Уравнения параллельных прямых в координатах

Прямые на координатной плоскости

Линейная функция
График линейной функции
Прямые, параллельные оси ординат
Уравнения вида px + qy = r . Параллельные прямые. Перпендикулярные прямые

Линейная функция

Линейной функцией называют функцию, заданную формулой

y = kx + b,(1)

где k и b – произвольные (вещественные) числа.

При любых значениях k и b графиком линейной функции является прямая линия .

Число k называют угловым коэффициентом прямой линии (1), а число b – свободным членом .

График линейной функции

При k > 0 линейная функция (1) возрастает на всей числовой прямой, а её график ( прямая линия ) имеет вид, изображенный на рис. 1, 2 и 3.

Рис.1
Рис.2
Рис.3

При k = 0 линейная функция (1) принимает одно и тоже значение y = b при всех значениях x , а её график представляет собой прямую линию, параллельную оси абсцисс, и изображен на рис. 4, 5 и 6.

Рис.4
Рис.5
Рис.6

При k линейная функция (1) убывает на всей числовой прямой, а её график ( прямая линия ) имеет вид, изображенный на рис. 7, 8 и 9.

k y = kx + b1 и y = kx + b2 ,

имеющие одинаковые угловые коэффициенты и разные свободные члены , параллельны .

имеющие разные угловые коэффициенты , пересекаются при любых значениях свободных членов.

y = kx + b1 и

перпендикулярны при любых значениях свободных членов.

Угловой коэффициент прямой линии

y = kx(2)

равен тангенсу угла φ , образованному (рис. 10) при повороте положительной полуоси абсцисс против часовой стрелки вокруг начала координат до прямой (2).

Рис.10
Рис.11
Рис.12

Прямая (1) пересекает ось Oy в точке, ордината которой (рис. 11) равна b .

При прямая (1) пересекает ось Ox в точке, абсцисса которой (рис. 12) вычисляется по формуле

Прямые, параллельные оси ординат

Прямые, параллельные оси Oy , задаются формулой

x = c ,(3)

где c – произвольное число, и изображены на рис. 13, 14, 15.

Рис.13
Рис.14
Рис.15

Замечание 1 . Из рис. 13, 14, 15 вытекает, что зависимость, заданная формулой (3), функцией не является, поскольку значению аргумента x = c соответствует бесконечное множество значений y .;

Уравнение вида px + qy = r . Параллельные прямые. Перпендикулярные прямые

px + qy = r ,(4)

где p, q, r – произвольные числа.

В случае, когда уравнение (4) можно переписать в виде (1), откуда вытекает, что оно задаёт прямую линию .

что и требовалось.

В случае, когда получаем:

откуда вытекает, что уравнение (4) задает прямую линию вида (3).

В случае, когда q = 0, p = 0, уравнение (4) имеет вид

0 = r ,(5)

и при r = 0 его решением являются точки всей плоскости:

В случае, когда уравнение (5) решений вообще не имеет.

Замечание 2 . При любом значении r1 , не совпадающем с r прямая линия, заданная уравнением

px + qy = r1 ,(6)

параллельна прямой, заданной уравнением (4) .

Замечание 3 . При любом значении r2 прямая линия, заданная уравнением

qx + py = r2 ,(7)

перпендикулярна прямой, заданной уравнением (4) .

Пример . Составить уравнение прямой, проходящей через точку с координатами (2; – 3) и

  1. параллельной к прямой
    4x + 5y = 7 ;(8)
  2. перпендикулярной к прямой (8).

В соответствии с формулой (6), будем искать уравнение прямой, параллельной прямой (8), в виде

4x + 5y = r1 ,(9)

где r1 – некоторое число. Поскольку прямая (9) проходит через точку с координатами (2; – 3), то справедливо равенство

Итак, уравнение прямой, параллельной к прямой

В соответствии с формулой (7), будем искать уравнение прямой, перпендикулярной прямой (8), в виде

– 5x + 4y = r2 ,(10)

где r2 – некоторое число. Поскольку прямая (10) проходит через точку с координатами (2; – 3), то справедливо равенство

Условие параллельности прямых

Необходимым и достаточным условием параллельности двух прямых, заданных уравнением:

служит равенство их угловых коэффициентов, то есть

Если прямые заданы уравнениями в общем виде, то есть

то условие параллельности состоит в том, что коэффициенты при соответствующих текущих координатах в их уравнениях пропорциональны:

или в другом представлении

Также это равенство можно записать в виде

Если свободные члены пропорциональны, то есть,

то прямые не только параллельны, но и совпадают.

4x+2y-8=0 и 8x+4y-16=0

представляют одну и ту же прямую, то есть совпадают.

Пример 2
Прямые у=4x-3 ( на графике синего цвета ) и y=4x+7 ( прямая красного цвета ) параллельны, так как у них угловые коэффициенты равны k1=k2=4

Пример 3
Прямые у=5x+1 и y=3x-4 не параллельны, так как у них угловые коэффициенты не равны, т.е. k1=5, k2=3

Пример 4
Прямые 2x+4y+7=0 и 3x+6y-5=0 параллельны, так как выражение равно нулю

Пример 5
Прямые 2x-7y+7=0 и 3x+y-5=0 не параллельны, так как выражение не равно нулю

Условие параллельности прямых

Условием параллельности прямых, заданных уравнениями

служит равенство угловых коэффициентов

т. е. прямые параллельны, если их угловые коэффициенты равны, и не параллельны, если угловые коэффициенты не равны. Две совпадающие считаются параллельными.

параллельны, так как у них угловые коэффициенты равны

не параллельны, так как у них угловые коэффициенты не равны

параллельны, так как у них угловые коэффициенты равны


источники:

http://www.matematicus.ru/vysshaya-matematika/analiticheskaya-geometriya-na-ploskosti/uslovie-parallelnosti-pryamyh

http://www.fxyz.ru/%D1%84%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D1%8B_%D0%BF%D0%BE_%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B5/%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F/%D0%BD%D0%B0_%D0%BF%D0%BB%D0%BE%D1%81%D0%BA%D0%BE%D1%81%D1%82%D0%B8/%D1%82%D0%BE%D1%87%D0%BA%D0%B8_%D0%B8_%D0%BF%D1%80%D1%8F%D0%BC%D1%8B%D0%B5_%D0%B2_%D0%BF%D1%80%D1%8F%D0%BC%D0%BE%D1%83%D0%B3%D0%BE%D0%BB%D1%8C%D0%BD%D0%BE%D0%B9_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B5_%D0%BA%D0%BE%D0%BE%D1%80%D0%B4%D0%B8%D0%BD%D0%B0%D1%82/%D1%83%D1%81%D0%BB%D0%BE%D0%B2%D0%B8%D0%B5_%D0%BF%D0%B0%D1%80%D0%B0%D0%BB%D0%BB%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D0%B8_%D0%BF%D1%80%D1%8F%D0%BC%D1%8B%D1%85/