограниченность.

Начнём пока с относительно несложной задачки с тригонометрией.

Пример 6

Найдите все значения параметра a , при каждом из которых уравнение

имеет хотя бы один корень.

В принципе, решение этой задачи вполне возможно провести «в лоб». Сначала составить условие неотрицательности правой части (арифметический корень!), затем уже при этом ограничении возвести обе части в квадрат и получить тригонометрическое уравнение с косинусом, правая часть которого зависит от параметра. После чего ещё составить дополнительное требование, чтобы косинус был от -1 до 1 (иначе корней у уравнения не будет!). Короче, надо будет решать целую кучу неравенств — квадратных, двойных, с некрасивыми дискриминантами и корнями, потом пересекать множества их решений, сравнивать иррациональные числа… В общем, извиняюсь, геморрой конкретный. 🙂 Сейчас я проведу её решение гораздо короче — методом мажорант. Кому интересен «лобовой» способ решения и кто большой трудоголик — попробуйте осилить. Без ошибок. 🙂 И сравните результат. 🙂 Итак, поехали!

Прежде всего, оцениваем квадратный трёхчлен справа. Это мы уже давно умеем:

Правая часть не превосходит тройки. Отлично! Берёмся теперь за корень. С ним тоже никаких проблем. Распутывать начинаем, разумеется, с косинуса:

Итак, наш корень не меньше тройки. А трёхчлен — не больше. Прекрасно! Это значит, что всё наше уравнение может иметь корни только при условии равенства обеих частей этой самой тройке:

Очевидно, первое уравнение нашей системы корни имеет. 🙂 Находить нам их не надо. )

Итак, единственное допустимое значение параметра — это a = 4. При прочих значениях « a » корней у уравнения не будет.

Теперь рассмотрим систему.

Пример 7

Найдите все значения параметра a , при каждом из которых система уравнений

имеет хотя бы одно решение, и укажите решения системы для каждого из найденных значений a .

Не пугаемся огромных степеней! На самом деле, это сделано как раз для того, чтобы запугать решающего. Не более.) Но мы же не будем поддаваться на такие глупые уловки, правда? 🙂

Запоминаем такую простую вещь. Если в задаче тусуются синусы и косинусы в очень больших степенях, то в 99% случаев срабатывает самая обыкновенная оценка синуса и косинуса по модулю, и огромные степени в таких задачах сводятся к обычным квадратам и (очень часто!) основному тригонометрическому тождеству, после чего дальнейшее решение становится очень простым и понятным. Посмотрим, как это работает на примере нашей страшной, на первый взгляд, системы.

Берём, например, левую часть первого уравнения:

Мы знаем, что синус и косинус всегда заключены в отрезке [-1; 1]. Иными словами, это какие-то дробные числа, по модулю меньшие (либо равные) единице. А теперь подумаем: чем больше степень такого числа, тем меньше по модулю будет результат. Возьмём для конкретики, например, число 0,5. Тогда будет справедлива такая цепочка неравенств:

То же самое будет и с любым синусом или косинусом. Это значит, что

Знак нестрогого неравенства здесь поставлен из-за того, что, например, при обнулении аргумента , т.е. при x = 1 у нас достигается равенство:

Теперь сложим почленно эти два неравенства:

Это значит, что левая часть не больше единички.

Та же самая оценка левой части будет справедлива и для остальных уравнений:

;

.

Таким образом, все левые части наших уравнений не больше единички.

Разбираемся теперь с правыми частями. Во-первых, квадратный трёхчлен. Тот, что с параметром. Он в каждом уравнении один и тот же. Выделим полный квадрат и оценим:

А теперь анализируем всю конструкцию справа (например, у первого уравнения)

Радикалы — в любом случае неотрицательные величины. А это значит, что вся правая часть — не меньше единички:

Причём равенство достигается только при a = 2 и y = 2, z = 3.

Ну вот. А теперь берём каждое уравнение и состыковываем все наши оценки:

Из этих оценок теперь отлично видно, что вся наша страшная система будет иметь решение лишь при a = 2 , и это решение (1; 2; 3). При прочих значениях параметра правая часть любого из уравнений будет строго больше левой, и решений система иметь не будет.

Ответ: (1; 2; 3) при a = 2 . При прочих a решений нет.

И последняя задачка, которую мы рассмотрим в данном уроке, — это уже типичная задачка из ЕГЭ. Поэтому собираем волю в кулак, устраиваемся поудобнее, запасаемся попкорном терпением и читаем/смотрим. 🙂

Пример 9

Найдите все значения параметра a , при каждом из которых уравнение

имеет хотя бы один корень.

Задачка эта требует достаточно кропотливого решения. Тем не менее его вполне можно провести, если чётко видеть цель. Я не просто подробно оформлю решение этой задачи, но и объясню, как именно надо «видеть цель». 🙂 Итак, начнём.)

Во-первых, неплохо было бы растащить по разным частям логарифм и линейные конструкции с модулями. Пока они у нас намешаны в одну кучу. Действуем:

Так, что дальше? Дальше можно упростить аргумент логарифма: там явно напрашивается выделение полного квадрата. Упрощаем:

.

Прекрасно! Значит, всё наше злое уравнение перепишется вот в таком виде:

Всё. Дальнейшим упрощениям это уравнение уже не поддаётся. Теперь будем анализировать каждую функцию — слева и справа.

Пусть левая функция с логарифмом у нас будет f(x), а правая — g(x):

Функции разнородны. Причём обе непрерывны на всей числовой прямой. Разнородность подаёт нам знак, что нужно пробовать применять метод оценок. Начнём с логарифма — он проще. 🙂

Что можно сказать про аргумент логарифма? Квадратичная функция 2(x-5a) 2 +15, которая сидит внутри логарифма, как и любая парабола ветвями вверх, убывает от до точки (вершины), а потом возрастает. Поэтому в этой точке аргумент логарифма достигает своего наименьшего значения. Стало быть, и сам логарифм по основанию 15 от этой функции в точке также будет достигать своего наименьшего значения, так как функция y = log15x монотонно возрастает. Итак, вся наша функция f(x) ограничена снизу числом f(5a):

Итого, наш логарифм ограничен снизу числом 25.

А вот со второй функцией

ситуация будет поинтереснее. 🙂 Давайте для начала мысленно представим, как будет выглядеть график этой функции. Переменная икс везде стоит в первой степени, только внутри модулей. Стало быть, в результате раскрытия каждого модуля будет получаться какая-то линейная функция y = kx+b. На каждом промежутке — своя. И поэтому график функции g(x) будет представлять собой ломаную линию, состоящую из кусочков прямых.

Но здесь есть одна существенная проблема: нули подмодульных выражений и зависят от параметра. Который может быть каким угодно — положительным или отрицательным. И, в зависимости от знака параметра a , расположение точек и на числовой прямой будет различным. Поэтому исследование нашей функции g(x) надо разветвлять на два случая: и a .

Случай 1 (a ≥ 0)

Начнём со случая . В этом случае точка на числовой прямой находится левее точки . И теперь раскрытие модулей по промежуткам не составляет никаких затруднений.

1.1) . Оба модуля раскрываются с минусом:

Значит, на этом интервале наша функция g(x) – часть возрастающей прямой с угловым коэффициентом . Переходим к следующему промежутку.

1.2) . Модули раскрываются с разными знаками:

На этом интервале получили убывающую прямую с угловым коэффициентом . Идём дальше.

1.3) . Оба модуля раскрываются с плюсом:

Здесь наша функция ещё сильнее убывает. 🙂 Угловой коэффициент .

Итак, все три подслучая рассмотрены. A теперь — собираем воедино результаты наших исследований и рисуем схематичный график. 🙂

Зачем мы нарисовали этот график? А затем, что из графика теперь хорошо видно, что наша функция g(x) в точке достигает своего наибольшего значения. То есть, ограничена сверху числом g(5a).

Сосчитаем это число:

Теперь вспоминаем — чего от нас хотят-то? А то так и про основной вопрос задачи невольно забываешь.) Нас просят решить уравнение f(x) = g(x).

При этом про функции f и g мы знаем, что в одной и той же точке они достигают своих экстремальных значений: f – наименьшего, а g – наибольшего. Стало быть, чтобы уравнение f(x) = g(x) имело хотя бы один корень, необходимо и достаточно, чтобы

Да! В данной ситуации это требование является как необходимым, так и достаточным, потому что экстремальные значения принимаются функциями в одной точке, а не в разных. Смотрим на картинку, почему это так:

Остаётся решить неравенство:

А теперь главное — вспомнить, что здесь мы рассматриваем только .

А значит, нам нужно одновременное выполнение этих двух требований:

Нетрудно доказать, что число положительно, а значит весь наш полученный отрезок целиком и полностью удовлетворяет условию .

Итого, первый кусок окончательного ответа — это отрезок

Случай 2 (a 0)

Рассматриваем теперь отрицательные значения параметра: a

В этом случае будет всё наоборот — точка будет правее точки . Раскрываем модули, никуда не денешься (а я предупреждал, что решение достаточно трудоёмкое, хоть и не такое сложное :)).

2.1)

Функция g(x) – часть возрастающей прямой с угловым коэффициентом .

2.2)

Функция g(x) – часть возрастающей прямой с угловым коэффициентом .

2.3)

Функция g(x) – часть убывающей прямой с угловым коэффициентом .

Снова рисуем картинку:

И снова замечаем, что наша функция g(x) достигает своего наибольшего значения в той же самой точке . То есть, снова ограничена сверху числом g(5a). Считаем это число:

Думаю, уже особо комментировать не нужно, что нам снова надо решить неравенство:

Получили одно единственное решение неравенства — минус пять. Бывает.) Естественно, требованию минус пятёрка вполне себе удовлетворяет. 🙂 Значит, ещё одним куском ответа является изолированная точка <-5>.

Фуух! Ну что, поздравляю всех, кто дочитал и особенно — тех, кто разобрался! Осталось лишь обе части ответа сложить в кучу.

Всё, задача полностью решена. 🙂

Заключение:

Если слева и справа стоят функции разной природы, то пробуем оценивать левую и правую части. Помогает в 99% случаев.

Не боимся «страшного» вида задачи. 🙂 В большинстве случаев, как ни парадоксально, чем страшнее и безнадёжнее выглядит задача, тем проще её свести к нескольким простейшим, которые уже решаются по стандартной технологии. Как? Оцениваем сначала внешний вид конструкции, выявляем её тип сумма взаимно обратных величин, квадратный трёхчлен, синусы, модули и т.п. А потом — оцениваем саму конструкцию. Уже теми приёмами и методами, что приведены в этом материале. 🙂

Также не боимся ситуации, когда число уравнений меньше числа неизвестных. Как правило, недостающее звено легко получить, используя те же самые разобранные нами оценки.

Тренируемся и набиваем руку! Без серьёзного опыта здесь — никак. В продаже появилось несметное количество сборников задач ЕГЭ, методичек именно по задачам с параметрами с огромным количеством задач для тренировки. На моём сайте тоже обязательно будут разбираться различные задачи с параметрами из ЕГЭ и даже с мехмата. И обязательно будут задачи для самостоятельного решения. 🙂 В особом разделе, который на пятёрку. 🙂

А у меня на сегодня всё. Всем спасибо за внимание и до новых встреч! 🙂

Тригонометрические уравнения и неравенства с примерами решения и образцами выполнения

Корень уравнения есть число, ко­торое, будучи подставленным в
уравнение вместо обозначающей его буквы или вида, приводит к
исчезновению всех его членов.
И. Ньютон

Тригонометрические формулы

В курсе алгебры рассматривались синус, косинус и тангенс
произвольного угла, выраженного в градусах или радианах.
Там же были доказаны основные формулы, которые
исполь­зовались для преобразований тригонометрических выражений.
Напомним эти формулы:

1. Основное тригонометрическое тождество:

2. Зависимость между синусом, косинусом, тангенсом и котангенсом:

Ньютон Исаак (1643— 1727) — английский математик, физик, механик, астроном; основоположник современной механики; одновременно с немецким математиком Г. Лейбницем ему принадлежит разработка дифференциального и интегрального исчислений.

3. Формулы сложения:

4. Формулы синуса и косинуса двойного угла:

5. Формулы приведения:

Формулы приведения запоминать необязательно. Для того
чтобы записать любую из них, можно руководствоваться
сле­дующими правилами:

1) В правой части формулы который

2) Если в левой части формулы угол равен или

то синус заменяется на косинус, тангенс —
на котангенс и наоборот. Если угол равен то замены
не происходит.

Например, покажем, как с помощью этих правил можно
получить формулу приведения для

По первому правилу в правой части формулы нужно поставить знак >,
так как если то a косинус во второй четверти отрицателен. По второму правилу косинус нужно заме­нить на синус, следовательно,

6. Формулы синуса, косинуса, тангенс угла

7. Формулы синуса и косинуса угла

тангенса угла

Приведем несколько примеров применения формул (1) — (9).

Пример:

Вычислить , если и

Сначала найдем . Из формулы (1) Так как в третьей четверти то По формулам (2) находим

Пример:

Используя формулы (1), (3) и (4), получаем:

Пример:

Вычислить

Используя формулы (8) и (9), получаем:

По формулам приведения находим:

Ответ.

Сумма и разность синусов. Сумма и разность косинусов

Пример:

Используя формулу сложения и формулу синуса двойного
угла, получаем:

Эту задачу можно решить проще, если использовать формулу
суммы синусов:

С помощью этой формулы получаем:

Докажем теперь справедливость формулы (1).

Обозначим

Тогда и поэтому

Наряду с формулой (1) используются формула разности
синусов
, а также формулы суммы и разности косинусов:

Формулы (3) и (4) доказываются так же, как и формула (1);
формула (2 ) получается из формулы ( 1 ) заменой на
(до­кажите самостоятельно).

Пример:

Вычислить

Пример:

Преобразовать в произведение

Пример:

Доказать, что наименьшее значение выражения равно а наибольшее равно

Преобразуем данное выражение в произведение:

Так как наименьшее значение косинуса равно — 1, а наи­большее равно 1, то наименьшее значение данного выражения
равно а наибольшее равно

Уравнение cos х = а

Из курса алгебры известно, что значения косинуса заключены
в промежутке [— 1; 1], т. е.

Поэтому если |а |> 1 , то уравнение cos x = a не имеет корней. Например, уравнение cos x = — 1,5 не имеет корней.

Пример:

Решить уравнение

Напомним, что cos х — абсцисса точки единичной окруж­ности, полученной поворотом точки Р (1; 0) вокруг начала коор­динат на угол х. Абсциссу, равную имеют две точки окруж­ности

и (рис. 18). Так как , то точка получается из точки Р (1; 0) поворотом на угол , а также на
углы где . . . . Точка получается из точки Р (1; 0) поворотом на угол , f также на углы где . . . . Итак, все корни уравнения — можно найти по формулам Вместо этих двух формул обычно пользуются одной:

Пример:

Решить уравнение

Абсциссу, равную , имеют две точки окружности
и (рис. 19). Так как , то угол
а потому угол . Следовательно, все корни уравнения
можно найти по формуле

Таким образом, каждое из уравнений

и имеет бесконечное множество корней. На отрезке каж­дое из этих уравнений имеет только один корень: — корень уравнения и
— корень уравнения . Число называют арккосинусом числа и за­писывают:

а число арккосинусом числа и записывают:

Вообще уравнение , где , имеет на отрезке только один корень. Если , то корень заключен в про­межутке ; если а

Например, так как и так как

и

Аналогично тому, как это сделано при решении за­дач 1 и 2, можно показать, что все корни уравнения , где , выражаются формулой

Пример:

Решить уравнение cos x = — 0,75.
По формуле (2) находим

Значение arccos ( — 0,75) можно приближенно найти на ри­сунке 21, измеряя угол РОМ транспортиром.

Приближенные значения арккосинуса можно также находить
с помощью специальных таблиц или микрокалькулятора.
На­
пример, значение arccos (—0,75) можно вычислить на
микрокаль­куляторе МК-54 по программе

Итак,

В данном случае переключатель микрокалькулятора Р-ГРД-Г
был установлен в положение Р (радиан).
Если вычисления проводить в градусной мере, то переклю­чатель микрокалькулятора Р-ГРД-Г следует установить в поло­жение Г (градус). Программа вычислений остается прежней:

Итак, .

Пример:

Решить уравнение (4 cos х — 1) (2 cos 2x + 1)=0.

Ответ. ,

Можно доказать, что для любого справедлива
формула

Эта формула позволяет выражать значения арккосинусов
отрицательных чисел через значения арккосинусов
положитель­ных чисел. Например:

Из формулы (2) следует, что корни уравнения cos х = а при а = 0,
а = 1, а = — 1 можно находить по более простым формулам:

Задача 5. Решить уравнение

По формуле (6) получаем откуда

Уравнение sin х= а

Известно, что значения синуса заключены в промежутке
[— 1; 1], т. е. Поэтому если |а |> 1 , то
уравне­ние sin x = a не имеет корней. Например, уравнение
sin x = 2 не имеет корней.

Пример:

Решить уравнение

Напомним, что sin x — ордината точки единичной окруж­ности, полученной поворотом точки Р (1; 0) вокруг начала коор­динат на угол x. Ординату, равную , имеют две точки окруж­ности и (рис. 22). Так как — , то точка полу­чается из точки Р(1; 0) поворотом на угол , а также на
углы где ……. Точка получается из точки Р (1; 0) поворотом на угол , а также на углы где ……. Итак, все корни уравнения можно найти по формулам

Эти формулы объединяются в одну:

В самом деле, если n — четное число, т. е. n = 2k, то из форму­лы (1) получаем а если n — нечетное число, т. е. , то из формулы (1) получаем

О т в е т .

Пример:

Решить уравнение

Ординату, равную имеют две точки единичной ок­ружности и (рис. 23), где . Следо­вательно, все корни уравнения можно найти по фор­мулам

Эти формулы объединяются в одну:

В самом деле, если n = 2k, то по формуле (2) получаем , а если n = 2k — 1, то по формуле (2) находим ..

Ответ.

Итак, каждое из уравнений и имеет
бесконечное множество корней. На отрезке

каждое из этих уравнений имеет только один корень: — корень уравнения и — корень уравнения . Число называют арксинусом числа и записывают: ; число — называют арксинусом числа и пишут:

Вообще уравнение sin x = a, где , на отрезке имеет только один корень. Если , то корень заключен в промежутке ; если а

Например, так как и так как и

Аналогично тому, как это сделано при решении задач 1 и 2 можно показать, что корни уравнения sin x = a, где выражаются формулой

Пример:

Решить уравнение .

По формуле (4) находим

Значение можно приближенно найти из рисунка 25,
измеряя угол РОМ транспортиром.
Значения арксинуса можно находить с помощью специальных
таблиц или с помощью микрокалькулятора.
Например, значение можно вычислить на микрокалькуляторе МК-54 по
программе

Итак,
При этом переключатель микрокалькулятора Р-ГРД-Г был установлен в положение Р (радиан).

Пример:

Решить уравнение (3 sin х — 1) (2 sin 2х + 1) = 0.

Можно доказать, что для любого справедлива
формула

Эта формула позволяет находить значения арксинусов отри­
цательных чисел через значения арксинусов положительных
чисел. Например:

Отметим, что из формулы (4) следует, что корни уравнения
sin x = a при а = 0 , а = 1 , а = — 1 можно находить по более
прос­тым формулам:

Пример:

Решить уравнение sin 2х = 1.

По формуле (7) имеем откуда

Уравнение tg x = а

Известно, что тангенс может принимать любое действительное
значение. Поэтому уравнение tg x = a имеет корни при любом
значении а.

Пример:

Решить уравнение

Построим углы, тангенсы которых равны Для этого про­ведем через точку Р (рис. 26) прямую, перпендикулярную РО,
и отложим отрезок через точки М и О проведем пря­
мую. Эта прямая пересекает единичную окружность в двух диа­
метрально противоположных точках и . Из прямоугольного треугольника РОМ находим , откуда .

Таким образом, точка получается из точки Р (1; 0) поворотом
вокруг начала координат на угол а также на углы , где , … .
Точка получается поворотом точки Р (1; 0) на угол

а также на углы , где … .

Итак, корни уравнения можно найти по формулам

Эти формулы объединяются в одну

Пример:

Решить уравнение

Углы, тангенсы которых равны указаны на рисун­ке 27, где Из прямоугольного треугольни­ка РОМ находим , т.е. . Таким образом, точка получается поворотом точки P(1; 0) вокруг начала
координат на угол , а также на углы где k = ± 1, ± 2,….. Точка получается поворотом точки Р (1; 0) на углы .

Поэтому корни уравнения можно найти по формуле

Итак, каждое из уравнений и имеет
бесконечное множество корней. На интервале — каж­дое из этих уравнений имеет только один корень: — корень уравнения и — корень уравнения . Число называют арктангенсом числа и записывают: ; число — называют арктангенсом числа и пишут: .

Вообще уравнение tg х = а для любого имеет на интер­вале только один корень. Если , то корень
заключен в промежутке ; если а

Например, , так как ; и так как и .

Аналогично тому, как это сделано при решении задач 1 и 2, можно показать, что все корни уравнения tg x = a, где выражаются формулой

Пример:

Решить уравнение tg х = 2.

По формуле (2) находим

Значение arctg 2 можно приближенно найти из рисунка 29,
измеряя угол РОМ транспортиром.

Приближенные значения арктангенса можно также найти по
таблицам или с помощью микрокалькулятора.

Например, значение arctg 2 можно вычислить на МК-54 по
программе

Итак,

Пример:

При этих значениях х первая скобка левой части исходного
уравнения обращается в нуль, а вторая не теряет смысла, так
как из равенства tg x = — 4 следует, что

Следо­вательно, найденные значения х являются корнями исходного уравнения.

Эти значения x также являются корнями исходного урав­нения, так как при этом вторая скобка левой части уравнения
равна нулю, а первая скобка не теряет смысла.

Ответ.

Можно доказать, что для любого справедлива формула

Эта формула позволяет выражать значения арктангенсов
от­рицательных чисел через значения арктангенсов положительных чисел.

Например:

Решение тригонометрических уравнений

Формулы корней простейших тригонометрических уравнений sin x = a, cos x = a, tg х = а. К этим уравнениям сводятся другие тригонометрические уравнения. Для решения большинства таких уравнений требу­ется применение формул преобразований тригонометрических выражений. Рассмотрим некоторые примеры решения тригоно­метрических уравнений.

Уравнения, сводящиеся к квадратам

Пример:

Решить уравнение

Это уравнение является квадратным относительно sin х.
Обозначив sin x= y, получим уравнение Его корни

Таким образом, решение исходного уравнения свелось к решению простейших уравнений sin х = 1 и sin х = — 2.

Уравнение sin x = l имеет корни уравне­ние
sin x = — 2 не имеет корней.
Ответ.

Пример:

Решить уравнение

Заменяя на получаем:

Обозначая sin х = у, получаем откуда

1) sin х = — 3 — уравнение не имеет корней, так как | — 3 | > 1.
2)

Ответ.

Пример:

Решить уравнение

Используя формулу получаем:

Ответ.

Пример:

Решить уравнение tg x — 2 ctg x + 1 = 0 .

Так как то уравнение можно записать в виде
Умножая обе части уравнения на tg x, получаем:

Отметим, что левая часть исходного уравнения имеет смысл,
если и Так как для найденных корней и то исходное уравнение равносильно уравнению
Ответ.

Пример:

Обозначив sin 6 x = у, получим уравнение от­куда

Уравнения вида a sin х + b cos х = с

Пример:

Решить уравнение 2 sin x —3 cos x = 0.
Поделив уравнение на cos x, получим 2tg x — 3 = 0,

При решении этой задачи обе части уравнения 2 sin x — cos x = 0 были поделены на cos x. Напомним, что при делении
уравнения на выражение, содержащее неизвестное, могут быть
потеряны корни. Поэтому нужно проверить, не являются ли
кор­ни уравнения cos x = 0 корнями данного уравнения. Если
cos x = 0, то из уравнения 2 sin x — cos x = 0 следует, что sin x = 0. Однако sin х и cos х не могут одновременно равняться нулю, так как они связаны равенством Следовательно, при
делении уравнения a sin х + b cos x = 0, где cos x
(или sin x) корни этого уравнения не теряются.

Пример:

Решить уравнение 2 sin x + cos x = 2.
Используя формулы
и записывая правую часть уравнения в виде , получаем

Поделив это уравнение на

Обозначая получаем уравнение откуда

Ответ.

Пример:

Решить уравнение sin 2x — sin x — cos x — 1 = 0.
Выразим sin 2 x через sin x + cos x , используя тождество

Обозначим sin x + cos x = t, тогда и уравнение при­мет вид , откуда

2) Уравнение sin x + cos x = 2 не имеет корней, так как
и равенства sin x = 1, cos x = l одновременно не могут
выполняться.

Ответ.

Уравнения, решаемые разложением левой части на множители

Многие тригонометрические уравнения, правая часть кото­рых равна нулю, решаются разложением их левой части на
мно­жители.

Пример:

Решить уравнение sin 2х — sin х = 0.

Используя формулу для синуса двойного аргумента, за­пишем уравнение в виде 2 sin х cos х — sin х = 0.
Вынося общий множитель sin х за скобки, получаем
sin x (2 cos x — 1) = 0

Ответ.

Пример:

Решить уравнение cos Зх + sin 5x = 0.

Используя формулу приведения , за­пишем уравнение в виде

Используя формулу для суммы косинусов, получаем:

Ответ.

Пример:

Решить уравнение sin 7 x + sin 3 х = 3 cos 2х.

Применяя формулу для суммы синусов, запишем уравне­ние в виде

Уравнение cos2x = 0 имеет корни а уравнение не имеет корней.
Ответ.

Пример:

Решить уравнение

уравнение примет вид:

Заметим, что числа вида содержатся среди чисел вида так как если n = 3k, то

Следовательно, первая серия корней содержится во второй.

Ответ.

Часто бывает трудно усмотреть, что две серии корней, полу­
ченных при решении тригонометрического уравнения, имеют об­
щую часть. В этих случаях ответ можно оставлять в виде двух
серий. Например, ответ к задаче 12 можно было записать и так:

Пример:

Эти значения х являются корнями исходного уравнения, так
как при этом первая скобка левой части уравнения равна нулю,
а вторая не теряет смысла.

При этих значениях х вторая скобка левой части исходного
уравнения равна нулю, а первая скобка не имеет смысла. Поэтому
эти значения не являются корнями исходного уравнения.

Ответ.

Пример:

Решить уравнение

Выразим

Так как то

от­куда

Поэтому исходное уравнение можно записать так:

2) уравнение — корней не имеет.

Ответ.

Решение тригонометрического уравнения состоит из двух частей: 1) преобразование тригонометрического выражения к простейшему виду; 2) решение простейшего тригонометрического уравнения. Первая часть сложна из-за множества применяемых формул как тригонометрических, так и алгебраических. Применяются такие приемы как разложение на множители, преобразование суммы или разности тригонометрических функций в произведение и, наоборот, произведения в сумму. Достаточно часто тригонометрические уравнения сводятся к линейным и квадратным уравнениям и уравнениям с корнями. Тригонометрические уравнения во всяком случае имеют ограничения, содержащиеся в тангенсе и котангенсе, т.к. , , то здесь и .Простейшими тригонометрическими уравнениями называются уравнения вида: ; и

1) Решение уравнения . Арксинусом числа называется число, обозначаемое , синус которого равен , при этом . Поэтому решение уравнения записывается: Этому решению соответствуют две точки на окружности:

Напоминаем, что ось — это ось синусов, и значение синуса

отмечается на оси .

2) Решение уравнения . Арккосинусом числа называется число, обозначаемое , косинус которого равен , при этом Поэтому решение уравнения записывается: Этому решению соответствуют две точки на окружности:

Эти решения отмечены на окружности.

Напоминаем, что ось — ось косинусов, и значение косинуса отмечается на оси .

3) Решение уравнения Арктангенсом числа называется число, обозначаемое , тангенс которого равен , при этом . Поэтому решение уравнения записывается: Этому решению соответствуют две точки на окружности:

Напоминаем, что значение тангенса отмечается на оси тангенсов, которая параллельна оси и касается единичной окружности в крайней правой точке.

Там, где возможно, и заменяются табличными значениями. Соответствующая таблица и тригонометрические формулы приведены в разделе преобразования тригонометрических выражений. Там же рассмотрены примеры таких преобразований.

Здесь использована специальная формула, отличная от стандартной для уравнения

Существуют следующие специальные формулы:

Следует заметить также, что буква для обозначения целого числа может быть выбрана любая, но принято брать Если уравнение имеет два и более решений, эти буквы принято брать различными.

Т.к. решения 1-го и 2-го уравнений должны совпадать, то, как видно на окружности, единственно возможная точка соответствует решению

Эта система, как видно на окружности, решений не имеет

Этот материал взят со страницы решения задач по математике:

Возможно вам будут полезны эти страницы:

Тригонометрические уравнения и неравенства — основные понятия и определения

В этой главе мы рассмотрим некоторые уравнения, а также простейшие системы уравнений, содержащие неизвестную иод знаком тригонометрических функций. Такие уравнения называются тригонометрическими уравнениями.

Приведем некоторые примеры тригонометрических уравнений и их систем:

1) ; 2) ; 3) ; 4) 5) 6) .

Решение различных типов тригонометрических уравнений большей частью основано на сведении их к некоторым простейшим уравнениям, которые мы рассмотрим ниже. При этом остаются в силе общие правила, относящиеся к решению уравнений. В частности, данное уравнение не всегда приводится к простейшей форме с помощью одних лишь равносильных преобразований. Поэтому следует проверить найденные решения, подставляя их в исходное уравнение.

Тригонометрические уравнения слишком разнообразны для того, чтобы пытаться дать их общую классификацию или общий метод решения. Мы можем указать лишь способы решения некоторых типов таких уравнений.

Уравнения, разрешенные относительно одной из тригонометрических функций

При решении различных тригонометрических уравнений мы будем часто приходить к некоторым простейшим уравнениям, решения которых следует запомнить. Приведем эти уравнения. Для того чтобы можно было дать геометрическую иллюстрацию к этим уравнениям, будем считать х углом в радианной мере.

Уравнение sin х = а

имеет решение при . Для вывода общей формулы, которая заключает в себе все корни нашего уравнения, воспользуемся рис. 127. Допустим, что мы нашли какой-то корень уравнения sin х = а:

Тогда, в силу периодичности функции sin х, имеем

т.е. и числа вида , где k = 0, ±1, ±2, …, удовлетворяют уравнению (139.1). Заметим еще, что и

т. е. также удовлетворяет уравнению (139.1). Следовавательно также удовлетворяют данному уравнению. Следовательно, зная одно какое-то значение , удовлетворяющее уравнению sin х = а, мы можем получить две серии значений аргумента, удовлетворяющих этому же уравнению:

где k= 0, ±1, ±2, …

В качестве будем, как правило, брать arcsin а.

Объединив две серии (139.2) и (139.3) корней данного уравнения sin х = а одной формулой, мы будем записывать в дальнейшем его общее решение (совокупность всех корней) в виде

где n = 0, ±1, ±2, … и .

Поясним формулу (139.4) и другим способом, с помощью рис. 139.

Известно, что sin x = а (на рис. 139 ОA = 1, ).

Уравнению (139.1) удовлетворят углы:

а) положительные: и (k = 0, +1, +2, …);

б) отрицательные: и (k = 0, —1, —2, …).

Все эти углы можно задать одной формулой (139.4), и, обратно, любой угол, полученный по формуле (139.4), есть угол либо вида а), либо вида б). Проверим, например, обратное утверждение для положительных углов.

Если (четное число), то из (139.4) получаем

если же (нечетное число), то из (139.4) получаем

Аналогично проводится проверка и для отрицательных углов.

Пример:

sin x = 1/2.

Решение:

Так как , то .

Пример:

.

Решение:

Так как , то .

Замечание. При выводе формулы (139.4) мы воспользовались рис. 127, на котором и . Очевидно, что при помощи этой формулы получаются все корни уравнения sin x = a. Формула (139.4) остается в силе и тогда, когда , а также при а = 0, 1 или —1. Однако эти последние случаи удобней рассмотреть особо.

Допустим, что а = 1 или a = — 1. Корни уравнения sin х = 1 можно записать так:

где n = 0, ±1, ±2, …, а корни уравнения sin x = — 1 можно записать так:

где n = 0, ±1, ±2…. . Допустим теперь, что а = 0. Корни уравнения sin x = 0 можно записать так:

Уравнение cos x = a

имеет решение при . Для вывода общей формулы корней уравнения (140.1) воспользуемся рис. 128. Допустим, что мы нашли какое-нибудь решение уравнения (140.1): .

Тогда в силу периодичности , т. е. и числа вида , где n = 0, ±1, ±2, …, удовлетворяют уравнению cos х = а. В силу четности косинуса ; применив еще свойство периодичности, мы получим, что числа вида также удовлетворяют уравнению cos х = а. (На рис. 128 мы видим, что .) Следовательно, зная одно какое-либо значение , удовлетворяющее уравнению cos x = a, мы можем получить две серии значений аргумента, удовлетворяющих этому же уравнению:

где n = 0, ±1, ±2, …

В качестве будем, как правило, брать arccos а.

Объединив две серии (140.2) и (140.3) корней уравнения cos x = a одной формулой, мы будем писать в дальнейшем его общее решение (совокупность всех корней) в виде

где n = 0, ±1, ±2, … и .

Рекомендуем читателю пояснить формулу (140.4) с помощью рисунка, аналогичного рис. 139.

Пример:

.

Решение:

Пример:

cos x = — х/2.

Решение:

Пример:

cos х = 0,995.

Решение:

(см. приложение II).

Замечание. При выводе формулы (140.4) мы воспользовались рис. 128, на котором и . Очевидно, что при помощи этой формулы получаются все корни уравнения cos x = a. Рекомендуем читателю доказать, что формулой (140.4) можно пользоваться и во всех остальных случаях (—1

Уравнение cos x = l имеет корни:

Уравнение cos x = 0 имеет корни:

Уравнение tg x = a

имеет решение при любом а (). Воспользуемся рис. 129 для вывода общей формулы, которая заключает в себе все корни уравнения (141.1). Допустим, что мы нашли какое-нибудь решение уравнения (141.1), т. е. . Тогда, в силу периодичности, , т.е. и числа вида , где n = 0, ±1. ±2, …, удовлетворяют уравнению tg x = a. Следовательно, зная одно какое-то значение удовлетворяющее уравнению tg x = а, мы можем получить общее решение (совокупность всех корней) в виде

В качестве будем, как правило, брать arctg a. Итак, общее решение уравнения tg х = а выражается формулой

где n = 0, ±1, ±2, … и .

Пример:

.

Решение:

Пример:

.

Решение:

Пример:

tg x = —1,9648.

Решение:

(см. приложение II).

Уравнение ctg х = а

имеет решение при любом а (). Для вывода общей формулы корней уравнения (142.1) воспользуемся рис. 130. Допустим, что мы нашли какое-нибудь решение уравнения (142.1), т. е. . Тогда, в силу периодичности, , т. е. и числа вида , где n = 0, ±1, ±2, …. удовлетворяют уравнению ctg х = а. Следовательно, зная одно какое-то значение , удовлетворяющее уравнению ctg х = а, мы можем получить общее решение в виде

В качестве будем, как правило, брать arcctg a. Итак, общее решение уравнения ctg х = а выражается формулой

где n = 0, ±1, ±2, … и .

Пример:

.

Решение:

Пример:

.

Решение:

Пример:

ctg х = —28,64.

Решение:

. Воспользовавшись формулой , будем иметь

(см. приложение I). Следовательно,

Некоторые дополнения

Если в уравнениях sin x = a, cos х = а, tg х = а и ctg x = a известно, что х — угол в градусной мере, то общие решения нужно записывать по-другому.

Для уравнения sin x = a, где , нужно писать:

где n = 0, ±1, ±2, … и .

Для уравнения cos х = а, где , нужно писать:

где n = 0, ±1, ±2, … и .

Для уравнения tg х = а, где а — любое число, нужно писать:

где n = 0, ±1, ±2, … и — 90°

где n = 0, ±1, ±2. … и

б) Нельзя, однако, писать

Разберем примеры уравнений, непосредственно сводящихся к уже рассмотренным.

Пример:

Решить уравнение .

Решение:

sinх = 1 /]/2, откуда согласно (143.1) имеем х — 180°и + (—1)»45°, где я = 0, ±1, ±2, …

Пример:

Решить уравнение .

Решение:

, откуда согласно (140.4) имеем , где n = 0, ±1, ±2, …

Пример:

Решить уравнение 3 sin х — 4 = 0.

Решение:

Из нашего уравнения получаем равносильное уравнение sin x = 4/3, которое решений не имеет, ибо не выполняется условие . Следовательно, первоначальное уравнение также не имеет решений.

Пример:

Решить уравнение 3 tg х + 1 = 0.

Решение:

tg x = —1/3, откуда согласно (141.3) имеем , где n = 0, ±1, ±2, …, или .

Замечание. Ответ можно записать так:

где n = 0, ±1, ±2, …

Пример:

Решить уравнение 3 ctg x + 2 = 0.

Решение:

ctg x = —2/3, откуда согласно (142.3) имеем , где n = 0, ±1, ±2, …, или .

Пример:

Решить уравнение 2 sin 5x + l = 0.

Решение:

Записав уравнение в виде sin 5x = —1/2, найдем отсюда сначала промежуточный аргумент , откуда получим общее решение данного уравнения , где n = 0, ±1, ±2,…

Способ приведения к одной функции одного и того же аргумента

Сущность способа: Мы получили решения уравнений вида sin x = a, cos х = а, tg x = a и cxg x = a. Во многих случаях решение тригонометрических уравнений сводится к решению основных элементарных уравнений после выполнения ряда алгебраических действий.

Так, пусть имеется уравнение, левая часть которого содержит х только под знаком одной тригонометрической функции, например:

Во всех этих случаях задача решения уравнения распадается на две:

1) Решение алгебраического уравнения относительно новой неизвестной t = sin x, t = tg x, t = cos x.

2) Решение уравнений вида sin x = a, cos x = a, tg x = a.

Пример:

Решение:

1) Положив sin x = t, приходим к алгебраическому уравнению (в данном случае к квадратному уравнению) относительно новой неизвестной t:

Решив уравнение , получим и .

2) Задача решения уравнения свелась к решению двух тригонометрических уравнении:

Уравнение sin x = — 3 решений не имеет. Общее решение уравнения sin x = 1/2 имеет вид

Так как при переходе от тригонометрического уравнения к двум тригонометрическим уравнениям мы нигде не теряли и не получали посторонних корней, то решение является решением первоначального уравнения .

В большинстве случаев, однако, приходится исходное уравнение еще преобразовывать так, чтобы оно приобрело нужный вид:

В п. 145 показаны приемы таких преобразований.

Некоторые типы уравнений, приводящихся к уравнениям относительно функции одного аргумента

1) Рассмотрим уравнение типа

где a, b и с — какие-то действительные числа. Изучим случай, когда . Разделиз обе части уравнения (145.1) на , придем к следующему уравнению, содержащему только t = tg х:

Заметим, что уравнения (145.1) и (145.2) будут равносильны, ибо мы предполагаем, что . (Те значения х, при которых cos x = 0, не являются корнями уравнения (145.1) при .) Далее следует найти значения t = tg x из уравнения (145.2) и, если они окажутся действительными, отыскать соответствующие серии решений х.

Пример:

Решение:

Разделим обе части уравнения на . (Те значения х, при которых cos x = 0, не являются корнями данного уравнения, ибо при этом , следовательно, потери корней не происходит). Получим уравнение , откуда .

а) , ;

б) , .

где п = 0, ±1, ±2, …

Замечание:

где , сводится к уравнению типа (145.1), если его записать сначала так:

Пример:

Запишем данное уравнение так:

После этого будем иметь

Разделим обе части последнего уравнения на . (Те значения х, для которых cos x = 0, не являются корнями данного уравнения.) Получим уравнение

откуда и . Решив последние уравнения, получим решения первоначального уравнения:

2) Рассмотрим уравнение типа

где a, b и с — какие-то действительные числа. Пусть . Заменив через , мы придем к уравнению

Из уравнения (145.6) находим возможные значения для t = соs x; естественно, что они будут иметь смысл лишь в случае . Рассмотрим несколько примеров. Пример 3. Решить уравнение

Решение. Заменяя через , придем к уравнению , откуда cos x = 1 и cos x = —1/2. Уравнение cos x = l имеет решение , а уравнение cos x = —1/2 — решение . Совокупность значений и является решением данного уравнения.

Пример:

Решение:

Заменив через , придем к уравнению

откуда cos x = 1/2 и cos x = —3/2. Последнее уравнение не имеет решений, ибо не выполнено условие . /Мы получаем одну серию решений данного уравнения: .

3) Рассмотрим уравнение тина

где a, b и с—какие-то действительные числа. Oграничимся рассмотрением примеров.

Пример:

Решение:

Заменив через , придем к уравнению

откуда sin x = 1/2 и sin x = —1/4. Оба последних уравнения имеют соответственно решения

Совокупность значений и является множеством всех решений данного уравнения.

Пример:

Решение:

Заменив через , придем к уравнению

откуда и . Последнее уравнение не имеет решения, ибо не выполнено условие . Мы получаем одну серию решении первоначального уравнения:

4) Рассмотрим уравнение типа

где .

Деля обе части уравнения на , получим

где n = 0, ±1, ±2, … Заметим, что, предположив , мы не потеряли корней, ибо если cos x = 0, то .

Пример:

Решение:

Разделим обе части уравнения на , получим , откуда .

5) Если в уравнение входят тригонометрические функции от различных аргументов, то и в этом случае иногда представляется возможным выразить их все через одну тригонометрическую функцию одного и того же аргумента.

Пример:

Решение:

Заменив через , придем к уравнению

откуда cos 2х = — l/3.

Следовательно, и (n = 0, ±1, ±2, …).

Пример:

Решить уравнение .

Решение:

Заменив sin 2x через 2sin x cos x, придем к уравнению или . Последнее уравнение распадается на два:

Первое уравнение имеет корни (n = 0, ±1, ±2, …).

Второе уравнение после деления на дает ctg x = 2, откуда (n = 0, ±1, ±2, …).

Решениями первоначального уравнения и будут значения и . Заметим, что в нашем случае деление обеих частей уравнения б) на sinx не привело к потере корней, ибо те значения х, при которых sin x обращается в нуль, не являются корнями первоначального уравнения.

Пример:

Решение:

Умножим обе части уравнения на 2 и, заменив 2sin x cos x на sin 2х, получим sin 2x cos 2x = 1/4. С последним уравнением поступим опять так же, получим sin 4x = 1/2, откуда . Окончательно имеем

Пример:

Решение:

Подставив найденное значение для в исходное уравнение, получим . Далее имеем

Последнее уравнение распадается на два:

Первое уравнение имеет корни (n = 0, ± 1, ± 2, …). Второе уравнение запишем в виде . Приравняв нулю числитель (1 — 2cos x), получим корни второго уравнения: .

Способ разложения на множители

1) Если в уравнении, приведенном к виду f(x) = 0, его левая часть f(x) разлагается на множители, то, как указано в п. 54, следует приравнять каждый из этих множителей к нулю. Получится несколько отдельных уравнений; корни каждого из них будут корнями основного уравнения, если только они входят в о. д. з. каждого из множителей левой части уравнения.

Все полученные решения объединяются в одну совокупность решений первоначального уравнения. Заметим, что этот способ мы уже фактически применяли при решении примеров 9 и 11 из п. 145.

Рассмотрим е;це несколько примеров.

Пример:

Решить уравнение sin x ctg 2x = 0.

Решение:

Согласно предыдущему будем искать отдельно решения двух уравнений: a) sin x = 0 и б) ctg 2x = 0. Первое уравнение имеет корни (n = 0, ±1, ±2, …). Второе уравнение имеет корни (n = 0, ±1, ±2, …). Проверка показывает, что решениями первоначального уравнения будет лишь совокупность значений , а значения не удовлетворяют данному уравнению, ибо при теряет смысл второй множитель ctg 2х.


источники:

http://abudnikov.ru/ege/chast-2.2/zadachi-s-parametrami/ogranichennost-ili-metod-oczenok.html

http://lfirmal.com/trigonometricheskie-uravneniya-zadachi-s-resheniem/