Уравнения называются тригонометрическими если переменная

Уравнения называются тригонометрическими если переменная

§ 20. Тригонометрические уравнения

Простейшие тригонометрические уравнения

Все уравнения, которые содержат переменную под знаком тригонометрических функций, называются тригонометрическим уравнением. Если перед вами уравнения такого вида, как:

sin x = a; cos x = a; tg x = a; ctg x = a,

в котором x является его переменной, и a является действительным числом, то такие уравнения называются простейшими тригонометрическими уравнениями. И если нам с вами известно, что в том случае, когда:

1) | а | Два основных метода решения тригонометрических уравнений

А сейчас мы с вами перейдем к рассмотрению основных методов решения тригонометрических уравнений. Для этих целей, как правило, используют:

• во-первых, метод введения новой переменной;
• во-вторых, способ разложения на множители.

А сейчас давайте вернемся немного назад и вспомним, как на третьем примере мы с вами решили тригонометрическое уравнение:

Вспомним, что мы сделали в первую очередь. Во-первых, ввели новую переменную ю z = sin t, а потом переписали уравнение, которое приобрело такой вид:

В итоге, мы с вами получили два простых уравнения:

Из сделанных ранее выводов мы увидели, что первое уравнение не имеет решения. А вот второе имеет их целых два:

Далее мы увидели, что их можно объединить одной формулой

Вспомните, как было решено это тригонометрическое уравнение:

Пример 4. Решим следующее уравнение.

Попробуем в него ввести новую переменную:

Смотрим, что это нам даст. А это нам позволит записать уравнение, которое имеет более простой вид:

Смотрим, что мы имеем:

Теперь вернемся к переменной х, ну и в итоге получим уже два уравнения:

С методом введения новой переменной мы уже выяснили, а сейчас попробуем решить тригонометрическое уравнение вторым способом, методом разложения на множители. В принципе, с этим методом вы также знакомы.

Берем уравнение f(х) =0 и пробуем преобразовать его к такому виду:

Для этого нам нужно решить два уравнения:

Пример 5. В следующем примере решение задачи также сводится к решению совокупности уравнений

И соответственно из этих уравнений у нас выходит:

Пример 6. Следующее уравнение решаем по такому же принципу.

Нам дано следующее уравнение:

Следовательно, приходим к совокупности уравнений:

Замечание. Тут необходимо учесть то, что не всегда переход от уравнения:

к совокупности уравнений:

Например, берем уравнение:

С помощью уравнения tg x = 0 находим х = пn, а из уравнения sin x = 1 находим

Но здесь присутствует одно «но», так как включить обе серии решений в ответ нельзя.

Так как при значении

Его множитель tg х не имеет смысла, другими словами он не имеет значения, так как не является областью определения уравнения, т.е. – это посторонние корни.

Однородные тригонометрические уравнения

Теперь давайте рассмотрим и тригонометрические уравнения, которые имеют специальный вид, но встречаются довольно таки часто.

Определение. Уравнение, имеющее вид:

называется однородным тригонометрическим уравнением 1-й степени; а уравнение, которое выглядит так:

является однородным тригонометрическим уравнением 2-й степени.

Уравнения 1-й степени

Давайте рассмотрим общий случай решения тригонометрических уравнений, в котором коэффициенты а и b отличны от нуля, ведь при а =0, уравнение будет иметь вид

а такое уравнение мы обсуждать не будем, так же, как и при b=0 получаем sin х =0.

Нам дано уравнение:

Делим его части почленно на соs x, и получим:

Вот мы и пришли к простейшему тригонометрическому уравнению

Внимание! Следует запомнить, что делить обе части уравнения на одно и то же выражение можно только в случае, если это выражение нигде не обращается в нуль. А вот как в этом убедиться?

Пример 7. Давайте решим уравнение 2 sin х — 3соs х = 0.

Решение. Разделим почленно на соs х, обе части уравнения и у нас получится:

Пример 8. Дано уравнение 2x + соs2x =0. Решение. Разделим почленно на соs 2 x обе части уравнения и получим:

Теперь приступим к однородному тригонометрическому уравнению 2-й степени:

Если в данном уравнении содержится член sin 2 х, у которого коэффициент отличный от 0, то при интересующих нас значениях переменной соs х не обращается в нуль, и следовательно обе части уравнения можно разделить почленно на соs 2 х. И вот что мы получим:

А получили мы квадратное уравнение относительно новой переменной z = tg х. Если в однородном тригонометрическом уравнении:

коэффициент а = 0, т.е. отсутствует член sin2 х. Тогда мы получим такое уравнение:

И решаем его методом разложения на множители:

У нас получается два уравнения. Также обстоит дело, когда с = 0, т.е. когда однородное уравнение имеет вид, где sin х можно вынести за скобки.

Тригонометрические уравнения. Как решать тригонометрические уравнения?

Тригонометрические уравнения – уравнения, содержащие переменную под знаком тригонометрических функций.

Если проще: это уравнения, в которых неизвестные (иксы) или выражения с ними находятся внутри синусов , косинусов , тангенсов и котангенсов .

Как решать тригонометрические уравнения:

Любое тригонометрическое уравнение нужно стремиться свести к одному из видов:

где \(t\) – выражение с иксом, \(a\) – число. Такие тригонометрические уравнения называются простейшими. Их легко решать с помощью числовой окружности ( тригонометрического круга ) или специальных формул:

\(\sin ⁡x=a\) \(⇔\) \( \left[ \beginx=\arcsin a+2πn, n∈Z\\ x=π-\arcsin a+2πl, l∈Z\end\right.\)
если \(a∈[-1;1]\)

Инфографику о решении простейших тригонометрических уравнений смотри здесь: \(sinx=a\) , \(cosx=a\) , \(tgx=a\) и \(ctgx=a\) .

Пример. Решите тригонометрическое уравнение \(\sin⁡x=-\)\(\frac<1><2>\).
Решение:

Решим уравнение с помощью числовой окружности. Для этого:
1) Построим оси.
2) Построим окружность.
3) На оси синусов (оси \(y\)) отметим точку \(-\) \(\frac<1><2>\) .
4) Проведем перпендикуляр к оси синусов через эту точку.
5) Отметим точки пересечения перпендикуляра и окружности.
6)Подпишем значения этих точек: \(-\) \(\frac<π><6>\) ,\(-\) \(\frac<5π><6>\) .
7) Запишем все значения соответствующие этим точкам с помощью формулы \(x=t+2πk\), \(k∈Z\):
\(x=-\) \(\frac<π><6>\) \(+2πk\), \(k∈Z\); \(x=-\) \(\frac<5π><6>\) \(+2πn\), \(n∈Z\)

Что означает каждый символ в формуле корней тригонометрических уравнений смотри в видео .

Внимание! Уравнения \(\sin⁡x=a\) и \(\cos⁡x=a\) не имеют решений, если \(a ϵ (-∞;-1)∪(1;∞)\). Потому что синус и косинус при любых икс больше или равны \(-1\) и меньше или равны \(1\):

Пример. Решить уравнение \(\cos⁡x=-1,1\).
Решение: \(-1,1 \(\frac<π><4>\) , \(\frac<5π><4>\)
7) Запишем все значения этих точек. Так как они находятся друг от друга на расстоянии ровно в \(π\), то все значения можно записать одной формулой:

Ответ: \(x=\) \(\frac<π><4>\) \(+πk\), \(k∈Z\).

Пример. Решите тригонометрическое уравнение \(\cos⁡(3x+\frac<π><4>)=0\).
Решение:

Опять воспользуемся числовой окружностью.
1) Построим окружность, оси \(x\) и \(y\).
2) На оси косинусов (ось \(x\)) отметим \(0\).
3) Проведем перпендикуляр к оси косинусов через эту точку.
4) Отметим точки пересечения перпендикуляра и окружности.
5) Подпишем значения этих точек: \(-\) \(\frac<π><2>\),\(\frac<π><2>\) .
6)Выпишем все значение этих точек и приравняем их к аргументу косинуса (к тому что внутри косинуса).

7) Дальше решать в таком виде несколько трудновато, разобьем уравнение на два.

8) Как обычно в уравнениях будем выражать \(x\).
Не забывайте относиться к числам с \(π\), так же к \(1\), \(2\), \(\frac<1><4>\) и т.п. Это такие же числа, как и все остальные. Никакой числовой дискриминации!

Ответ: \(x=\) \(\frac<π><12>\) \(+\) \(\frac<2πk><3>\) \(x=-\) \(\frac<π><4>\) \(+\) \(\frac<2πk><3>\) , \(k∈Z\).

Сводить тригонометрические уравнения к простейшим – задача творческая, тут нужно использовать и тригонометрические формулы , и особые методы решений уравнений:
— Метод введения новой переменной (самый популярный в ЕГЭ).
— Метод разложения на множители .
— Метод вспомогательных аргументов.

Рассмотрим пример решения квадратно-тригонометрического уравнения

Пример. Решите тригонометрическое уравнение \(2\cos^2⁡x-5\cos⁡x+2=0\)
Решение:

Сделаем замену \(t=\cos⁡x\).

Наше уравнение превратилось в типичное квадратное . Можно его решить с помощью дискриминанта .

\(D=25-4 \cdot 2 \cdot 2=25-16=9\)

Делаем обратную замену.

Первое уравнение решаем с помощью числовой окружности.
Второе уравнение не имеет решений т.к. \(\cos⁡x∈[-1;1]\) и двум быть равен не может ни при каких иксах.

Запишем все числа, лежащие на числовой окружности в этих точках.

Ответ: \(x=±\) \(\frac<π><3>\) \(+2πk\), \(k∈Z\).

Пример решения тригонометрического уравнения с исследованием ОДЗ:

Пример(ЕГЭ). Решите тригонометрическое уравнение \(\frac<2\cos^2⁡x-\sin<⁡2x>>\) \(=0\)

Есть дробь и есть котангенс – значит надо записать ОДЗ . Напомню, что котангенс это фактически дробь:

Потому ОДЗ для ctg\(x\): \(\sin⁡x≠0\).

Отметим «нерешения» на числовой окружности.

ПРОСТЕЙШИЕ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ. Тригонометрическими уравнениями обычно называют уравнения, в которых переменная содержится под знаками тригонометрических. — презентация

Презентация была опубликована 8 лет назад пользователемРодион Черносвитов

Похожие презентации

Презентация на тему: » ПРОСТЕЙШИЕ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ. Тригонометрическими уравнениями обычно называют уравнения, в которых переменная содержится под знаками тригонометрических.» — Транскрипт:

1 ПРОСТЕЙШИЕ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ

2 Тригонометрическими уравнениями обычно называют уравнения, в которых переменная содержится под знаками тригонометрических функций. К их числу прежде всего относятся простейшие тригонометрические уравнения, т.е. уравнения вида sin x=a, cos x=a, tg x=a, где a — действительное число.

3 К настоящему моменту мы знаем, что: Если |a|1, то решения уравнения cos x=a имеют вид x=± arccos a+2πn, Если |a|1, то решения уравнения cos x=a имеют вид x=± arccos a+2πn, Если |a|1, то решения уравнения sin x=a имеют вид x=(-1) n arcsin a+πn, Если |a|1, то решения уравнения sin x=a имеют вид x=(-1) n arcsin a+πn, или, что то же самое, x= arcsin a+2πk, x=π- arcsin a+2пk; или, что то же самое, x= arcsin a+2πk, x=π- arcsin a+2пk; Если |a|>1, то уравнения cos x=a, sin x=a не имеют решений. Если |a|>1, то уравнения cos x=a, sin x=a не имеют решений. 1, то уравнения cos x=a, sin x=a не имеют решений. Если |a|>1, то уравнения cos x=a, sin x=a не имеют решений.»>

4 Решения уравнения tg x=a для любого значения a имеют вид x= arctg a+πn; Решения уравнения tg x=a для любого значения a имеют вид x= arctg a+πn; Особо важны частные случаи: Особо важны частные случаи: sin x=0, x=πn; sin x=1, x=π/2+2πn; sin x=-1, x=-π/2+2πn; cos x=0, x=π/2+πn; cos x=1, x=2πn; cos x=-1, x=π+2πn. Во всех перечисленных формулах подразумевается, что параметр (n,k) принимает любые целочисленные значения (nZ, kZ). Во всех перечисленных формулах подразумевается, что параметр (n,k) принимает любые целочисленные значения (nZ, kZ).

5 К простейшим относят обычно и уравнения вида T(kx+m)=a, где T – знак какой-либо тригонометрической функции.

0, но помним, что |a|1. Для нашего примера: 3″ title=»Пример 1. Решить уравнения: a) sin 2x=1/2 2x=(-1) n arcsin 1/2+πn, имеем arcsin 1/2=π/6. Значит, 2x=(-1) n π/6+πn; x=(-1) n π/12+πn/2. б) cos 3x=-2/2; Решения уравнения имеют вид: x=± arccos a+2πn, если a>0, но помним, что |a|1. Для нашего примера: 3″ > 6 Пример 1. Решить уравнения: a) sin 2x=1/2 2x=(-1) n arcsin 1/2+πn, имеем arcsin 1/2=π/6. Значит, 2x=(-1) n π/6+πn; x=(-1) n π/12+πn/2. б) cos 3x=-2/2; Решения уравнения имеют вид: x=± arccos a+2πn, если a>0, но помним, что |a|1. Для нашего примера: 3x=± arccos (-2/2) +2πn, 3x=±(π- arccos 2/2)+2πn, 3x=±(π- arccos 2/2)+2πn, 3x=±(π-π/4)+2πn, 3x=±(π-π/4)+2πn, 3x=±3π/4+2πn, 3x=±3π/4+2πn, x=±π/4+2πn/3, где nZ x=±π/4+2πn/3, где nZ 0, но помним, что |a|1. Для нашего примера: 3″> 0, но помним, что |a|1. Для нашего примера: 3x=± arccos (-2/2) +2πn, 3x=±(π- arccos 2/2)+2πn, 3x=±(π- arccos 2/2)+2πn, 3x=±(π-π/4)+2πn, 3x=±(π-π/4)+2πn, 3x=±3π/4+2πn, 3x=±3π/4+2πn, x=±π/4+2πn/3, где nZ x=±π/4+2πn/3, где nZ»> 0, но помним, что |a|1. Для нашего примера: 3″ title=»Пример 1. Решить уравнения: a) sin 2x=1/2 2x=(-1) n arcsin 1/2+πn, имеем arcsin 1/2=π/6. Значит, 2x=(-1) n π/6+πn; x=(-1) n π/12+πn/2. б) cos 3x=-2/2; Решения уравнения имеют вид: x=± arccos a+2πn, если a>0, но помним, что |a|1. Для нашего примера: 3″>

7 в) tg (4x-π/6)= 3/3. 4x-π/6= arctg 3/3+πn; arctg 3/3=π/6. 4x-π/6= arctg 3/3+πn; arctg 3/3=π/6. 4x-π/6=π/6+πn; 4x-π/6=π/6+πn; 4x=π/6+π/6+πn, 4x=π/6+π/6+πn, 4x=π/3+πn, 4x=π/3+πn, x=π/12+πn/4, где nZ. x=π/12+πn/4, где nZ.

8 Пример 2. Найти те корни уравнения sin2x=1/2, которые принадлежат отрезку [0; π]. Решение. Сначала решим уравнение в общем виде: sin 2x=1/2 2x=(-1) n arcsin 1/2+πn, 2x=(-1) n arcsin 1/2+πn, 2x=(-1) n π/6+πn; 2x=(-1) n π/6+πn; x=(-1) n π/12+πn/2. x=(-1) n π/12+πn/2. Далее придадим параметру n последовательно значения 0,1,2,…,-1,-2,… и подставим эти значения в общую формулу корней. Далее придадим параметру n последовательно значения 0,1,2,…,-1,-2,… и подставим эти значения в общую формулу корней.

9 Если n=0, то x=(-1) 0 π/12+0=π/12, π/12 [0; π]. Если n=1, то x=(-1) 1 π/12+π/2 =-π/12+π/2=5π/12, 5π/12 [0; π]. Если n=2, то x=(-1) 2 π/12+π=π/12+π=13π/12, 13π/12 [0; π]. Тем более не будут принадлежать заданному отрезку те значения x, которые получаются из общей формулы при n=3,4,….

10 Пусть теперь n= -1, тогда x=(-1) -1 π/12-π/2= -π/12-π/2= -7π/12. Это число не принадлежит заданному отрезку [0; π]. Тем более не будут принадлежать заданному отрезку те значения x, которые получаются из общей формулы при n= -2,-3, ….

11 На рисунке представлена геометрическая интерпретация проведенных рассуждений. -7π/12 π/12 5π/12 13π/12 0 π Итак, заданному отрезку [0; π] принадлежат те корни уравнения, которые получаются из общей формулы при следующих значениях параметра n: n=0, n=1. Эти корни таковы: π/12, 5π/12. Ответ: π/12; 5π/12.


источники:

http://cos-cos.ru/math/93/

http://www.myshared.ru/slide/561357/