Уравнения нернста или нернста петерса

Редокс-потенциалов. Уравнения Нернста-Петерса

Мерой окислительно-восстановительной способности веществ служат окислительно-восстановительные потенциалы. Рассмотрим механизм возникновения потенциала. При погружении химически активного металла (Zn, Al) в раствор его соли, например Zn в раствор ZnSO4, происходят дополнительное растворение металла в результате процесса окисления, образование пары, двойного электрического слоя на поверхности металла и возникновение потенциала пары Zn 2+ /Zn ° .

Металл, погруженный в раствор своей соли, например цинк в растворе сульфата цинка, называют электродом первого рода. Это двухфазный электрод, который заряжается отрицательно. Потенциал образуется в результате реакции окисления (рис. 5.1).

Рис. 5.1. Окисление цинка

При погружении в раствор своей соли малоактивных металлов (Cu) наблюдается противоположный процесс. На границе металла с раствором соли происходит осаждение металла в результате процесса восстановления иона, обладающего высокой акцепторной способностью к электрону, что обусловлено высоким зарядом ядра и малым радиусом иона. Электрод заряжается положительно, в приэлектродном пространстве избыточные анионы соли формируют второй слой, возникает электродный потенциал пары Cu 2+ /Cu ° . Потенциал образуется в результате процесса восстановления (рис. 5.2). Механизм, величина и знак электродного потенциала определяются строением атомов участников электродного процесса.

Рис. 5.2. Восстановление меди

Итак, потенциал, который возникает на границе раздела металла с раствором в результате окислительного и восстановительного процессов, протекающих с участием металла (электрода) и образованием двойного электрического слоя называют электродным потенциалом.

Если отводить электроны с цинковой пластины на медную, то равновесие на пластинках нарушается. Для этого соединим цинковую и медную пластины, погруженные в растворы их солей, металлическим проводником, приэлектродные растворы — электролитным мостиком (трубка с раствором K2SO4), чтобы замкнуть цепь. На цинковом электроде протекает полуреакция окисления: Zn 0 (т) — 2ē → Zn 2+ (р-р), а на медном — полуреакция восстановления: Cu 2+ (р-р) + 2ē → Cu 0 (т)

Электрический ток обусловлен суммарной окислительно-восстановительной реакцией:

Zn 0 (т) + Cu 2+ (р-р) → Zn 2+ (р-р) + Cu 0 (т)

Окислительно-восстановительные потенциалы пары зависят от природы участников электродного процесса и соотношения равновесных концентраций окисленной и восстановленной форм участников электродного процесса в растворе, температуры раствора и описываются уравнением Нернста.

Количественной характеристикой окислительно-восстановительной системы является редокс-потенциал, возникающий на границе раздела фаз платина — водный раствор. Величина потенциала в единицах СИ измеряется в вольтах (В) и рассчитывается по уравнению Нернста-Петерса:

где а(Oх) и a(Red) — активность окисленной и восстановленной форм соответственно; R — универсальная газовая постоянная; Т — термодинамическая температура, К; F — постоянная Фарадея (96500 Кл/моль); n — число электронов, принимающих участие в элементарном редокс-процессе; а — активность ионов гидроксония; m — стехиометрический коэффициент перед ионом водорода в полуреакции. Величина φ° — стандартный редокс-потенциал, т.е. потенциал, измеренный при условиях а(Oх) = a(Red) = a(H + ) = 1 и данной температуре.

Стандартный потенциал системы 2Н + /Н2 принят равным 0 В. Стандартные потенциалы являются справочными величинами, табулируются при температуре 298К. Сильнокислая среда не характерна для биологических систем, поэтому для характеристики процессов, протекающих в живых системах, чаще используют формальный потенциал, определяемый при условии а(Oх) = a(Red), pH 7,4 и температуре 310К (физиологический уровень). При записи потенциала пара указывается в виде дроби, причем окислитель записывается в числителе, а восстановитель в знаменателе.

Для 25°С (298К) после подстановки постоянных величин (R = 8,31 Дж/моль×град; F = 96500 Кл/моль) уравнение Нернста принимает следующий вид:

где φ°- стандартный окислительно-восстановительный потенциал пары, В; Со.ф. и Св.ф. — произведение равновесных концентраций окисленной и восстановленной форм соответственно; х и у — стехиометрические коэффициенты в уравнении полуреакций.

Редокс-системы делят на два типа:

1. в системе осуществляется только перенос электронов: Fe 3+ +ē = Fe 2+ , Sn 2+ — 2ē = Sn 4+ . Это изолированное окислительно-восстановительное равновесие;

2. системы, когда перенос электронов дополняется переносом протонов, т.е. наблюдается совмещенное равновесие разных типов: протолитическое (кислотно-основное) и окислительно-восстановительное с возможной конкуренцией двух частиц протонов и электронов. В биологических системах важные редокс-системы относятся к этому типу.

Примером системы второго типа является процесс утилизации перекиси водорода в организме: Н2О2 + 2Н + + 2ē ↔ 2Н2О, а также восстановление в кислой среде многих окислителей, содержащих кислород: CrО4 2- , Cr2О7 2- , MnО4 — . Например, MnО4 — + 8Н + + 5ē = = Mn 2+ + 4Н2О. В данной полуреакции участвуют электроны и протоны.

Итак, окислительно-восстановительный потенциал (ОВП) – это потенциал системы, в которой активности окислительной и восстановительной форм данного вещества равны единице. ОВП измеряется с помощью окислительно-восстановительных электродов в сочетании со стандартными электродами сравнения.

В каждой окислительно-восстановительной реакции есть своя редокс-пара – эта пара имеет вещество в окисленной и восстановленной форме (Fe +3 /Fe +2 ).

Количественной мерой активности редокс-пары является величина ее ОВП.

Применение уравнения Нернста в решении задач.

При рассмотрении вопроса об окислительно-восстановительных реакциях часто возникает необходимость расчета электродвижущей силы (ЭДС) и потенциалов отдельных полуреакций. В справочниках обычно приведены таблицы т.н. стандартных потенциалов тех или иных процессов, рассчитанных при р=1 атм, Т=298К и активностях участников равных 1. Однако в реальных задачах условия могут значительно отличаться от указанных выше. Как быть в таком случае? Ответ дает уравнение Нернста. В оригинальном виде оно выглядит так:









Как можно заметить, в уравнении фигурируют несколько постоянных величин. Также температура в подавляющем большинстве случаев равна 298К. Кроме того, можно заменить натуральный логарифм на десятичный. Это можно сделать путем умножения на коэффициент перевода. Если собрать все постоянные в единый множитель, то приходим к несколько иному, но более знакомому по учебным пособиям виду уравнения Нернста:

Такой вариант уравнения сильно облегчает жизнь в ряде случаев, например рассмотрении рН-зависимых процессов. Используя данное уравнение можно провести вычисления в любых условиях, приведенных в задаче. Рассмотрим характерные примеры задания по данной теме.

Пример 1:

Рассчитать ЭДС гальванического элемента, составленного из медной и цинковой пластин, погруженных в растворы 0.1М CuSO4 и 0.01М ZnSO4 соответственно. Коэффициенты активности ионов Cu 2+ и Zn 2+ принять равными единице.

Решение:

Для начала запишем уравнения протекающих процессов:


Далее находим по таблице стандартные потенциалы процессов:

Если в условиях задачи ничего не сказано про коэффициенты активности ионов, то можно считать их равными единице, как и в нашем случае. Тогда активности участников процессов можно принять равными их аналитическим концентрациям.

Найдем реальные потенциалы с учетом нестандартных активностей ионов:

Далее необходимо сравнить полученные величины между собой, чтобы определить, кто из участников процесса – окислитель. Потенциал меди больше, чем у цинка, поэтому она будет окислителем. Тогда найдем ЭДС системы:

Ответ: 1.13 В

Пример 2:

Одним из лабораторных способов получения хлора является действие KMnO4 на концентрированную соляную кислоту. Можно ли провести процесс при рН=4?

Решение:

Для начала запишем уравнения протекающих процессов.

Далее находим по таблице стандартные потенциалы процессов:

Несложно заметить, что от рН в данном случае зависит только потенциал перманганата. Тогда воспользуемся уравнением Нернста и рассчитаем его реальный потенциал в условиях задачи:

Получается, что потенциал KMnO4 стал меньше, чем у хлора, а значит, реакция не пойдет.

Физическая и коллоидная химия (стр. 13 )

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

где Е Mez+/Ме — потенциал электрода, изготовленного из металла Ме при активности ионов этого металла Меz+, равной aMez+, Ео Mez+/Ме — стандартный электродный потенциал, измеренный относительно стандартного водородного электрода при a Mez+ = 1 моль/л. Значения стандартных электродных потенциалов приводятся в справочных таблицах.

Из уравнений (10следует, что выражение для электродвижущей силы элемента Даниэля — Якоби может быть записано в виде

Так как медный электрод является более положительным, а цинковый — более отрицательным, то

Выражение (10.10) справедливо для всех гальванических элементов. Оно является математическим выражением правила:

Электродвижущая сила гальванического элемента равна разности между электродными потенциалами более положительного и более отрицательного электродов.

При расчётах с соблюдением этого правила значение ЭДС должно всегда получаться положительным.

Если в уравнении Нернста заменить натуральный логарифм десятичным и подставить значения всех констант, то для температуры 25оС = 298 К получим:

При этом уравнение Нернста для ЭДС может быть записано в виде

а для электродного потенциала —

Уравнения (10.11) и (10.12) иногда называют уравнениями Петерса или Нернста — Петерса.

При очень малых концентрациях, когда активность ионов в приэлектродных растворах практически равна концентрации, величину aMez+ можно заменить на CMez+, где С — молярная (или, чаще, моляльная концентрация). В этом случае уравнения Нернста записываются в виде

и называются уравнениями Тюрина (или Нернста — Тюрина).

Уравнения Нернста являются фундаментальными уравнениями термодинамики гальванического элемента.

10.6. Контактный и диффузионный потенциалы

Практически измеренное точное значение ЭДС обычно отличается от теоретически рассчитанного по уравнению Нернста на некоторую малую величину, которая связана с разностями потенциалов, возникающими в месте контакта различных металлов (“контактный потенциал”) и различных растворов (“диффузионный потенциал”).

Контактный потенциал (точнее, контактная разность потенциалов) связан с различным значением работы выхода электрона для каждого металла. При каждой данной температуре он является постоянным для данного сочетания металлических проводников гальванического элемента и входит в ЭДС элемента как постоянное слагаемое.

Диффузионный потенциал возникает на границе между растворами различных электролитов или одинаковых электролитов с различной концентрацией. Его возникновение объясняется различной скоростью диффузии ионов из одного раствора в другой. Диффузия ионов обусловлена различным значением химического потенциала ионов в каждом из полуэлементов. Причем её скорость изменяется во времени из-за непрерывного изменения концентрации, а значит, и m. Поэтому диффузионный потенциал имеет, как правило, неопределённое значение, так как на него влияют многие факторы, в том числе и температура.

При обычных практических работах значение контактного потенциала сводят к минимуму применением монтажа проводниками, изготовленными из одного и того же материала (обычно меди), а диффузионного потенциала — использованием специальных устройств, называемых электролитическими (солевыми) мостиками или электролитическими ключами. Они представляют собой трубки различной конфигурации (иногда снабженные кранами), заполненные концентрированными растворами нейтральных солей. У этих солей подвижности катиона и аниона должны быть приблизительно равны друг другу (Например, KCl, NH4NO3 и т. п.). В простейшем случае электролитический мостик может быть изготовлен из полоски фильтровальной бумаги или асбестового жгутика, смоченных раствором KCl. При использовании электролитов на основе неводных растворителей в качестве нейтральной соли обычно применяется хлорид рубидия.

Достигнутыми в результате принятых мер минимальными значениями контактного и диффузного потенциалов обычно пренебрегают. Однако при электрохимических измерениях, требующих большой точности, контактный и диффузионный потенциалы следует учитывать.

То обстоятельство, что в данном гальваническом элементе имеется электролитический мостик, отображается двойной вертикальной чертой в его формуле, стоящей в месте контакта двух электролитов. Если же электролитический мостик отсутствует, то в формуле ставится одиночная черта.

Потенциометрия — электрохимический метод исследования и анализа, основанный на определении зависимости между равновесным электродным потенциалом и термодинамической активностью (концен­трацией) компонентов, участвующих в электрохимической реакции. Ма­тематически эта зависимость описывается уравнением Нернста.

При потенциометрических измерениях составляют гальванический элемент с индикаторным (измерительным) электродом и электродом сравнения и измеряют ЭДС этого элемента. Различают прямую потенциометрию и потенциометрическое титрование (послед­нее здесь не описывается, так как излагается в курсе аналитической химии).

11.2. Потенциометрическое определение рН растворов.

Для провизора из методов прямой потенциометрии наибольшее значение имеет потенциометрическое определение рН растворов. Рассмотрим принцип этого метода.

Основной частью лабораторного рН-метра является датчик, состоящий из индикаторного (измерительного) электрода, опущенного в исследуемый раствор, и электрода сравнения (чаще всего хлоридсеребряного). Если в качестве измерительного электрода используется водородный электрод, то датчик представляет собой гальванический элемент, рассмотренный в п. 10.3:

Электродвижущая сила этого элемента, если пренебречь контактным и диффузионным потенциалами, равна разности между потенциалами хлоридсеребряного ЕХСЭ и водородного ЕН+/Н2 электродов:

В соответствии с уравнением Нернста потенциал водородного электрода будет равен (при 25оС):

или, так как рН = — lg aH+

Как уже было отмечено, потенциал хлоридсеребряного электрода в насыщенном растворе KCl при 25оС равен + 0,222 В.

Значит, Е = + 0,,0591 рН), откуда получаем

То есть, измеряя ЭДС рассмотренного гальванического элемента, можно вычислить рН раствора, контактирующего с водородным электродом. В том случае, если вместо хлоридсеребряного электрода используется насыщенный каломельный электрод (НКЭ), потенциал которого равен + 0,2415 В, расчёт рН ведется по уравнению:

Использование водородного электрода по указанным выше причинам в обычной лаборатории, в том числе и в аптеке, неудобно, поэтому в лабораторных рН-метрах в качестве индикаторного электрода применяют стеклянный электрод.

Стеклянный электрод состоит из специального сосуда, в котором находится хлоридсеребряный электрод, погруженный в раствор HCl с определённой концентрацией. Дно сосуда, имеющее форму тонкостенного шарика, представляет собой мембрану из специального стекла, содержащего ионы лёгких щелочных металлов (лития или натрия), способные обмениваться с находящимися в растворе ионами водорода. Стеклянный шарик электрода погружается в исследуемый раствор, с которым при помощи электролитического мостика соединяется хлоридсеребряный электрод сравнения. Получается гальванический элемент с формулой.

Ag | AgCl ; Cl-, H+ | стеклянная мембрана | исследуемый р-р || ХСЭ.

Экспериментально найдено, что потенциал стеклянного электрода изменяется с изменением активности водородных ионов таким же образом, как и потенциал водородного электрода, то есть на 0,0591 В на единицу рН при 25оС. Таким образом, стеклянный электрод является заменителем водородного электрода. Поэтому значение рН исследуемого раствора при измерениях с помощью рН-метра, в котором установлен стеклянный электрод, может быть вычислено с помощью уравнений (11.1) или (11.2).

Измерение ЭДС и пересчёт её в единицы рН осуществляется высокочувствительным вольтметром (потенциометром). Для измерения ЭДС и рН нельзя пользоваться обычным вольтметром. Для этого необходимо применять прибор с большим входным сопротивлением, в результате чего через прибор протекает настолько малый ток, что измеряемая величина представляет собой не напряжение на электродах, а электродвижущую силу элемента. Разработаны электронные схемы и на их основе сконструированы достаточно компактные приборы, которые позволяют измерять значение рН с точностью до ±0,001 единицы рН. Однако для практических целей достаточна точность ±0,01 единицы рН, которую дают обычные лабораторные приборы. Перед измерением рН стеклянный электрод обязательно калибруется по буферным растворам с известными значениями рН.

Стеклянный электрод получил наиболее широкое распространение среди различных электродов, применяемых для определения рН растворов. На него не действуют окислители и восстановители, он с трудом подвергается отравлению. Однако длительное пребывание в сильнощелочных средах, в которых происходит растворение стекла, может вывести его из строя.

Состав стекла, из которого изготавливается шарик, подбирается таким образом, что из всех ионов, имеющихся в растворе, в ионном обмене на поверхности стекла участвуют только ионы Н+. Поэтому стеклянный электрод является примером ионоселективного электрода, потенциал которого зависит только от концентрации ионов водорода в исследуемом растворе. Присутствие других ионов на его потенциал не влияет.

В лабораториях, в том числе при исследованиях по аналитической и фармацевтической химии, фармакологии и др., применяются и другие ионоселективные электроды, которые в составе специальных приборов (ионо­ме­ров) позволяют быстро измерять активности отдельных ионов и соответ­ству­ющие им величины, например, рNa, pCl, pCO2 и др., а также коэффициенты активности ионов.

11.3. Потенциометрическое определение концентрации

(активности) ионов. Концентрационные гальванические

Одна из важнейших задач в химической, в особенности аналитической, практике — определение концентрации компонентов раствора. При этом часто возникает проблема определения очень малых концентраций, вплоть до таких, которые намного ниже, чем предел обнаружения обычных методов количественного анализа, как физико-химических (фотоколориметрия, потенциометрическое титрование и др.), так и в особенности титриметрических. Такие измерения связаны, например, с определением растворимости и произведения растворимости малорастворимых веществ или с определением константы устойчивости комплексных соединений. Решить эти задачи помогает использование потенциометрических измерений с помощью так называемых концентрационных гальванических элементов (или иначе, концентрационных цепей).

В соответствии с уравнением Нернста (10.9) концентрация (ак­тив­ность) электролита, контактирующего с электродами гальванического элемента, оказывает непосредственное влияние на электродные потенциалы. Иными словами, электрод из одного и того же металла, помещённый в растворы с различной концентрацией ионов, относительно которых он обратим, приобретёт различный электродный потенциал. Следовательно, можно создать элемент, электроды которого идентичны и погружены в растворы одного и того же электролита, но с различной концентрацией — концентрационный гальванический элемент. Рассмотрим подобный концентрационный элемент, составленный из двух цинковых электродов, находящихся в контакте с растворами соли цинка различной концентрации. Формула такого элемента:

Электрод 1, опущенный в раствор с меньшей концентрацией ионов Zn2+, для установления равновесия выделяет в раствор большее число ионов и поэтому заряжается более отрицательно, чем электрод 2, находящийся в растворе с большей концентрацией ионов. При замыкании внешней цепи электрод 1 будет растворяться, выделяя в раствор ионы Zn2+, а на электроде 2 будет идти восстановление ионов цинка. При этом ионы Zn2+ (а вместе с ними и содержащиеся в растворе анионы) будут проходить через полупроницаемую мембрану (или солевой мостик) из приэлектродного пространства более отрицательного электрода в сторону более положительного электрода. Этот процесс прекратится, когда концентрации электролитов в обоих приэлектродных пространствах станут равными друг другу.

= ¾¾¾ lg ¾¾¾¾ = ¾¾¾ lg ¾¾¾ = 0,0591 В.

Согласно уравнению Нернста ЭДС этого элемента равна

Видно, что в окончательной формуле для расчёта ЭДС отсутствуют значения стандартных электродных потенциалов и стандартной ЭДС. Это говорит о том, что электродвижущая сила концентрационного ГЭ не зависит от природы электрода и ионов, относительно которых он обратим, и определяется только соотношением концентраций (активностей) ионов в приэлектродных электролитах.

Таким образом, в концентрационном элементе работа электрического тока при замыкании внешней цепи получается в результате самопроизвольного выравнивания концентрации электролитов, контактирующих с двумя электродами. Суммарный химический процесс в концентрационном элементе отсутствует, так как на катоде и на аноде идут противоположные электродные полуреакции (соответственно восстановление Zn2+ + 2e — ® Zn0 и окисление Zn0 ® Zn2+ + 2e-). Для замедления самопроизвольного выравнивания концентраций путём диффузии полуэлементы разделяются полупроницаемой мембраной.

ЭДС концентрационных ГЭ, как правило, имеет небольшие значения. Поэтому при измерении их ЭДС существенное значение приобретает диф­фу­зи­он­ный потенциал, который удаётся свести к минимуму или практически устранить с помощью включения в цепь какого-либо другого электрода (например, каломельного) или применения солевого мостика.

Концентрационные элементы могут быть использованы для точных определений концентраций (активностей) солей, в том числе в очень разбавленных растворах, а также для измерения растворимости малорастворимых солей.

Пример: Рассчитать концентрацию хлорида серебра в насыщенном растворе и его произведение растворимости.

Для такого определения можно составить гальванический элемент из двух серебряных электродов, один из которых опущен в исследуемый насыщенный раствор AgCl, а другой — в раствор нитрата серебра с известной концентрацией (например, 01 М):

(-) Ag | AgNO3 (0,1 M) || AgCl (x) | Ag (+)

ЭДС этого элемента будет равна:

Коэффициент активности AgNO3 при данной концентрации равен 0,82, отсюда его активность: aAgNO3 = 0,1´0,82 = 0,082 М. Измеренная ЭДС этого элемента равна 0,2243 В и, значит,

aAg+ (1) = 10- 4,8809 = 1,31529´10-5 моль/л.

Так как AgCl — электролит, молекула которого состоит из одного катиона и одного аниона, и при таких малых активностях концентрация практически равна активности, то можно принять

Зная концентрацию ионов, можно рассчитать произведение растворимости AgCl:

Удобно пользоваться концентрационными элементами и при оценке степени диссоциации комплексных соединений и расчёте их констант устойчивости.

Говоря о концентрационных ГЭ, следует упомянуть ещё одно практически важное обстоятельство. Если какой-либо металлический предмет контактирует с раствором электролита, в котором имеется градиент концентрации (то есть концентрация электролита в различных участках объёма раствора неодинакова), то на этом предмете могут возникать катодные и анодные участки, что приведет к электрохимической коррозии металла. Это часто наблюдается в случае металлических деталей со сложной конфигурацией, работающих в плохо перемешиваемых водных или неводных растворах электролитов.

11.4. Определение констант равновесия электрохимических

реакций. Окислительно-восстановительные электроды

и гальванические элементы

Все электроды, на которых происходят реакции с участием электронов, представляют собой окислительно-восстановительные системы. Однако принято в особую группу выделять электроды, в потенциалопределяющих реакциях которых материал электрода не участвует. Такие электроды, как правило, состоят из инертного металла с электронной проводимостью (например, платины или золота), погружённого в раствор, содержащий ионы с различной степенью окисления. Называются они окислительно-восстано­ви­тель­ны­ми (или редокс) электродами.

В общем виде формула редокс-электрода и уравнение электродной полуреакции реакции записываются так:

где Ox — окисленная форма, Red — восстановленная форма.

К редокс-электродам относятся в первую очередь электроды, у которых Ox и Red представляют собой ионы, содержащие химические элементы в различных степенях окисления, причем электродная реакция состоит в изменении их степени окисления. Например, системам Sn4+; Sn2+ | Pt и MnO4-; MnO42- | Pt соответствуют электродные реакции:

MnO42- Û MnO4- + e-

Возникновение потенциала окислительно-восстановительного элек­трода может быть рассмотрено в общих чертах с тех же позиций, что и для электродов, обратимых относительно катиона. Потенциал редокс-электрода определяется также по уравнению Нернста:

где EoOx, Red — стандартный окислительно-восстановительный потенциал, aOx и a Red — активности соответственно окисленной и восстановленной форм, участвующих в суммарной электрохимической реакции.

Комбинируя друг с другом окислительно-восстановительные электроды, можно получать окислительно-восстановительные гальванические элементы. Например, элемент

(-) Pt | AsO2- ; AsO43- || Ce4+; Ce3+ | Pt (+),

в котором при замыкании внешней цепи в приэлектродных пространствах идут такие полуреакции:

AsO2- + 2H2O — 2e — ® AsO43- + 2H+­­­ ­ (окисление, анод)

Ce4+ + e — ® Ce3+ (восстановление, катод)

и суммарная реакция:

AsO2- + 2H2O + 2Ce4+ ® AsO43- + 2H+ + Ce3+ .

Для этой реакции, проводимой в стандартных условиях, когда активности всех ионов равны друг другу и равны 1М, в соответствии с уравнением Нернста и уравнением изотермы химической реакции можно записать:

С другой стороны, стандартная ЭДС может быть рассчитана как разность стандартных окислительно-восстановительных потенциалов:

Зная значение ЭДС, можно вычислить константу равновесия данной реакции:

и, следовательно, Ka = 1030.

Такая большая величина константы равновесия говорит о том, что равновесие в реакции настолько сильно сдвинуто вправо, что реакция идет практически до конца и может быть использована в аналитических целях (например, для цериметрического определения солей мышьяка).

Результирующее выражение для вычисления константы равновесия электрохимических реакций выглядит так:

Таким образом, измеряя или вычисляя по справочным стандартным значениям окислительно-восстановительных потенциалов ЭДС ред­окс-элементов, мож­но рассчитывать константы равновесия соответствующих окислительно-вос­ста­но­вительных реакций и делать выводы о глубине их протекания. С использованием таких данных были разработаны методики окислительно-восста­но­ви­тельного титрования, применяемые в фармацевтической практике (перманга­на­то­метрия, броматометрия, нитритометрия, цериметрия и др.).

Разумеется, с помощью метода ЭДС можно вычислять константы равновесия и связанные с ними величины, например, DGo, ТDS, не только для реакций, протекающих в окислительно-восстано­ви­тель­ных, но и в любых других гальванических элементах.

V. Х И М И Ч Е С К А Я К И Н Е Т И К А И К А Т А Л И З

ФОРМАЛЬНАЯ И МОЛЕКУЛЯРНАЯ КИНЕТИКА

12.1. Предмет химической кинетики и её значение для фармации,

медицины и биологии

Химическая кинетика — это учение о скоростях и механизмах химических реакций. В соответствии с этим определением целью исследования в химической кинетике является: 1) экспериментальное определение скорости реакции и установление её зависимости от таких параметров, как концентрация реагирующих веществ, температура, присутствие катализатора; и 2) установление механизма реакции, то есть числа стадий, из которых она состоит, и природы образующихся на каждой из этих стадий промежуточных веществ.

Этим кинетика отличается от термодинамики, которая, не вдаваясь в механизм процесса, исследует влияние на него различных факторов и на этой основе делает вывод о принципиальной возможности или невозможности процесса, но ничего не говорит о его скорости.

Ни в одно уравнение термодинамики не входит время. Поэтому, получая с помощью термодинамических методов заключение о том, при каких условиях данная реакция пойдёт в нужном направлении, каковы будут при этом характеристики равновесия (и в первую очередь теоретический равновесный выход продуктов), исследователь не имеет никакой информации о времени, которое требуется для достижения равновесия.

Время протекания одних химических реакций может измеряться годами и даже тысячелетиями, других — при тех же условиях — минутами или секундами, третьих — долями секунды (реакции, идущие с «взрывной» скоростью). Выяснение того, какова будет скорость реакции при данных условиях и есть ли возможность влияния на эту скорость чрезвычайно важны для практических целей, как в лаборатории, так и в химическом и в фармацевтическом про­из­вод­стве. Если необходимые реакции, например, синтез лекарственного вещества, протекают слишком медленно, их стремятся ускорить. Если же нежелательные реакции, например, разложение лекарственных веществ, коррозия оборудования, инструментов и т. п., протекают слишком быстро, то их необходимо замедлять. Ускорение или замедление реакций может быть достигнуто различными спо­собами: изменением концентрации реагентов, изменением параметров реакции (температура, концентрация реагентов и др.), применением катализа­то­ров или ингибиторов, а также одновременным воздействием всех или некоторых из перечисленных факторов.

Знание провизором-технологом законов химической кинетики позволяет добиваться наиболее высокой производительности аппаратов при получении синтетических лекарственных веществ, а также установления и продления сроков годности лекарственных препаратов.

В биологии и медицине законы химической кинетики дают возможность проникнуть в мир биохимических реакций, идущих в живом организме, разобраться во всех тонкостях их протекания, как на тканевом, так и на клеточном уровне. Именно кинетические методы были использованы для выяснения деталей таких сложных процессов, как, например, биосинтез белка, цикл трикарбоновых кислот и многие другие.

Лекарственные вещества, введённые в организм, претерпевают в нём различные химические превращения, преобразуясь в результате метаболизма в соединения с различной фармакологической и биологической ролями. Проникновение лекарственных веществ в организм и их поведение в нём, а также выявление промежуточных продуктов, оказывающих фармакологический эффект, изучается специальными медицинскими дисциплинами — фармакологией, фармакокинетикой и фармакодинамикой, широко использующими кинетические методы исследования.

12.2. Краткий исторический очерк

Первые систематические исследования скорости химических реакций выполнил ­шут­кин в 70-х гг. XIX в. В 1884 г. Я. Вант-Гофф в общем виде сформулировал кинетические закономерности протекания простых моно-, би — и тримолекулярных реакций. Толчком к дальнейшему развитию химической кинетики послужило установление С. Аррениусом (1889) зависимости скорости простых реакций от температуры и роли в химических реакциях активных молекул. М. Боденштейн (1899) показал справедливость представлений Вант-Гоффа и Аррениуса для элементарных реакций в газовой фазе. Развитие этих представлений с использованием статистической физики и квантовой механики привело к созданию Г. Эйрингом и М. Поляни в 30-х гг. XX в. теории активированного комплекса. В конце XIX — начале XX вв. большое внимание уделялось изучению также и сложных реакций. Перекисная теория окисления Баха — Энглера (1897), учение о сопряжённых процессах окисления Лютера — Шилова (1903) установили важную роль в кинетике сложных реакций природы промежуточных веществ. Изучение промежуточных веществ было стимулировано открытием обычных (М. Боденштейн, 1913) и разветвлённых (, С. Хиншелвуд, 1920-е гг.) цепных реакций. Было установлено, что промежуточные вещества представляют собой, как правило, активные частицы — свободные атомы и радикалы, обладающие высокой реакционной способностью.

12.3. Кинетическая классификация химических реакций. Порядок

и молекулярность реакции

С точки зрения химической кинетики реакции могут быть классифицированы по таким признакам:

по механизму различают реакции простые, в которых имеет место только одно превращение, и сложные. К сложным относятся параллельные, со­пря­жённые, последовательные, цепные, обратимые реакции, т. е. такие, ме­ха­низм которых включает более одной стадии и различные промежуточные вещества.

по условиям протекания реакции подразделяются на гомогенные (когда все вещества, участвующие в реакции — и исходные, и продукты, — находятся в одном фазовом состоянии — в газовой фазе или в растворе) и гетерогенные (когда химическое превращение идёт на поверхности раздела различных фаз).

по молекулярности (или иначе, по числу молекул или других частиц — атомов, ионов, радикалов, — одновременно взаимодействующих друг с другом и подвергающихся химическому превращению в одном элементарном акте) простые реакции и стадии сложных реакций подразделяются на мономолекулярные, бимолекулярные и тримолекулярные. В мономолекулярных превращению в элементарном акте подвергается одна молекула. Это значит, что мономолекулярными являются реакции разложения (например, H2O2 ®H2O + O) или изомеризации. В бимолекулярных реакциях превращению в элементарном акте подвергаются две молекулы, например, C2H4 + H2O ® C2H5OH. Большинство химических реакций или стадий являются бимолекулярными. В тримолекулярных реакциях в элементарном акте участвуют три молекулы, например, 2NO + Cl2 ® 2NOCl. Тримолекулярные реакции встречаются очень редко. Все известные тримолекулярные реакции идут в газовой фазе с участием NO или CO.

Реакции более высокой молекулярности неизвестны.

Порядком реакции по данному веществу называется показатель степени при концентрации этого вещества в кинетическом уравнении для данной реакции

Например, реакция 2NO + О2 ® 2NO2, для которой

является реакцией второго порядка по NO и рекцией первого порядка по O2. Сумма показателей степени при концентрациях всех исходных веществ называется общим или суммарным порядком реакции. Как правило, его значение не превышает 3.

Различают реакции первого, второго, третьего, а также дробного и нулевого порядка.

Для простых реакций порядок — целочисленная величина, совпадающая с молекулярностью. Но, по большей части, порядок и молекулярность не совпадают друг с другом. Например, скорость бимолекулярной реакции инверсии сахарозы

С12Н22О11 + Н2О ® С6Н12О6 + С6Н12О6

сахароза глюкоза фруктоза

при достаточно высокой концентрации воды не зависит от концентрации Н2О и уравнение закона действующих масс для неё должно быть записано так:

Порядок её, как по сахарозе, так и суммарный, является первым. Эта реакция может быть названа псевдомономолекулярной или реакцией псевдопервого по­рядка.

Несовпадение порядка с молекулярностью наблюдается и в случае газофазных реакций, когда химическое превращение лимитируется физическим процессом передачи энергии от молекулы к молекуле при столкновении. Так, мономолекулярный распад ряда соединений при низком давлении является реакцией 2 порядка (псевдобимолекулярная реакция).

Для сложных реакций порядок может быть выражен дробным числом, что связано с различным порядком каждой отдельной стадии. Встречаются реакции, скорость которых не зависит от концентрации реагентов и постоянна во времени (например, реакции, идущие на границе соприкосновения двух несмешивающихся или ограниченно растворимых жидкостей). Такие реакции называются реакциями нулевого порядка.


источники:

http://scienceforyou.ru/jelektrohimija/uravnenie-nernsta

http://pandia.ru/text/78/247/91609-13.php