Уравнения неравенства содержащие знак модуля

Е.П. Нелин, В.А. Лазарев

АЛГЕБРА

и начала математического

анализа

10 класс

учреждений. Базовый и

§ 5. Уравнения и неравенства, содержащие знак модуля

(Оформление и автор интерактивных технологий Морозова Е.)

Объяснение и обоснование

Решать любое уравнение или неравенство, содержащее знак модуля, можно одним из трех основных способов: по определению модуля, исходя из геометрического смысла модуля или по общей схеме. Некоторые уравнения или неравенства с модулем могут быть также решены с использованием специальных соотношений.

В зависимости от выбранного способа решения получаем разные записи решения.

Пример Решите уравнение | 2x – 4 | = 6.

I способ (по определению модуля)

II способ (использование геометрического смысла модуля)

Замечание. При решении уравнения с использованием геометрического смысла модуля знак модуля раскрывается неявно, то есть определение модуля в явном виде не применяется.

Общая схема решения уравнений и неравенств, содержащих знак модуля — это фактически немного измененный метод интервалов. Поясним содержание этой схемы на примере уравнения с двумя модулями вида

|f (x)| + |g (x)| = a (a > 0).

Чтобы решить это уравнение, необходимо раскрыть знаки модулей, а для этого необходимо знать, где функции f (x) и g (x) будут положительными, а где — отрицательными. То есть фактически мы должны решить неравенства

Каждое из этих неравенств мы умеем решать методом интервалов. Перестроим прием решения неравенств методом интервалов таким образом, чтобы он давал возможность одновременно решать каждое из последних неравенств. Как известно, решение неравенства (1) методом интервалов начинается с нахождения его ОДЗ (то есть области определения функции f (x)), а решение неравенства (2) — с нахождения его ОДЗ (то есть области определения функции g (x)). Чтобы начать одновременно решать оба неравенства, необходимо найти общую область определения для функций f (x) и g (x), то есть найти ОДЗ данного уравнения (это и есть первый из ориентиров необходимой схемы).

Чтобы продолжить решение неравенств f (x) ≥или≤0 и g (x) ≥или≤ 0 методом интервалов, необходимо найти нули функций f (x) и g (x), то есть найти нули всех подмодульных функций (это и есть второй ориентир).

Если далее применить схему метода интервалов одновременно для двух неравенств, необходимо на ОДЗ отметить нули подмодульных функций и разбить ОДЗ на промежутки (это третий ориентир).

В каждом из полученных промежутков знаки функций f (x) и g (x) не могут измениться. Тогда мы можем найти знаки подмодульных функций на каждом промежутке (в любой точке этого промежутка), раскрыть знаки модулей и найти решение данного уравнения в каждом из этих промежутков (это и есть четвертый ориентир общей схемы).

Обоснование возможности применения приведенной схемы к решению неравенств с модулями проводится аналогично.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Вопросы для контроля

  1. Объясните, какими способами можно решать уравнения и неравенства, содержащие знак модуля. Проиллюстрируйте эти способы на примерах.
  2. Обоснуйте специальные соотношения. Проиллюстрируйте их применение к решению уравнений и неравенств, содержащих знак модуля.
  3. Обоснуйте обобщения использования геометрического смысла модуля. Проиллюстрируйте их применение к решению уравнений и неравенств, содержащих знак модуля.

Упражнения

Решите уравнения и неравенства, содержащие знак модуля (1–15).

Уравнения с модулем

Эта статья посвящена приёмам решения различных уравнений и неравенств, содержащих
переменную под знаком модуля.

Если на экзамене вам попадётся уравнение или неравенство с модулем, его можно решить,
вообще не зная никаких специальных методов и пользуясь только определением модуля. Правда,
занять это может часа полтора драгоценного экзаменационного времени.

Поэтому мы и хотим рассказать вам о приёмах, упрощающих решение таких задач.

Прежде всего вспомним, что

Рассмотрим различные типы уравнений с модулем. (К неравенствам перейдём позже.)

Слева модуль, справа число

Это самый простой случай. Решим уравнение

Есть только два числа, модули которых равны четырём. Это 4 и −4. Следовательно, уравнение
равносильно совокупности двух простых:

Второе уравнение не имеет решений. Решения первого: x = 0 и x = 5.

Переменная как под модулем, так и вне модуля

Здесь приходится раскрывать модуль по определению. . . или соображать!

Уравнение распадается на два случая, в зависимости от знака выражения под модулем.
Другими словами, оно равносильно совокупности двух систем:

Решение первой системы: . У второй системы решений нет.
Ответ: 1.

Первый случай: x ≥ 3. Снимаем модуль:

Число , будучи отрицательным, не удовлетворяет условию x ≥ 3 и потому не является корнем исходного уравнения.

Выясним, удовлетворяет ли данному условию число . Для этого составим разность и определим её знак:

Значит, больше трёх и потому является корнем исходного уравнения

Стало быть, годятся лишь и .

Ответ:

Квадратные уравнения с заменой |x| = t

Поскольку , удобно сделать замену |x| = t. Получаем:

Модуль равен модулю

Речь идёт об уравнениях вида |A| = |B|. Это — подарок судьбы. Никаких раскрытий модуля по определению! Всё просто:

Например, рассмотрим уравнение: . Оно равносильно следующей совокупности:

Остаётся решить каждое из уравнений совокупности и записать ответ.

Два или несколько модулей

Не будем возиться с каждым модулем по отдельности и раскрывать его по определению — слишком много получится вариантов. Существует более рациональный способ — метод интервалов.

Выражения под модулями обращаются в нуль в точках x = 1, x = 2 и x = 3. Эти точки делят числовую прямую на четыре промежутка (интервала). Отметим на числовой прямой эти точки и расставим знаки для каждого из выражений под модулями на полученных интервалах. (Порядок следования знаков совпадает с порядком следования соответствующих модулей в уравнении.)

Таким образом, нам нужно рассмотреть четыре случая — когда x находится в каждом из интервалов.

Случай 1: x ≥ 3. Все модули снимаются «с плюсом»:

Полученное значение x = 5 удовлетворяет условию x ≥ 3 и потому является корнем исходного уравнения.

Случай 2: 2 ≤ x ≤ 3. Последний модуль теперь снимается «с минусом»:

Полученное значение x также годится — оно принадлежит рассматриваемому промежутку.

Случай 3: 1 ≤ x ≤ 2. Второй и третий модули снимаются «с минусом»:

Мы получили верное числовое равенство при любом x из рассматриваемого промежутка [1; 2] служат решениями данного уравнения.

Случай 4: x ≤ 1 ≤ 1. Второй и третий модули снимаются «с минусом»:

Ничего нового. Мы и так знаем, что x = 1 является решением.

Модуль в модуле

Начинаем с раскрытия внутреннего модуля.

1) x ≤ 3. Получаем:

Выражение под модулем обращается в нуль при . Данная точка принадлежит рассматриваемому
промежутку. Поэтому приходится разбирать два подслучая.

1.1) Получаем в этом случае:

Это значение x не годится, так как не принадлежит рассматриваемому промежутку.

1.2) . Тогда:

Это значение x также не годится.

Итак, при x ≤ 3 решений нет. Переходим ко второму случаю.

Здесь нам повезло: выражение x + 2 положительно в рассматриваемом промежутке! Поэтому никаких подслучаев уже не будет: модуль снимается «с плюсом»:

Это значение x находится в рассматриваемом промежутке и потому является корнем исходного уравнения.

Так решаются все задачи данного типа — раскрываем вложенные модули по очереди, начиная с внутреннего.

Читайте также о том, как решать неравенства с модулем.

Основные сведения о способах решения неравенств с модулем

Определение модуля

Модуль, или абсолютная величина, числа х в алгебре является самим числом «х» при x ≥ 0 и числом «–х» при x | x | = x , x ≥ 0 — x , x 0

Модуль числа обладает следующими свойствами:

  1. Модуль числа является неотрицательным числом: x ≥ 0 , x = 0 ⇔ x = 0 .
  2. Противоположные числа обладают равными модулями: — x = x .
  3. Модуль произведения из пары или более чисел равен произведению модулей этих чисел: x · y = x · y .
  4. Модуль частного пары чисел равен частному модулей этих чисел: x y = x y , где у отличен от нуля.
  5. Модуль суммы чисел в любом случае меньше по сравнению с суммой их модулей, либо равен сумме модулей данных чисел: x + y ≤ x + y .
  6. Неизменяемый множитель, который больше нуля, допускается выносить за знак модуля: c x = c · x при c>0.
  7. Квадрат модуля числа равен квадрату данного числа: x 2 = x 2 .

Виды неравенств с модулем

Неравенствами называют выражения, включающие в себя числа, либо выражения с переменной и записанные в виде:

a > b , a b , a ≤ b и a ≥ b .

Числовым называют такое неравенство, в котором a и b являются числами или числовыми выражениями.

Числовое неравенство представляет собой сравнение пары чисел. Смысл такой записи заключается в определении, какое из чисел больше или меньше по сравнению со вторым.

Виды числовых неравенств:

Неравенство -5 17 + 3 ≥ 115 является неверным. Правая часть неравенства равна 20:

Число 20 меньше по сравнению с числом 115. Этот вывод противоречит записанному неравенству, что позволяет назвать его неверным.

Неравенством с переменной называют такое неравенство, которое содержит переменную.

При решении задач можно столкнуться с разными видами неравенств с переменными:

  1. Линейное, с переменной в первой степени, например: 2 x + 1 ≥ 4 ( 5 — x ) .
  2. Квадратное, с переменной, возведенной в квадрат, например: 3 x 2 — x + 5 > 0 .
  3. Логарифмическое, где переменная записана под знаком логарифма, например: log 4 ( x + 1 ) 3 .
  4. Показательное, переменная записана в показателе степени, как 2 x ≤ 8 5 x — 2 .

Определение 5

Строгие неравенства — неравенства, которые содержат знаки сравнения > (больше) или Пример 3

Пример строгого неравенства:

Заметим, что в случае строгого неравенства не допускается равенство между правой и левой частью выражения. По этой причине такие неравенства и называют строгими.

Нестрогие неравенства — неравенства, которые содержат знаки сравнения \geq (больше или равно) либо ≤ (меньше или равно).

Пример нестрого неравенства:

Заметим, что в случае нестрого неравенства допускается равенство левой и правой частей выражения. По этой причине такие неравенства называются нестрогими.

Неравенства с модулем представляют собой такие неравенства, в которых неизвестные находятся под знаком модуля.

Решить неравенство с модулем можно, руководствуясь определением модуля числа:

| x | = x , x ≥ 0 , — x , x 0

Способы решения неравенств с модулем, пояснения на примерах

Существует определенный алгоритм, который удобно применять для решения заданий на неравенства с модулем:

  1. Неравенство, записанное в виде | x | a , где а больше нуля, является равносильным системе . Когда а меньше нуля, у неравенства отсутствуют решения.
  2. Неравенство, записанное в виде |x|>a , где а больше нуля, является равносильным совокупности неравенств: a \hfill \\ x . При а=0 корни неравенства соответствуют множеству x ∈ ( — ∞ ; 0 ) ∪ ( 0 ; + ∞ ) . При a меньше нуля решения расположены на всей числовой оси: x ∈ ( — ∞ ; + ∞ ) .

В том случае, когда требуется решить неравенство в виде | f ( x ) | > | g ( x ) | и л и | f ( x ) | | g ( x ) | , все части выражения, в том числе, дробные, следует возвести в квадрат. Неравенства, содержащие больше одного выражения, записанного под знаком модуля, решают с применением графического метода интервалов. Этот способ часто применяют в классе на уроке алгебры и при решении домашних заданий.

Разберем несколько примеров для доказательства удобства использования записанной ранее схемы. Попробуем найти решения такого неравенства:

Заметим, что данное выражение можно представить, как систему:

Первое из неравенств системы является равносильным совокупности неравенств:

Неравенство под номером два соответствует системе:

В результате оба неравенства будут решены:

Рассмотрим простое задание с неравенством, которое требуется решить с подробными действиями:

Запишем равносильную совокупность неравенств по правилам:

Если объединить интервалы со всех сторон, то получится:

Решим следующее неравенство аналогичного типа несколько другим способом:

Запишем совокупность неравенств:

При пересечении найденных интервалов получим, что:

Разберем метод решения неравенства с модулем путем возведения в квадрат:

Возведем все части выражения во вторую степень:

( x + 1 ) 2 ≤ ( x — 2 ) 2

Заметим, что в данном случае можно воспользоваться формулами сокращенного умножения, а именно: распишем квадрат суммы и квадрат разности:

x 2 + 2 x + 1 ≤ x 2 — 4 x + 4

С помощью приведения подобных упростим выражение:

6 x ≤ 3 ⇒ 2 x ≤ 1 ⇒ x ≤ 1 2 ⇒ x ∈ ( — ∞ ; 0 , 5 ]

Попробуем справиться с более сложным примером:

| x — 1 | + | x — 2 | ≤ 3

Здесь целесообразно применить метод интервалов. Для этого сначала вычислим нули выражений, которые записаны под знаком модуля:

Заметим, что если перенести полученные значения на числовую ось, то получится три интервала:

x ∈ ( — ∞ ; 1 ] ; ( 1 ; 2 ] ; ( 2 ; + ∞ ] .

Рассмотрим каждый из промежутков:

— ( x — 1 ) — ( x — 2 ) ≤ 3

На пересечении этого решения и первого интервала x ∈ ( — ∞ ; 1 ] получим, что:

Рассмотрим второй интервал:

Здесь неравенство можно записать таким образом:

x — 1 — ( x — 2 ) ≤ 3

Сделаем вывод о том, что для х приемлемы любые значения на данном промежутке, то есть:

На пересечении этого решения и третьего интервала:

Результат можно определить, если объединить найденные решения:

x ∈ [ 0 ; 1 ] ∪ ( 1 ; 2 ] ∪ ( 2 ; 3 ] ⇒ x ∈ [ 0 ; 3 ]

Примеры решения задач

Дано неравенство, которое нужно решить:

| 2 x 2 — 9 x + 15 | ≥ 20

Если x ∈ R , получим:

2 x 2 — 9 x + 15 > 0

2 x 2 — 9 x + 15 ≥ 20

2 x 2 — 9 x — 5 ≥ 0

2 ( x — 5 ) ( x + 1 2 ) ≥ 0

x ≤ — 1 2 или x ≥ 5

Ответ: x ∈ — ∞ ; — 1 2 ∪ [ 5 ; + ∞ )

Нужно решить неравенство:

| x — 3 | 2 x 2 — 7 x > 1

| x — 3 | 2 x 2 — 7 x > | x — 3 | 0

0 | x — 3 | 1 , 2 x 2 — 7 x 0 ; | x — 3 | > 1 , 2 x 2 — 7 x > 0

— 1 x — 3 1 , x — 3 ≠ 0 , x ( 2 x — 7 ) 0 ; x — 3 > 1 , x — 3 — 1 , x ( 2 x — 7 ) > 0

2 x 4 , x ≠ 3 , 0 x 7 2 ; x > 4 , x 2 , x > 7 2 , x 0 .

В случае системы:

2 x 4 , x ≠ 3 , 0 x 7 2

решение будет таким:

x > 4 , x 2 , x > 7 2 , x 0 .

x ∈ ( — ∞ ; 0 ) ∪ ( 2 ; 3 ) ∪ ( 3 ; 7 2 ) ∪ ( 4 ; + ∞ )

Ответ: x ∈ ( — ∞ ; 0 ) ∪ ( 2 ; 3 ) ∪ ( 3 ; 7 2 ) ∪ ( 4 ; + ∞ )

Нужно определить решения следующего неравенства:

| x — 6 | > | x 2 — 5 x + 9 |

| x — 6 | > x 2 — 5 x + 9

x — 6 > x 2 — 5 x + 9

x 2 — 5 x + 9 0 — решения отсутствуют;

x — 6 — x 2 + 5 x — 9

Найти решения неравенства:

log 0 , 25 2 x + 1 x + 3 + 1 2 > 1 2

0 2 x + 1 x + 3 + 1 2 1 2

0 4 x + 2 + x + 3 2 ( x + 3 ) 1 2

0 5 x + 5 2 ( x + 3 ) 1 2

5 x + 5 2 ( x + 3 ) ≠ 0 , 5 x + 5 2 ( x + 3 ) 1 2 , 5 x + 5 2 ( x + 3 ) > — 1 2 ;

x ≠ — 1 , x ≠ — 3 , 2 x + 1 x + 3 0 , 3 x + 4 x + 3 > 0

x ≠ — 1 , x ≠ — 3 , — 3 x — 1 2 , x > — 4 3 , x — 3

x ∈ — 4 3 ; — 1 ∪ — 1 ; — 1 2

Ответ: x ∈ — 4 3 ; — 1 ∪ — 1 ; — 1 2

Определить решения неравенств:

| x 2 + 5 x | 6 , | x + 1 | ≤ 1 .

— 6 x 2 + 5 x 6 , — 1 ≤ x + 1 ≤ 1 .

x 2 + 5 x 6 , x 2 + 5 x > — 6 , x + 1 ≤ 1 , x + 1 ≥ — 1

x 2 + 5 x — 6 0 , x 2 + 5 x + 6 > 0 , x ≤ 0 , x ≥ — 2

— 6 x 1 , x > — 2 , x — 3 — 2 ≤ x ≤ 0 .

Ответ: x ∈ ( — 2 ; 0 ]

Дано неравенство, решения которого требуется найти:

| x 2 — 4 x | 5 , | x + 1 | 3 .

x 2 — 4 x 5 , x 2 — 4 x > — 5 , — 3 x + 1 3

x 2 — 4 x — 5 0 , x 2 — 4 x + 5 > 0 , — 4 x 2

— 4 x 2 , x ∈ R , — 4 x 2

Ответ: x ∈ ( — 1 ; 2 )

Дано неравенство, которое требуется решить:

3 2 | x — 1 | + 3 4 3 | x — 1 |

3 2 | x — 1 | — 4 · 3 | x — 1 | + 3 0

Заметим, что это квадратное неравенство по отношению к 3 | x — 1 | :

0 — 1 x — 1 1 , x — 1 ≠ 0

x ∈ ( 0 ; 1 ) ∪ ( 1 ; 2 )

Ответ: x ∈ ( 0 ; 1 ) ∪ ( 1 ; 2 )

x 3 — 1 > 1 — x , x 3 — 1 — 1 ( 1 — x )

( x 3 — 1 ) + ( x — 1 ) > 0 , x ( x 2 — 1 ) 0

( x — 1 ) ( x 2 + x + 1 ) + ( x — 1 ) > 0 , x ( x + 1 ) ( x — 1 ) 0

( x — 1 ) ( x 2 + x + 2 ) > 0 , x ( x + 1 ) ( x — 1 ) 0

x > 1 , x — 1 , 0 x 1 .

x ∈ ( — ∞ ; — 1 ) ∪ ( 0 ; 1 ) ∪ ( 1 ; + ∞ )

Ответ: x ∈ ( — ∞ ; — 1 ) ∪ ( 0 ; 1 ) ∪ ( 1 ; + ∞ )

Дано неравенство, которое требуется решить:

x 2 — | x | — 12 x — 3 ≥ 2 x

x 0 , x 2 — x — 12 x — 3 ≥ 2 x ; x ≥ 0 , x 2 — x — 12 x — 3 ≥ 2 x ,

x 0 , x 2 — x + 12 x — 3 ≤ 0 ; x ≥ 0 , x 2 — x + 12 x — 3 ≤ 0 ,

x 0 , ( x 2 — x + 12 ) ( x — 3 ) ≤ 0 , x — 3 ≠ 0 ; x ≥ 0 , ( x 2 — x + 12 ) ( x — 3 ) ≤ 0 , x — 3 ≠ 0

x 0 , ( x — 4 ) ( x — 3 ) 3 ≤ 0 , x — 3 ≠ 0 ; x ≥ 0 , x — 3 0


источники:

http://ege-study.ru/ru/ege/materialy/matematika/uravneniya-i-neravenstva-s-modulem/

http://wika.tutoronline.ru/algebra/class/9/osnovnye-svedeniya-o-sposobah-resheniya-neravenstv-s-modulem