Уравнения перемещений статически неопределимых систем

Решение статически неопределимых задач

Содержание:

Стержневая система в широком смысле слова — это всякая конструкция, состоящая из элементов, имеющих форму бруса. К таким конструкциям, в частности, относятся фермы, рамы, балки.

Напомним, что статически неопределимыми называют конструкции (стержневые системы) реакции опор и внутренние силовые факторы, в которых, не могут быть определены при помощи уравнений равновесия (статики).

Статически неопределимые системы при растяжении-сжатии.

Цель расчета бруса и стержневой системы (состоящей из отдельных брусьев — стержней), как и любой конструкции — определение размеров поперечных сечении стержней, при которых обеспечивается прочность или жесткость, или и то и другое. Исходя из условий прочности и жесткости при центральном растяжении-сжатии, видим, что в первую очередь необходимо знать экстремальное значение продольной силы.

На рис. 13.1 а стержень опирается на две жесткие опоры. Возникают две реакции и (рис. 13.1 б), величина и направление которых неизвестны, т.к. можно составить только одно уравнение равновесия. В уравнении — два неизвестных осевых усилия:

Задача один раз статически неопределима. Одна связь (опора) — «лишняя».

На рис. 13.1 в — стержневая система, составленная из трех стержней, соединенных шарнирно.

Один раз статически неопределимые системы

Пример решения задачи 1

В стержнях действуют три усилия, направленные вдоль этих стержней. Можно составить только два уравнения равновесия (рис. 13.1 г):

Задача один раз статически неопределима, одна связь (стержень) — «лишняя».

Возможно вам будут полезны данные страницы:

«Лишними» такие связи называют потому, что они не являются необходимыми обеспечения равновесия конструкции и ее геометрической неизменяемости (деформа-стержней и соответствующие ей перемещения отдельных точек систать только от действия внешних сил).

Наличие этих связей обусловлено требованиями к прочности и жесткости конструкции или условиями ее работы.

Для решения задачи по определению неизвестных усилий (говорят — для раскрытия статической неопределимости) необходимо составить дополнительные уравнения. Их количество равно степени статической неопределимости. неизвестных или степень статической неопределимо разностью между числом неизвестных усилий и числом статики. Дополнительные уравнения составляются на основе общего принципа: услов! iccTHocTH деформаций: т.к. стержни соединяются между собой определенным обршарнирно, жестко или в соединении имеются некоторые зазоры, стержни этой cистемы деформируются совместно.

Методику раскрытия статической неопределимости рассмотрим на примере системы (рис. 13.1 в).

Примем, что площадь поперечного сечения боковых стержней одинакова а средний стержень имеет площадь

  • 1. Силовая сторона задачи. Составляют уравнения равновесия (в данном случае -два). Они нами составлены ранее. Имеем три неизвестных усилия и два уравнения статики. Система один раз статически неопределима.
  • 2. Геометрическая сторона задачи. Рассмотрим перемещения стержней, сходящихся в точке (рис. 13.2). Под действием внешней силы исследуемая точка переместится в положение Концы стержней соединены шарнирно в точке поэтому они получат соответствующие удлинения. Причем эти стержни деформируются совместно, в соответствии с геометрией системы.

Мысленно рассоединим стержни в ненагруженном состоянии (в т. и соединим их в положении после нагружения (в т. Концы крайних стержней переместятся по дуге из т. соответственно в т. и, удлинившись, соединятся в т. Вертикальное перемещение точки весьма мало; угол равен углу дуги можно заменить прямыми, поэтому углы — прямые.

Ввиду симметрии системы, абсолютные удлинения крайних стержней будут равны между собой: Геометрически эти деформации определяются отрезками Средний стержень удлинится на величину отрезка и его удлинение

Рассматривая прямоугольные треугольники можем записать соотношение сторон:

Уравнение (13.2) и есть уравнение совместности деформаций рассматриваемой системы.

3. Физическая сторона задачи. В уравнении совместности деформаций выразим абсолютную деформацию через продольные силы по закону Гука:

Ввиду малости перемещений длина стержней мало меняется и

После преобразований получим зависимость

4. Решение системы уравнений (синтез). Решаем систему уравнений (13.1 и 13.3) и после преобразований получим зависимости, с помощью которых определяются искомые усилия в стержнях:

Видим, что с увеличением площади среднего стержня (с увеличением коэффициента усилие в нем уменьшится; усилия в крайних стержнях также изменятся. В этом отличительная особенность статически неопределимых систем от статически определимых:

повышение жесткости одних элементов приводит к увеличений усилий и, обычно, к снижению усилий в других элементах. В статически определимых системах усилия в элементах не зависят от их жесткости.

Уравнение равновесия составлено нами ранее:

Рассмотрим геометрическую сторону задачи и составим уравнение совместности деформаций для опорных сечений, в которых перемещения равны нулю.

Отбросим мысленно нижнюю опору (рис. 13.3 б). Это опорное сечение станет свободным и переместится вниз за счет абсолютной линейной деформации участка длиной под действием силы С другой стороны, рассматриваемое опорное сечение — неподвижно, следовательно, перемещение его должно равно нулю. Это условие будет выполняться, если реакция на опоре будет по величине и направлению такой, что абсолютная линейная деформация от ее действия окажется равной по величине и противоположной по направлению деформации Условие совместности деформаций запишется в виде:

По закону Гука:

Таким образом, Статическая неопределимость раскрыта.

13.1.1. Расчеты в связи с наличием натягов при сборке конструкций. На практике встречаются и другие задачи, например связанные с неточностью изготовления элементов (стержней).

Неточность изготовления (даже незначительные погрешности) требует приложения дополнительных усилий для сборки узла, при этом возникают натяги и соответствующие монтажные напряжения.

Пример 1 — средний стержень в стержневой системе изготовлен короче проектного размера на малую величину (рис. 13.4 а). Для сборки стержней в узле необходимо средний стержень растянуть, а крайние стержни сжать (рис. 13.4 6).

Неизвестны два усилия. Задача 1 раз статически неопределима. (13.10) Рассмотрим геометрическую сторону задачи (рис. 13.4 в). Крайние стержни будут укорачиваться на величину а средний стержень удлинится на величину Тогда уравнение совместности деформаций запишется в виде:

Ход дальнейшего решения аналогичен порядку решения в предыдущих примерах. Видим, что средний стержень, еще до нагружения внешней силой будет растянут некоторой нагрузкой, т.е. напряжения от натяга будут суммироваться с напряжениями от эксплуатационных нагрузок, что не учитывается в обычных расчетах и может привести к потере прочности.

В качестве примера положительного эффекта от натяга можно привести примеры монтажа бандажа на колесо (металлическое кольцо разогревается и насаживается на колесо, при охлаждении кольцо обжимает колесо), а также предварительно напряженные железобетонные конструкции (в растянутой зоне бетонной плиты располагают предварительно напряженную сжимающими напряжениями стальную арматуру).

Пример решения задачи 2.

Стержень, имеющий жесткость изготовлен короче заданной длины на величину (рис. 13.5 а). Вид расчетной схемы и порядок решения будут зависеть от величины перемещения нижнего сечения (определяемого величиной и положением по длине силы а также жесткостью стержня):

а) величина перемещения нижнего сечения меньше величины зазора — абсолютная линейная деформация стержня Задача статически определима.

б) величина перемещения нижнего сечения больше или равна величине зазора — абсолютная линейная деформация стержня Задача статически неопределима.

Таким образом, в первую очередь, необходимо определить величину перемещения нижнего сечения, которое будет определяться деформацией участка бруса длиной от действия силы

Решение для случая традиционно для решения статически определимых задач.

В случае, если необходимо раскрыть статическую неопределимость.

На опорах возникнут две реакции, величины которых неизвестны (рис. 13.5 б). Уравнение равновесия:

Уравнение совместности деформаций получим, рассматривая схему (рис. 13.5 б):

В соответствии с законом Гука

Получаем: Статическая неопределимость раскрыта.

Расчеты в связи с изменением температуры. Напряжения в сечении стержня также будут возникать даже при отсутствии внешних нагрузок.

Рассмотрим стержень длиной и площадью изготовленный из материала с модулем упругости Оба конца стержня жестко защемлены (рис. 13.6 а). Начальная температура стержня Определить напряжения, которые возникнут в сечении стержня, если он нагревается до температуры Пусть градиент температуры будет положительным:

Как известно, при нагреве материалы расширяются, т.е. стержень будет стремиться удлиниться и распирать опорные сечения, но из-за наличия этих жестких опор, в них возникнут реакции

Уравнение равновесия:

Стержень один раз статически неопределим.

В связи с жестким опиранием, длина стержня изменяться не будет. Т.е. перемещения опорных сечений равны нулю, следовательно, температурная линейная деформация отсутствие одной из опор, например правой (рис. 13.6 б), стержень удлинится на величину Это удлинение должно компенсироваться абсолютной линейной деформацией от действия реакции

Уравнение совместности деформаций:

По известной из курса физики формуле определим температурную деформацию стержня:

где — коэффициент линейного температурного расширения материала стержня, град

По закону Гука Сила сжимает стержень!

Приравняв полученные зависимости, определим значение реакции на опоре и соответствующие температурные напряжения:

Отметим, что температурные (при нагреве стержня) напряжения по знаку — сжимающие. Следовательно, в случае охлаждения такого стержня нормальные напряжения будут растягивающими. Кроме того, видим, что на величину напряжений не влияет длина стержня. Эти обстоятельства следует учитывать в случае использования хрупких материалов, а также, если стержень подвергается действию изменяющихся по величине и знаку температур.

Отметим, что на практике встречаются достаточно сложные схемы стержневых систем, и в каждом конкретном случае задача сводится к геометрическому анализу деформаций и составлению соответствующих уравнений совместности деформаций.

В заключение рассмотрим еще один пример.

Пример решения задачи 2.

Абсолютно жесткий брус (рис. 13.7 а) на стержнях, прикрепленных шарнирами, и нагружен силой Площадь стержней, соответственно, равна Длина стержней Определить значение допускаемой силы из расчета по допускаемым напряжениям и из расчета по разрушающим (предельным) нагрузкам. Материал стержней — сталь

Можно составить два уравнения равновесия для силовой схемы (рис. 13.7 б). Т.к. стержни соединены с жестким брусом посредством шарниров, то усилия в стержнях будут направлены вдоль оси этих стержней:

Первое из них включает и неизвестную реакцию, т.е. имеем три неизвестных. Во втором уравнении неизвестных два — усилия в стержнях. Следовательно, в решении удобнее использовать второе уравнение равновесия.

Рассмотрим геометрическую сторону задачи (рис. 13.7 в). Под действием внешней силы брус, оставаясь прямым (абсолютно жесткий брус — не деформирующийся), повернется вокруг шарнира на некоторый угол. Стержни в местах крепления удлинятся, т.е. точки и переместятся вертикально в положения Отрезки — абсолютные линейные деформации стержней. Из подобия треугольников имеем:

Получили уравнение совместности деформаций.

Подставляем в полученное уравнение усилия в соответствии с формулой закона Гука (физическая сторона задачи).

Решаем систему уравнений Получаем значения усилий в стержнях в долях силы

Расчет по допускаемым напряжениям.

Из условия прочности с учетом, что максимальные нормальные напряжения возникают во втором стержне, имеем:

Решаем уравнении относительно силы

Расчет по разрушающей нагрузке (см. 5.2.2).

Материал стержней — сталь, т.е. пластичный материал. Следовательно, после достижения напряжения во втором стержне (как в более нагруженном) значения предела текучести, этот стержень нагружаться не будет (напряжения не растут, увеличиваются деформации — см. диаграмму растяжения на площадке текучести). Нагрузку будет воспринимать первый стержень. Таким образом, и уравнение (5.30) примет вид:

Откуда получаем значение силы, при котором в обоих стержнях напряжения достигнут предела текучести — предельная грузоподъемность системы:

Разделим предельное значение силы на коэффициент запаса и получим допускаемое значение силы:

Видим, что при расчете во втором случае допускаемая нагрузка выше, чем в первом на величину т.е. расчет по разрушающим нагрузкам дает возможность в большей степени использовать свойства материала и особенности стержневой системы.

Основы расчета статически неопределимых систем, работающих на изгиб. Анализ структуры простейших стержневых систем

Указанный анализ проведем на примере рам. В зависимости от взаимного расположения осей стержней и силовых плоскостей, рамы подразделяются на:

плоские стержневые системы (рамы, балки) — оси стержней и все внешние силы лежат в одной плоскости (рис. 13.8 а, б)\

плоско-пространственная системы — оси составляющих элементов в недеформиро-ванном состоянии лежат в одной плоскости, а внешние нагрузки лежат в другой — перпендикулярной плоскости (рис. 13.8 в);

пространственная система — силы и оси стержней могут находиться в произвольно расположенных плоскостях (рис. 13.8 г).

Понятие о степенях свободы и связях. Известно, что в пространстве тело обладает шестью степенями свободы, а в плоскости — тремя. Независимая координата определяющая положение тела в плоскости или пространстве , называется степенью свободы.

Ограничения которые накладываются на тело называются связями. Каждая связь снимает одну степень свободы.

Количество связей накладывемых на тело ( стержневую систему) может быть любым . Для обеспечения равновесия и неподвижности тела в плоскости или пространстве необходимо и достаточно снять соответствующие количество степеней свободы — иначе говоря наложить соответсвующие число связей Эти связи — необходимые .

Всякая связь наложенная сверх необходимой — дополнительная ( лишняя) связь . В сопротивлении материалов и строительной механике связи разделяются на внешние ( опорные) и внутренние

Опорные связи — связи, накладываемые опорными устройствами, (рис. 13.9 а):

• шарнирно-подвижная опора накладывает одну связь (снимает одну степень свободы);

• шарнирно-неподвижная — соответственно две;

• в заделке на опорное сечение стержня накладывается три связи.

Внутренние связи ограничивают взаимное перемещение стержней в сечениях, где они соединяются (рис. 13.9 б):

• жесткое соединение двух стержней накладывает три связи; • шарнирное соединение двух стержней — две связи;

• три стержня, соединенные жестко, — шесть связей;

• три стержня, соединенные шарнирно, — четыре связи. Таким образом, шарнир снимает одну связь.

Анализ рис. 13.9 б позволяет сделать вывод о том, что шарнир, включенный в узел, где сходятся стержней, снижает степень статической неопределимости на

Определение степени статической неопределимости. Реакции, возникающие в «лишних» связях — «лишние» неизвестные. Уравнений равновесия оказывается недостаточно для решения задачи — определения опорных реакций. Как известно, такие задачи называют статически неопределимыми. Степень статической неопределимости определяется числом лишних связей.

В строительной механике используются различные формулы для определения степени статической неопределимости или числа лишних связей Л. Приведем одну из них:

где — число стержней (в строительной механике — дисков).

Рассмотрим примеры стержневых систем — плоских рам (рис. 13.10) и определим степень их статической неопределимости расчетом по формуле (13.18).

число лишних связей т.е. система статически определима;

т.е. система 2 раза статически неопределима (внешним образом, т.к. лишними являются 2 опорные связи);

т.е. система 3 раза статически неопределима (внутренним образом, т.к. лишними являются 3 внутренние связи).

Заметим, что жесткий замкнутый контур трижды статически неопределим (внутренним образом);

т.е. система 6 раз статически неопределима (3 раза внешним образом и 3 раза — внутренним образом). Заметим, что в данной схеме фактически имеем два жестких замкнутых контура;

Геометрическая и кинематическая неизменяемость. Геометрический и кинематический анализ стержневых систем подробно излагается в дисциплине «Строительная механика».

Под действием нагрузок сооружение (стержневая система) деформируется, и его точки перемещаются (при этом изменяется также и форма сооружения).

Если указанные перемещения возможны только за счет деформации стержней (элементов сооружения), то стержневая система называется геометрически неизменяемой (рис. 13.11 а). Иначе говоря, в элементах конструкции должны отсутствовать перемещения точек, не связанные с деформацией этих элементов под действием нагрузки. В сопротивлении материалов и строительной механике рассматриваются только такие конструкции (в том числе и стержневые системы).

а — система соединенных между собой ные перемещения стержней деформации. Геометрически изменяемые системы (рис. 13.11 б) — это по сути механизмы. Перемещения точек элементов такой системы возможны без деформирования стержней (элементов конструкции).

изменяемая система — система соединенных между собой стержней, допускающая конечные перемещения стержней

без их деформации.

Кинематически изменяемая система (ее еще называют мгное мая система)- система соединенных между собой стержней, допускающая мации тела бесконечно малые относительные перемещения, после чего система

становится неизменяемой. Геометрическими признаками мгновенно изменяемых систем являются следующие:

• шарниры или шарнир и стержень находятся на одной прямой;

• стержни параллельны или пересекаются в одной точке.

Метод сил. Основная система.

Для раскрытия статической неопределимости стержневых систем в машиностроении применяют метод сил.

Неизвестными оказываются силы. Отсюда и название «метод сил» (в строительной механике применяется также и метод перемещений).

Метод сил заключается в том, что заданная статически неопределимая система освобождается от лишних связей, а их действие заменяется усилиями по направлению этих связей.

Величина усилий подбирается таким образом, чтобы перемещения по их направлениям соответствовали тем ограничениям, которые накладываются на систему

Рассмотрим метод сил на примере статически неопределимой рамы. Решение задачи (раскрытие статической неопределимости) начинаем с отбрасывания лишних связей. Система освобождается от лишних связей и становится статически определимой.

Статически определимая и геометрически неизменяемая система, полученная из заданной путем отбрасывания «лишних» связей — основная система.

Таких систем можно составить сколь угодно много. Примеры основных систем, составленные для заданной статически неопределимой системы (рис. 13.12 а) приведены на рис. 13.12 б-з. Схема (рис. 13.12 и) — не является основной, т.к. три шарнира располагаются на одной прямой. Это кинематически изменяемая система.

Продолжая решение задачи, в основной системе приложим внешние нагрузки и усилия (силовые факторы) по направлению отброшенных связей, которые мы назвали «лишними» неизвестными. Усилиями по направлению отброшенных связей являются силы и моменты. Силы ограничивают линейные перемещения, а моменты — соответствующие угловые перемещения.

Направление усилий выбирают произвольно:

• вправо или влево;

• по часовой или против часовой стрелки.

Неизвестные усилия обозначаем — номер силового фактора. Число этих неизвестных будет соответствовать степени статической неопределимости, причем направления этих связей являются взаимными.

Основная система, в которой приложены внешние нагрузки и усилия по направлению отброшенных связей называется эквивалентной системой.

Каждой основной системе будет соответствовать своя эквивалентная система (рис.13.13).

Рассмотрим, например, заданную схему (рис. 13.12 а), выберем для нее основную (рис. 13.12 б) и изобразим эквивалентную системы (рис. 13.14). В заданной схеме линейные перемещения (горизонтальное и вертикальное) на опоре и линейные и угловое перемещения в сечении на верхнем ригеле запрещены. Но они же разрешены в основной системе. Неизвестные усилия, показанные в эквивалентной системе, по величине и направлению должны обеспечить равенство нулю указанных перемещений.

Взаимное смещение точек системы условимся обозначать следующим образом

где:

первый индекс — направление по которому определяется перемещение, второй индекс — причина, вызвавшая это перемещение,

— направление перемещения (по направлению неизвестных сил

— сила, вызвавшая перемещение (неизвестные силы

— любая система внешних нагрузок.

В точках (рис. 13.14) перемещения будут определяться действием всех сил, приложенных к системе — как внешних нагрузок так и неизвестных усилий При этом, в соответствии с особенностями расчетной схемы, эти перемещения должны быть равны нулю. Запишем, систему уравнений

Используя принцип независимости действия сил, для любого количества неизвестных можно записать:

В этих формулах индексы — номера неизвестных сил.

— единичное перемещение по направлению силы от действия единичной силы

— единичное перемещение по направлению силы от действия единичной силы

— единичное перемещение по направлению силы от действия единичной силы

— соответственно, перемещения в направлении единичных сил от действия системы внешних сил

Известно, что перемещения пропорциональны действующим силам. Тогда

Обобщая, имеем

Учитывая (13.21) перепишем (13.20) и получаем:

каноническое уравнение метода сил

— главные коэффициенты уравнений,

— побочные коэффициенты уравнений (по теореме Максвелла их значения попарно равны),

— свободные члены уравнений.

Количество записываемых канонических уравнений метода сил соответствует количеству «лишних» неизвестных (степени статической неопределимости). Остается определить коэффициенты уравнений и, решив систему уравнений, найти значения и направления

Для понимания геометрического смысла коэффициентов уравнений рассмотрим два раза статически неопределимую раму (рис. 13.15), где графически покажем рассмотренные выше перемещения.

Коэффициенты определяются методом Мора, чаще перемножением эпюр по способу Верещагина.

При определении коэффициентов канонических уравнений методом перемножения эпюр (по Верещагину):

1. Строим единичные эпюры изгибающих моментов. Единичные эпюры строятся для основной системы от каждого «лишнего» неизвестного, т.е. в основной системе поочередно прикладываются неизвестные, равные единице, определяются реакции и строится единичная эпюра.

Единичных эпюр, должно быть столько, какова степень статической неопределимости рамы.

Получим единичные эпюры изгибающих моментов

2. Строим грузовую эпюру изгибающих моментов. Эта эпюра также строится для основной системы: в этой системе прикладываются все внешние нагрузки (силы, моменты, распределенные нагрузки), которые имеются на заданной схеме, определяются опорные реакции и стоится грузовая эпюра

3. Перемножаем эпюры по способу Верещагина и находим значения коэффициентов канонических уравнений:

главные коэффициенты получаем, перемножая единичные эпюры «сами на себя», т.е. в качестве грузовой рассматривается та же единичная эпюра: Или по формуле Верещагина

побочные коэффициенты определяются перемножением единичных эпюр в соответствии с записью т.е. одна из единичных условно считается грузовой. По Верещагину

свободные члены определяются перемножением грузовой эпюры, поочередно, на единичные в соответствии с записью По Верещагину

4. Подставляем значения вычисленных коэффициентов в систему канонических уравнений, решаем ее и определяем значения

Если значения некоторых неизвестных получаем со знаком минус, это значит, что действительное направление их обратно по отношению к принятому в эквивалентной системе. Желательно при продолжении решения (при построении окончательных эпюр) поменять направление этих неизвестных.

5. В эквивалентной системе вместо неизвестных усилий прикладываем их значения (в положительном направлении), определяем опорные реакции и строим эпюры

6. Проводится проверка правильности расчетов (см. 11.3.2).

Расчет статически неопределимых рамных систем

Рациональный выбор основной системы.

Основная система (удовлетворяющая выше приведенным требованиям) может быть любой, но трудоемкость расчетов будет различной:

а) учитывая, что в процессе решения нужно строить и перемножать эпюры, лучше выбирать такой вариант основной системы, для которого легче эти эпюры строить;

б) протяженность эпюр и их очертания должны быть, по возможности, простыми;

в) для некоторых схем рам возможно использование свойств симметрии и кососим-метрии (рис.13.16).

Положительный эффект учета свойств симметрии и кососимметрии поясним на примере (рис. 13.17). В заданной схеме рамы приложена кососимметричная нагрузка. Основная система и неизвестные усилия являются симметричными.

Прикладываем в основной системе поочередно неизвестные усилия и внешнюю нагрузку и строим эпюры изгибающих моментов. Получаем симметричные и кососимметричные эпюры.

Следовательно, соответствующие коэффициенты канонических уравнений будут равны нулю, и решение этих уравнений упрощается. Например:

Таким образом, в нашем примере будут равны нулю коэффициенты:

и система канонических уравнений

Следовательно Получим одно уравнение:

Таким образом, вместо решения системы трех уравнений, достаточно решить одно уравнение. Соответственно, вместо трижды статически неопределимой системы имеем один раз статически неопределимую систему.

В том случае, если в рассмотренном примере внешние нагрузки будут приложены симметрично (так, как показано на рис. 13.16 ), то и эпюра будет симметричной. Тогда

Получаем систему уравнений

Видим, что в этом случае только равно нулю, т.е. необходимо решать систему двух уравнений.

Проверка правильности расчетов.

Проверка должна проводиться на всех этапах решения:

• правильность выбора основной системы; соответствие эквивалентной системы выбранной основной; правильность определения реакций во всех расчетных схемах; правильность построения эпюр: единичных и грузовой эпюр изгибающих моментов;

правильность определения коэффициентов канонических уравнений; правильность решения системы уравнений;

• правильность построения окончательных эпюр

Однако, подтверждением правильности решения задачи, является так называемая деформационная проверка. Деформационная проверка заключается в том, что исполнитель расчета должен убедиться, что перемещения по направлению любой из отброшенных связей.

Для этого окончательную эпюру изгибающих моментов перемножают поочередно на каждую из единичных эпюр. И желательно на те единичные, которые не использовались в расчете, т.е. для другой основной системы. Более надежной является проверка, которая проводится путем сравнения некоторых сумм коэффициентов уравнений (полученных в расчете) и результатов перемножения эпюр.

Дополнительно строят суммарную единичную эпюру Ее легко построить графически, суммировав единичные эпюры

А) построчная проверка заключается в сравнении сумм коэффициентов по строкам с результатом перемножения суммарной единичной эпюры с каждой из единичных:

Б) универсальная проверка заключается в сравнении суммы всех главных побочных коэффициентов с результатом перемножения суммарной единичной эпюры самой на себя:

Рассмотрим пример расчета статически неопределимой плоской рамы методом сил.

Для рамы (рис. 13.18 а) построить эпюры Определить вертикальное перемещение точки

1. Определяем степень статической неопределимости

2. Выбираем основную систему и строим для нее эквивалентную систему

3. Записываем систему из двух канонических уравнений метода сил:

4. Строим единичные и грузовую эпюры изгибающих моментов. Для уменьшения объема рисунка совместили единичные и грузовую схемы с соответствующими эпюрами.

5 Метод Верещагина определяем коэффициенты канонических уравнений

Коэффициенты вида имеют размерность В данной задаче все коэффициенты безразмерны, т.к. нагрузки и размеры заданы в общем виде. При перемножении эпюр учитываем общие границы участков.

6. Подставляем найденные значения коэффициентов в систему канонических уравнений. Определяем значения

7. Прикладываем найденные значения неизвестных усилий в эквивалентной системе (рис. 13.18 б). Вслучае если найденное значение неизвестного усилия получаем со знаком (-), его направление меняем на противоположное.

8. Строим эпюры

9. Контроль правильности построения эпюр и всего расчета (деформационная проверка).

9.1. Перемножаем по методу Верещагина эпюру поочередно на единичные эпюры и определяем вертикальное и горизонтальное перемещения шарнирно неподвижной опоры.

Перемножим эпюры

Погрешность расчета (в сравнении с нулем):

Перемножим эпюры

Погрешность расчета (в сравнении с нулем):

Решение выполнено правильно. Рассмотрим другой возможный вариант основной системы (рис. 13.19).

Видим, что очертания эпюр совпадают с такими же единичными эпюрами на рис. 13.18 (отличаются только значения ординат на эпюре Следовательно, и результаты перемножения совпадут.

Правильность решения задачи подтверждается.

Проведем проверки, рекомендованные ранее. Для этого построим суммарную единичную эпюру (рис. 13.20), сложив единичные эпюры (см. рис. 13.18).

Универсальная проверка:

Результаты проверки подтверждают правильность решения задачи.

На странице -> решение задач по сопротивлению материалов (сопромат) собраны решения задач и заданий с решёнными примерами по всем темам сопротивления материалов.

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Расчёт статически неопределимых систем методом перемещений

Страницы работы

Фрагмент текста работы

федеральное агентство по ОБРАЗОВАНИю РОССИЙСКОЙ ФЕДЕРАЦИИ

новосибирский государственный архитектурно-строительный университет (Сибстрин)

Кафедра строительной механики

РАСЧЁТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ СИСТЕМ МЕТОДОМ ПЕРЕМЕЩЕНИЙ

по выполнению индивидуального расчетного задания

по курсу «Строительная механика»

для студентов специальности 270102

«Промышленное и гражданское строительство»

Методические указания разработаны канд. техн. наук, профессором А.А. Крамаренко, ассистентом Н.Н. Сивковой

Методические указания к индивидуальному расчетному заданию «Расчет статически неопределимых систем методом перемещений» содержат необходимые теоретические положения, исходные данные и варианты индивидуального задания, пример его выполнения с использованием ЭВМ и контрольные вопросы.

Методические указания разработаны в соответствии с требованиями Государственного образовательного стандарта высшего профессионального образования к обязательному минимуму содержания и уровню подготовки инженеров по специальности 270102 «Промышленное и гражданское строительство» направления 270100 «Строительство».

Утверждены методической комиссией

факультета первой ступени высшего образования

22 мая 2008 года

— В.А. Беккер, канд. техн. наук, профессор кафедры железобетонных конструкций НГАСУ (Сибстрин);

— В.К. Фёдоров, канд. техн. наук, профессор кафедры инженерной геологии, оснований и фундаментов НГАСУ (Сибстрин)

Ó Новосибирский государственный архитектурно-строительный

университет (Сибстрин), 2008

1. Основные теоретические положения. 3

1.1. Степень кинематической неопределимости сооружения 3

1.2. Основная система метода перемещений. 5

1.3. Система канонических уравнений метода перемещений 7

1.4. Стандартные задачи метода перемещений в расчётах на прочность 10

1.5. Определение коэффициентов при неизвестных и свободных членов системы канонических уравнений. 15

1.6. Определение внутренних усилий в заданном сооружении. Промежуточные и окончательные проверки правильности решения. 17

1.7. Расчет статически неопределимых систем методом перемещений в матричной форме. 19

2. Содержание расчетного индивидуального задания и исходные данные. 25

3. Пример выполнения индивидуального задания 32

3.1. Исходные данные. 32

3.2. Вычисление погонных жесткостей стержней рамы. 33

3.3. Вычисление степени кинематической неопределимости и выбор основной системы метода перемещений. 34

3.4. Построение деформационных схем и соответствующих им эпюр изгибающих моментов в единичных состояниях основной системы метода перемещений 35

3.5. Построение эпюр изгибающих моментов в ОСМП от внешних воздействий 37

3.6. Вычисление коэффициентов системы канонических уравнений метода перемещений. 39

3.7. Проверка правильности вычисления коэффициентов системы канонических уравнений метода перемещений. 41

3.8. Составление матриц для расчета рамы. 44

3.9. Исходные данные для расчета рамы по программе «METDEF» 48

3.10. Результаты расчета по программе «METDEF». 49

3.11. Построение эпюр внутренних усилий в заданной раме 50

3.12. Проверка достоверности расчета рамы на постоянную нагрузку 53

4. Вопросы для подготовки к теоретическому собеседованию по теме индивидуального задания. 56

4.1. Расчет статически неопределимых систем методом перемещений в обычной форме на силовое воздействие. 56

4.2. Расчет статически неопределимых систем методом перемещений в обычной форме на температурные и кинематические воздействия. 57

4.3. Учет симметрии статически неопределимых сооружений при их расчете методом перемещений. 58

4.4. Расчет статически неопределимых систем методом перемещений в матричной форме на все виды внешних воздействий. 59

Список литературы. 61

1. Основные теоретические положения

1.1. Степень кинематической неопределимости сооружения

При расчёте статически неопределимых систем методом перемещений сооружения рассматриваются как линейно-деформируемые, для которых справедлив принцип независимости действия сил и вытекающий из него принцип пропорциональности.

За неизвестные в методе перемещений принимаются перемещения узлов от заданных воздействий: линейные перемещения шарнирных и жёстких узлов и углы поворотов жёстких узлов. Суммарное количество неизвестных угловых nq и линейных перемещений узлов nD называется степенью кинематической неопределимости сооружения

Число неизвестных угловых перемещений nq равно количеству жёстких узлов сооружения.

Для сооружений, в которых перемещения от внешних воздействий обусловлены преимущественно изгибными деформациями, при определении числа линейных перемещений узлов вводятся дополнительные допущения:

1. Элементы сооружения считаются нерастяжимыми и несжимаемыми, т.е. изменением их длин под действием продольных сил пренебрегают.

2. Предполагается, что длины хорд искривлённых стержней равны их первоначальным длинам.

При этих допущениях число независимых линейных перемещений узлов сооружения nD можно определить по его шарнирной схеме, полученной из заданного сооружения введением во все его жёсткие узлы, включая и опорные, режущих цилиндрических шарниров. Степень свободы полученной таким образом шарнирной схемы будет равна числу независимых линейных перемещений узлов заданной системы. Для подсчета количества степеней cвободы плоской шарнирно-стержневой системы W используют формулу:

где У – число узлов; С – число стержней, соединяющих узлы; Со – число опорных связей.

Пример. Определить степень кинематической неопределимости рам, показанных на рис. 1.

Рис. 1,а: nq = 5, так как рама имеет пять жестких узлов (A, B, C, D, E), nD = W = 2У – C – Cо = 2 × 6 – 7 – 2 = 3 (узлы шарнирной схемы 1–6; стержни, соединяющие эти узлы, 12, 23, 45, 56, 14, 25, 36; опорные связи 44′, 66′); nkin = nq + nD = 5 + 3 = 8.

Рис.1,б: nq = 2 (узлы A и B); nD = W = 2 × 2 – 1 – 3 = 0 (узлы шарнирной схемы 1 и 2; стержень, соединяющий эти узлы, 12; опорные связи 11′, 22′, 22»); nkin = 2 + 0 = 2.

Рис.1,в: nq = 3 (узлы A, B, С); nD = W = 2 × 7 – 6 – 6 = 2 (узлы шарнирной схемы 1–7; стержни, соединяющие эти узлы, 12, 23, 34, 45, 56, 67; опорные связи 11′, 22′, 33′, 55′, 66′, 77′); nkin = 3 + 2 = 5.

1.2. Основная система метода перемещений

Основная система метода перемещений (ОСМП) образуется наложением на узлы сооружения связей, препятствующих их угловым и линейным перемещениям. Если число наложенных на узлы угловых и линейных связей совпадает со степенью кинематической неопределимости сооружения, то в основной системе метода перемещений все узлы будут неподвижными.

Такой способ выбора основной системы позволяет представить любую плоскую стержневую систему в виде набора стандартных стержней трех типов (рис. 2). На любое воздействие (силовое, температурное, кинематическое) каждый из этих произвольно ориентированных на плоскости стержней может быть заранее рассчитан, например, методом сил.

Используя основную систему метода перемещений и результаты расчета стандартных стержней (см. рис. 2), определим угловые и линейные перемещения узлов заданного сооружения и внутренние усилия в нем от любых воздействий (см. п. 1.3–1.6 настоящих методических указаний).

Пример. Для рам, показанных на рис. 1, выбрать ОСМП.

Рис. 1,а (nq = 5, nD = 3). Угловые связи 1–5 накладываются на жесткие узлы A, B, C, D, E (рис. 3). Наложение линейных связей 6–8 на узлы может быть произведено различными способами. На рис. 3 показаны два варианта размещения линейных связей 6–8. Читателям предлагается выполнить кинематический анализ шарнирной схемы рамы для каждого из вариантов основной системы метода перемещений и убедиться в правильности размещения этих линейных связей, т.е. в геометрической неизменяемости шарнирной схемы рамы.

Рис. 1,б (nq = 2, nD = 0). Так как для этой рамы nD = 0, при выборе ОСМП накладываются только угловые связи 1 и 2, препятствующие поворотам узлов A и B (рис. 4). Шарнирная схема этой рамы геометрически неизменяема и не требует наложения дополнительных линейных связей на узлы.

Рис. 1,в (nq = 3, nD = 2). Угловые связи 1, 2, 3 накладываются на жесткие узлы A, B, С (рис. 5). На этом же рисунке показаны два варианта наложения на узлы рамы линейных связей 4 и 5. Предпочтение следует отдать симметричному варианту размещения линейных связей. В теоретическом разделе курса «Строительная механика» показано, что использование симметричных основных систем метода перемещений существенно упрощает расчет сооружения.

1.3. Система канонических уравнений метода перемещений

Неизвестные угловые и линейные перемещения узлов сооружений Z1, Z2,…, Zj,…, Zn от различных внешних воздействий определяются из системы канонических уравнений метода перемещений, i-е уравнение которой отрицает реакцию в i-й наложенной связи в основной системе метода перемещений от смещения n наложенных связей на величины, равные Z1, Z2,…, Zj,…, Zn, и от внешних воздействий.

При силовом воздействии на сооружение (рис. 6,а – заданная расчетная схема, рис. 6,б – ОСМП) система канонических уравнений имеет вид:

(3)

В случае температурных воздействий на сооружение (рис. 7,а – заданная расчетная схема, рис. 7,б – ОСМП) система канонических уравнений запишется так:

(4)

Структура системы канонических уравнений метода перемещений при кинематических воздействиях (рис. 8,а – расчетная схема сооружения при смещении опорных связей, рис. 8,б – ОСМП) сохраняется:

(5)

Если сооружение одновременно воспринимает воздействия различного типа (силовые, температурные, кинематические), то i-я строка системы канонических уравнений метода перемещений запишется:

В системах уравнений (3)–(5) коэффициенты при неизвестных rii называются главными, а коэффициенты rij – побочными. Физический смысл коэффициентов rii и rij – это реакции в i-й наложенной связи соответственно от смещения i-й связи на величину, равную единице, и смещения j-й связи на величину, равную единице, в основной системе метода перемещений. Побочные коэффициенты rij и rji подчиняются теореме о взаимности реакций, т.е. rij = rji.

Физический смысл свободных членов RiF, Rit, Ric систем уравнений (3)–(5) – это реакции в i-й наложенной связи соответственно от силового, температурного и кинематического воздействий в ОСМП.

Решению систем уравнений (3)–(5) предшествует вычисление коэффициентов при неизвестных rii, rij и свободных членов RiF, Rit, Ric. В методе перемещений перечисленные коэффициенты можно определить, имея эпюры внутренних усилий в основной системе от смещения наложенных связей на величины, равные единице, и от силовых, температурных и других воздействий, т.е. имея результаты расчета стандартных стержней (см. рис. 2, п. 1.2).

1.4. Стандартные задачи метода перемещений в расчётах на прочность

В п. 1.2 было отмечено, что основная система метода перемещений представляет собой набор стандартных задач трех типов (см. рис. 2). На различного рода воздействия (кинематические, силовые, температурные) каждый из стержней, изображенных на рис. 2, может быть заранее рассчитан, например, методом сил. Результаты этих расчетов приведены на рис. 9 (от смещения угловых и линейных связей), рис. 10–12 (от различных силовых воздействий), рис. 13 (от температурных воздействий). На указанных рисунках приняты следующие обозначения: q – поворот угловой связи; D – линейное перемещение одного конца стержня относительно другого (направление перемещений показано на рис. 9); i = EJ/ℓ – погонная жесткость стержня при изгибе; iп = = ЕА/ℓ – погонная жесткость стержня при растяжении–сжатии; и – величины изменений (приращений) температур со стороны внешних волокон стержня; – перепад приращений температуры по высоте поперечного сечения стержня; – приращение температуры на уровне центра тяжести поперечного сечения стержня; a – коэффициент линейного температурного расширения материала; h – высота поперечного сечения стержня в плоскости изгиба (плоскости симметрии).

1.5. Определение коэффициентов при неизвестных и свободных членов системы канонических уравнений

Коэффициенты при неизвестных rii, rij и свободные члены RiF, Rit, Ric системы канонических уравнений метода перемещений (см. соотношения (3)–(5), п. 1.3) – это реакции в i-й наложенной связи соответственно от смещения i-й и j-й наложенных связей на величину, равную единице, а также от силовых, температурных и кинематических воздействий в ОСМП. Перечисленные реакции можно определить, используя эпюры внутренних усилий (в частности, для рам и балок – эпюры изгибающих моментов), построенные в ОСМП с помощью стандартных задач (см. рис. 9–13, п.1.4).

Реакции в наложенных связях в ОСМП можно определить, используя статический или кинематический методы.

Статическим методом реакции i-й наложенной связи в ОСМП rii, rij, RiF, Rit, Ric от различного вида воздействий определяются из условий равновесия узла или любой части сооружения, содержащих рассматриваемую i-ю связь.

Для определения реакций в i-й наложенной связи в ОСМП rii, rij, RiF кинематическим методом производят сопряжение соответствующих эпюр изгибающих моментов:

; (8)

; (9)

, (10)

где EJk – изгибная жесткость поперечного сечения на k-м грузовом участке рассматриваемого сооружения (часто EJk = const);

k – длина k-го грузового участка;

nM – общее число грузовых участков;

Mik и Mjk – изгибающие моменты на k-м грузовом участке в ОСМП соответственно от смещения i-й и j-й наложенных связей на величину, равную единице;

– изгибающие моменты на k-м грузовом участке в любой статически определимой основной системы метода сил, полученной из рассматриваемой ОСМП удалением лишних связей, в том числе обязательно и i-й связи.

Вычисление коэффициентов rii, rij, RiF по формулам (8)–(10) можно произвести сопряжением соответствующих эпюр изгибающих моментов, используя формулу Симпсона или правило Верещагина.

Ниже, в п. 1.7, будет рассмотрено определение коэффициентов при неизвестных и свободных членов системы канонических уравнений метода перемещений в матричной форме.

1.6. Определение внутренних усилий в заданном сооружении. Промежуточные и окончательные проверки правильности решения

На данном этапе расчета стержневых систем методом перемещений мы имеем эпюры изгибающих моментов M1, M2,…, Mj,…, Mn, , , , построенные в ОСМП от смещения наложенных связей на величины Z1 = 1, Z2 = 1,…, Zj = 1,…, Zn = 1, от силового и температурного воздействия, а также от смещения опорных связей. В результате решения системы канонических уравнений метода перемещений (3)–(5) получены значения угловых и линейных перемещений узлов заданного сооружения Z1, Z2,…, Zj,…, Zn. Окончательные эпюры изгибающих моментов от различных видов воздействий МF, Мt, Мc в заданной стержневой системе получим, используя принцип независимости действия сил:

MF = M1Z1 + M2Z2 + … + MjZj + … + MnZn + , (11)

Mt = M1Z1 + M2Z2 + … + MjZj + … + MnZn + , (12)

Mc = M1Z1 + M2Z2 + … + MjZj + … + MnZn + . (13)

Поперечные и продольные силы в сечениях заданной системы вычислим по эпюрам изгибающих моментов из условий равновесия отдельных элементов и узлов, используя методику, изложенную в п. 5.4 первой части лекций по строительной механике [5].

Многоэтапность расчета статически неопределимых сооружений методом перемещений требует проведения проверок достоверности вычисления коэффициентов системы канонических уравнений, правильности решения этой системы уравнений, а также окончательной проверки эпюр внутренних усилий, полученных в результате расчета.

Главные и побочные коэффициенты rii и rij систем канонических уравнений (3)–(5) могут быть вычислены двумя способами: статическим (из условий равновесия узлов) и кинематическим (сопряжением соответствующих эпюр изгибающих моментов, построенных в ОСМП от единичных кинематических воздействий). Кроме того, правильность вычисления любого побочного коэффициента rij может быть подтверждена независимым определением равного ему побочного коэффициента rji [7, п. 15.3].

Правильность вычисления свободных членов RiF системы канонических уравнений метода перемещений (3) можно подтвердить вычислением их двумя методами: статическим и кинематическим. При этом, используя соотношение (10), необходимо помнить, что грузовая эпюра изгибающих моментов должна быть получена в любой статически определимой основной системе метода сил, выбирая которую необходимо удалить i-ю наложенную связь.

При необходимости можно произвести универсальную и построчные проверки правильности вычисления коэффициентов при неизвестных систем канонических уравнений (3)–(5), а также проверку достоверности определения свободных членов системы уравнений (3). Для этого (как и в методе сил [7, п. 16.5]) используют суммарную эпюру изгибающих моментов Ms, полученную в ОСМП суммированием эпюр изгибающих моментов от единичных кинематических воздействий:

С помощью эпюры изгибающих моментов Ms получим:

= r11 + … + rjj + … + rnn + 2r12 + 2r13 +… + 2rn–1,n, (15)

= ri1 + ri2 + … + rij + … + rin, (16)

= – (R1F + R2F +… + RjF + … + RnF). (17)

На заключительном этапе расчета производится проверка правильности эпюр внутренних усилий, построенных в заданном статически неопределимом сооружении. Если при решении задачи ошибки отсутствовали, то узлы заданного сооружения и любые его части должны находиться в равновесии. Это следует из того, что в заданном сооружении нет связей, в которых отрицались реакции в ОСМП [8, п. 19.3].

Дополнительно для окончательной проверки эпюр внутренних усилий, полученных для заданного сооружения от силового воздействия, можно использовать любую, желательно статически определимую, основную систему метода сил, для которой должны выполняться кинематические условия:

= 0. (18)

В соотношении (18) MF(s) – изгибающие моменты от силового воздействия в заданном сооружении, вычисленные методом перемещений, – изгибающие моменты в основной системе метода сил от единичного усилия, действующего в направлении i-й удаленной связи.

1.7. Расчет статически неопределимых систем методом перемещений в матричной форме

Системы канонических уравнений метода перемещений (3)–(5) могут быть представлены одним матричным соотношением:

где r – матрица коэффициентов при неизвестных системы канонических уравнений метода перемещений, или матрица реакций в наложенных связях от их смещения на величину, равную единице, в ОСМП. Эта матрица называется матрицей внешней жесткости сооружения:

r = . (20)

Число строк и столбцов матрицы внешней жесткости сооружения равно степени его кинематической неопределимости nkin, т.е. матрица r – квадратная. В силу теоремы о взаимности реакций матрица r симметрична. Так как системы канонических уравнений метода перемещений (3)–(5) разрешимы, то определитель матрицы r не равен нулю (det r ¹ 0). Это значит, что матрица внешней жесткости сооружения – невырожденная матрица.

Z – матрица неизвестных метода перемещений, или матрица угловых и линейных перемещений узлов сооружения от заданных внешних воздействий (силовых, температурных, кинематических).

R – матрица свободных членов системы канонических уравнений метода перемещений, или матрица реакций в наложенных связях от заданных внешних воздействий в ОСМП.

Число строк в матрицах Z и R равно степени кинематической неопределенности сооружения, а число столбцов – суммарному числу заданных независимых силовых, температурных и кинематических воздействий на сооружение.

В [7, п. 22.2, лекция 22] на базе теоремы о работе концевых усилий были получены матричные соотношения для вычисления элементов матриц r и R в ОСМП:

R = a T – c T F’. (22)

Конкретизируем содержание элементов матриц, входящих в выражения (21) и (22).

а – матрица концевых перемещений элементов стержневой системы (стержней) – углов поворота их концевых сечений qj и qh, а также перекосов стержней Djh, вызванных смещением наложенных угловых и линейных связей на величину, равную единице, в ОСМП. Число столбцов матрицы а равно степени кинематической неопределенности сооружения.

K – матрица внутренней жесткости сооружения. Ее элементы – концевые усилия отдельных стержней (концевые изгибающие моменты и поперечные силы), полученные от единичных перемещений концевых сечений этих стержней в ОСМП. Для всего сооружения матрица K запишется:

В квазидиагональной матрице (23) блок Kj – стандартная матрица внутренней жесткости j-го стержня. Если изгибающие моменты и поперечные силы фиксировать так, как показано на рис. 14,а, б для стандартных стержней, то матрицы Kj будут иметь вид:

Kj = (рис. 14,а); Kj = (рис. 14,б).

R – матрица реакций в наложенных связях от внешних воздействий в ОСМП:

Здесь RF, Rt, Rc – подматрицы реакций в наложенных связях соответственно от силовых, температурных и кинематических воздействий в ОСМП. Число столбцов матричных блоков RF, Rt, Rc определяется числом комбинаций указанных типов воздействий.

– матрица концевых изгибающих моментов и поперечных сил элементов сооружения в ОСМП от внешних силовых, температурных и кинематических воздействий:

.

F’ – матрица узловых нагрузок:

В этой матрице отличными от нуля будут элементы только блока F, описывающего силовое воздействие на сооружение. Блоки, соответствующие температурным и кинематическим воздействиям, будут нулевыми. При формировании блока F матрицы F’ равнодействующую нагрузки, приложенной к отдельному стержню jh, передают узлу h, т.е. узлу, противоположно расположенному сечению j, где при формировании матрицы фиксировалась концевая поперечная сила.

с – матрица углов поворота и линейных перемещений узлов в ОСМП от смещения наложенных на узлы сооружения связей на величину, равную единице. Число столбцов матрицы с равно степени кинематической неопределенности сооружения.

Решая систему уравнений (19), получим матрицу неизвестных метода перемещений:

где r –1 – матрица, обратная к матрице внешней жесткости сооружения, т.е.

r × r –1 = E, здесь Е – единичная матрица.

После подстановки соотношений (21) и (22) в матричное выражение (24) получим:

Z = –(a T Ka) –1 (a T – a T F’). (25)

Матрицу концевых изгибающих моментов и поперечных сил

в заданном сооружении от внешних силовых, температурных и кинематических воздействий получим, используя принцип независимости действия сил

S = + Z. (26)

В матричном соотношении (26) – матрица концевых усилий элементов сооружения в ОСМП от единичных смещений наложенных связей. Эту матрицу можно представить в виде произведения:

= Ka, (27)

где K – матрица концевых усилий стержней от единичных перемещений их концевых сечений в ОСМП (см. (21)). Выше было показано, что при определенной нумерации концевых сечений стержней и при определенном порядке записи концевых изгибающих моментов и поперечных сил (см. рис. 14), матрицы K для отдельных элементов имеют стандартную структуру.

После подстановки в соотношение (26) матричных выражений (25) и (27) получим матричную формулу для расчета стержневых систем методом перемещений:

S = – Ka(a T Ka) –1 (a T – c T F’). (28)

При силовом воздействии на сооружение, когда S = SF, = F, F’ = F, структура матричной зависимости (28) сохраняется:

SF = F – Ka(a T Ka) –1 (a T F – c T F). (29)

В случае температурного воздействия S = St, = t, F’ = 0 и, следовательно,

St = t – Ka(a T Ka) –1 (a T t). (30)

При кинематическом воздействии, в частности, при смещении опорных связей, матричная зависимость для определения концевых усилий в стержнях заданного сооружения аналогична матричной зависимости (30):

Sс = с – Ka(a T Ka) –1 (a T с). (31)

Проверка правильности расчета заданного сооружения методом перемещений в матричной форме производится на основе теоремы о работе концевых усилий:

– в общем случае внешних воздействий

a T S – c T F’ = 0;

– при силовых воздействиях

a T SF – c T F = 0;

– при температурных и кинематических воздействиях

Для расчета стержневых систем методом перемещений на персональных ЭВМ может быть использована программа «METDEF» , разработанная на кафедре строительной механики НГАСУ (Сибстрин) профессором В.Г. Себешевым и доцентом В.Н. Барышниковым.

2. Содержание расчетного индивидуального задания и исходные данные

Для заданной статически неопределимой рамы (рис. 15) требуется:

1. Определить степень кинематической неопределимости рамы и выбрать для ее расчета ОСМП.

2. В ОСМП построить деформационные схемы и соответствующие им эпюры изгибающих моментов от смещения каждой наложенной связи на величину, равную единице, и отдельно от каждого из внешних воздействий (силового, температурного, смещения опорных связей).

3. Вычислить коэффициенты при неизвестных и свободные члены системы канонических уравнений метода перемещений (только при воздействии постоянной нагрузки).

4. Выполнить проверку правильности вычислений коэффициентов при неизвестных и свободных членов системы канонических уравнений метода перемещений:

а) rii – сопряжением соответствующих эпюр изгибающих моментов;

б) rij – с помощью теоремы о взаимности реакций;

в) RiF – с использованием статически определимой основной системы метода сил.

5. Подготовить исходные данные и матрицы для расчета рамы на ЭВМ по программе «METDEF».

6. По результатам расчета на ЭВМ построить в заданной раме эпюры M, Q и N от постоянной нагрузки, температурных воздействий и смещения опорных связей (отдельно).

7. Выполнить статическую и кинематическую проверки правильности построенных эпюр внутренних усилий от постоянной нагрузки.

Исходные числовые данные для индивидуального расчета задания приведены в табл. 1.

Примечания. 1. EI1 и h1 – жесткость при изгибе и высота прямоугольного поперечного сечения горизонтальных элементов рамы.

2. EI2 и h2 – жесткость при изгибе и высота прямоугольного поперечного сечения вертикальных и наклонных элементов рамы.

3. Поперечное сечение всех элементов рамы симметрично относительно плоскости изгиба.

4. Изменение температуры на Dt° происходит на отмеченных штриховыми линиями поверхностях стержней.

5. Для всех вариантов принять: a = , a’ = , a = 12×10 –6 1/°С.

Рис. 15 (продолжение)

Рис. 15 (продолжение)

Рис. 15 (продолжение)

Рис. 15 (окончание)

3. Пример выполнения индивидуального задания

3.1. Исходные данные

В соответствии с содержанием индивидуального задания (см. раздел 2) требуется выполнить расчет статически неопределимой рамы (рис. 16) методом перемещений.

Рама испытывает следующие независимые друг от друга внешние воздействия:

1. Силовое (постоянная нагрузка): q = = 24 кН/м, F = 36 кН, М = 60 кН×м.

2. Изменение температуры Dt° = 60 °С на поверхности стержней, отмеченных пунктирной линией.

3. Смещение опорных связей: D(1) = 2 см, D(2) = 1 см, D(3) = 0,001 рад.

Изгибные жесткости прямоугольных поперечных сечений элементов рамы в плоскости изгиба рамы: EJ1 – для горизонтальных стержней, EJ2 – для вертикальных и наклонного стержней; высоты поперечных сечений: h1 = 0,3 м – для горизонтальных стержней, h2 = 0,4 м – для вертикальных и наклонного стержней.

Дополнительные исходные данные: EJ1 : EJ2 = 2, EJ1 = 3×10 4 кН×м 2 , EJ2 = 1,5×10 4 кН×м 2 ; коэффициент линейного температурного расширения материала a = 12×10 –6 1/°С.

3.2. Вычисление погонных жесткостей стержней рамы

А) В расчете на силовое воздействие учитываем относительные значения изгибных жесткостей поперечных сечений элементов рамы (рис. 17,а):

i1 = = 0,25EJ2 = 1,25;

i2 = = 0,4EJ2 = 2;

i3 = = 0,25EJ2 = 1,25;

i4 = = 0,333EJ2 = 1,667;

i5 = = 0,2EJ2 = 1.

Погонную жесткость стержня 2В (рис. 17,а) примем равной единице (i5 = 1) и выразим погонные жесткости остальных стержней через i5.

Б) В расчетах на температурное воздействие и смещение опорных связей обязателен учет абсолютных значений изгибных жесткостей поперечных сечений элементов рамы (рис. 17,б):

i1 = = 0,375×10 4 кН×м;

i2 = = 0,6×10 4 кН×м;

i3 = = 0,375×10 4 кН×м;

i4 = = 0,5×10 4 кН×м;

i5 = = 0,3×10 4 кН×м.

3.3. Вычисление степени кинематической неопределимости и выбор основной системы метода перемещений

Для заданной рамы nkin = nq + nD = 2 + 1 = 3. Число неизвестных угловых перемещений узлов рамы nq = 2 (узлы 3 и 2 – рис. 16). Число независимых линейных перемещений узлов рамы определим по ее шарнирной схеме (рис. 18,а). Степень свободы полученной шарнирной схемы W = 2У – C – Cо = 2×3 – 2 – 3 = 1, следовательно nD = 1. Правильное наложение одной линейной связи на узлы нашей шарнирной схемы должно обеспечить ее геометрическую неизменяемость (рис. 18,а)

ОСМП образована наложением двух угловых связей («плавающих» заделок) на узлы 3 и 2 и одной линейной горизонтальной связи на узел 2 (рис. 18,б). За неизвестные в расчете данной рамы приняты: углы поворотов узлов 3 и 2 – Z1 и Z2 и горизонтально перемещение узла 2–Z3. Эти неизвестные определим из системы канонических уравнений метода перемещений, которая в общем случае силового воздействия запишется:

3.4. Построение деформационных схем и соответствующих им эпюр изгибающих моментов в единичных состояниях основной системы метода перемещений

Деформационные схемы стержней рамы в ОСМП, построенные от поворота первой и второй наложенных угловых связей по часовой стрелке на величину, равную единице, показаны на рис. 19,а, б.

Деформационную схему рамы в ОСМП от единичного смещения линейной связи вправо (рис. 19,в) получим, предварительно построив план перемещений узлов рамы (рис. 19,г). Поместив в полюсе полярного плана перемещений неподвижные точки А, В, С, зададим перемещение узлу 2 в направлении, перпендикулярном оси стержня 2В. Зная линейное перемещение узла 2, последовательно определим перемещения узлов 1 и 3. Проекцию истинного перемещения узла 2 на горизонтальную ось принимаем равной единице. По плану перемещений, используя элементарные геометрические и тригонометрические положения, определим перекосы элементов рамы: D1A = D23 = 1, D12 = D3C = = 0,75, D2B = 1,25 (рис. 19,в, г).

Эпюры изгибающих моментов от единичных смещений наложенных связей в ОСМП изображены рядом с соответствующими деформационными схемами на рис. 19,а, б, в. Для их построения использованы стандартные задачи метода перемещений от кинематических воздействий (см. рис. 9).

3.5. Построение эпюр изгибающих моментов в ОСМП от внешних воздействий

Основой для построения в ОСМП эпюр изгибающих моментов от постоянной нагрузки, температурного воздействия и смещения опорных связей служат стандартные задачи метода перемещений, показанные на рис. 9–13. При отсутствии на этих рисунках каких-то стандартных задач от силового воздействия необходимо воспользоваться источниками, перечисленными в списке рекомендуемой литературы.

На рис. 20 изображена эпюра изгибающих моментов MF в ОСМП от постоянной нагрузки. Необходимо помнить, что в ОСМП от узловых нагрузок эпюра изгибающих моментов отсутствует (в нашем случае от вертикальной силы F, приложенной к узлу 3). На рис. 21 и 22 даны подробные пояснения к построению эпюр изгибающих моментов в ОСМП от заданного изменения температуры (Mt) и от смещения опорных связей (Мс). Напоминаем, что эпюра изгибающих моментов Mt = M’t + M»t, где M’t – эпюра изгибающих моментов от равномерных приращений температуры D; M»t – то же от неравномерных приращений температуры D.

3.6. Вычисление коэффициентов системы канонических уравнений метода перемещений

Коэффициенты при неизвестных и свободные члены системы канонических уравнений метода перемещений вычислим статическим методом. Используем для этого эпюры изгибающих моментов М1, М2, М3 (см. рис. 19), построенные в ОСМП от единичных смещений наложенных связей, а также эпюру изгибающих моментов MF, полученную в ОСМП от постоянной нагрузки (см. рис. 20). Рис. 23,а поясняет вычисление в ОСМП реакций в первой наложенной связи r11, r12, r13, R1F от поочередного смещения всех наложенных связей на величину, равную единице, и от постоянной нагрузки; рис. 23,б – реакций во второй наложенной связи r21, r22, r23, R2F от тех же воздействий. Так как наложенные связи 1 и 2 угловые, то при вычислении реакций в них учитываем только изгибающие моменты в концевых сечениях стержней.

По этой причине на рис. 23 при изображении отдельных узлов мы не показываем поперечных и продольных сил в сечениях около узлов.

Вычисление реакций r31, r32, r33, R3F в линейной связи 3 проиллюстрировано на рис. 24. Любую из этих реакций вычисляем в следующей последовательности: из равновесия узла 1 находим продольную силу N12 в стержне 12; из равновесия узла 3 вычислим продольную силу N32 в стержне 32; определяем требуемую реакцию из равновесия узла 2. На рис. 24 не показаны изгибающие моменты в сечениях около узлов, так как в условия равновесия в форме проекций сил на какие-то оси они не входят.

3.7. Проверка правильности вычисления коэффициентов системы канонических уравнений метода перемещений

Побочные коэффициенты при неизвестных системы канонических уравнений метода перемещений rij в п. 3.6 были вычислены статическим методом. Достоверность их определения подтверждается теоремой о взаимности реакций. Из рис. 23 и 24 видно, что r12 = r21, r13 = r31, r23 = r32.

Вычисление главных коэффициентов при неизвестных системы канонических уравнений метода перемещений для проверки произведем повторно кинематическим методом.

r11 =

+

r22 =

+

r33 =

+

+

Приведенные вычисления показывают, что значения главных коэффициентов r11, r22, r33, ранее вычисленные статическим методом (см. рис. 23 и 24) и результаты вышеперечисленных сопряжений эпюр изгибающих моментов М1, М2, М3 (см. рис. 19) совпадают. Следует заметить, что изгибные жесткости поперечных сечений элементов рамы привязаны к принятым в п. 3.2 значениям погонных жесткостей:

Проверку свободных членов системы канонических уравнений метода перемещений, т.е. грузовых коэффициентов, ранее полученных статическим методом в п. 3.6 (см. рис. 23, 24) произведем кинематическим методом, используя статически определимую основную систему метода сил (рис. 25,а) и эпюру изгибающих моментов, построенную в ней, от постоянной нагрузки (рис. 25,б).

R1F = –

+

R2F = –

+

R3F = –

+

+

Результаты вышеприведенных сопряжений эпюр изгибающих моментов М1, М2, М3 с эпюрой М подтверждают правильность вычислений грузовых коэффициентов R1F, R2F, R3F.

3.8. Составление матриц для расчета рамы

Для расчета статически неопределимых систем методом перемещений на многовариантные внешние воздействия, включающие силовые, температурные и смещение опорных связей, используется матричное соотношение (28):

S = .

Составлению матриц а и предшествует нумерация элементов рамы, сечений, в которых фиксируются концевые перемещения стержней (рис. 26,а) и их концевые усилия (рис. 26,б). Набор концевых перемещений и концевых усилий стержней увязан с теоремой о работе концевых усилий. В соответствии с одним из вариантов формулировки этой теоремы концевые изгибающие моменты фиксируются в двух сечениях, а концевая поперечная сила – в одном. В концевых сечениях около цилиндрических шарниров изгибающие моменты равны нулю и в матрицу не включаются. Порядок записи концевых усилий для отдельного стержня стандартизирован: первым записывается изгибающий момент в одном из концевых сечений, затем – поперечная сила в любом из концевых сечений и, наконец, – изгибающий момент в другом концевом сечении (см. рис. 26,б). Соблюдение этого порядка записи позволяет матрицу внутренней жесткости j-го стандартного элемента Kj по программе «METDEF» формировать автоматически.

Используя деформационные схемы рамы в единичных состояниях ОСМП, формируем матрицу а – матрицу поворотов концевых сечений стержней и их перекосов от единичных смещений наложенных связей. Правило знаков при составлении матрицы а: повороты концевых сечений, в случае если они происходят по часовой стрелке, считаются положительными и отрицательными, – если против хода часовой стрелки. Перекос j-го элемента Djh положителен, если поворот хорды, стягивающей его концы, по отношению к первоначальному положению оси стержня происходит по ходу часовой стрелки, и отрицателен, – если против хода часовой стрелки.

Матрица концевых усилий состоит из трех блоков:

= [F t C].

Элементы каждого из блоков матрицы – это концевые изгибающие моменты и поперечные силы в ОСМП соответственно от постоянной нагрузки (в нашем случае – первый столбец), от изменения температуры (второй столбец) и от смещения связей (третий столбец).

Для формирования матрицы используем эпюры изгибающих моментов, построенных в ОСМП от силового воздействия МF (см. рис. 20), от приращения температуры Мt (см. рис. 21,д) и от смещения опорных связей Мс (см. рис. 22). Концевые поперечные силы от указанных воздействий по эпюрам изгибающих моментов МF, Мt, Мс читателям предлагается вычислить самостоятельно. Правило знаков при формировании матрицы : концевые изгибающие моменты и концевые поперечные силы считаются положительными, если стержень они вращают по ходу часовой стрелки, и отрицательными, – если против хода часовой стрелки.

Матрица узловых нагрузок F’ от заданных воздействий на раму имеет вид:

F’ = [F 0 0], где F – матрица узловых нагрузок, входящих в состав силового воздействия. Нулевые блоки описывают температурные и кинематические воздействия, не имеющих силовых потенциалов.

В матрицу F помимо непосредственно действующих силовых нагрузок (сосредоточенных моментов и сосредоточенных сил) в соответствии с теоремой о работе концевых усилий включаются равнодействующие нагрузок, приложенных к стержням рамы. Эти равнодействующие передаются узлам, расположенным противоположно по отношению к концевым сечениям, где ранее при формировании матрицы фиксировались поперечные силы. На рис. 27 показана схема узловых нагрузок для нашей рамы. Элементы А1 и 23 не загружены; равнодействующая сосредоточенного момента, приложенного к стержню 3С равна нулю; равнодействующая нагрузки элемента 12 F1y = 24×5 = 120 кН передается узлу 1; сосредоточенная сила, приложенная к элементу 2В, – узлу В.

Формирование матрицы F производим, последовательно обходя узлы в установленном нами порядке: А, 1, 2, 3, С, В. Для каждого узла первым записываем сосредоточенный момент (если он имеется), второй – горизонтальную сосредоточенную силу, третьей – вертикальную сосредоточенную силу. Знак сосредоточенных сил привязывает к принятой системе координат (см. рис. 27). Сосредоточенный узловой момент, действующий по ходу часовой стрелки, считается положительным, против хода часовой стрелки – отрицательным. При отсутствии в рассматриваемом узле каких-либо компонент узловой нагрузки их нулевые значения в матрице F фиксировать не будем.

F’ = C =

Матрицу угловых и линейных перемещений узлов с в ОСМП, вызванных единичным смещением наложенных связей, удобно формировать после составления блока F матрицы F’, используя деформационные схемы рамы и план перемещений ее узлов (см. рис. 19). Знаки линейных узловых перемещений привязываем к принятой системе координат (см. рис. 27), повороты узлов по ходу часовой стрелки считаем положительными. Первый столбец матрицы с описывает вертикальные перемещения узла 1, вертикальное перемещение узла 3 и горизонтальное перемещение узла В от поворота первой наложенной связи на величину, равную единице; второй столбец – эти же перемещения от единичного поворота второй наложенной связи; третий – то же от единичного смещения линейной связи в ОСМП.

Выше уже упоминалось, что матрицы внутренней жесткости отдельных элементов рамы Kj по программе «METDEF» формируются автоматически, если исходные данные, введенные в компьютер, содержат указание типа стандартного стержня, его погонную жесткость и длину.

3.9. Исходные данные для расчета рамы по программе «METDEF»

Степень кинематической неопределимости системы – 3.

Число элементов ОСМП – 5.

Суммарное число перемещений концевых сечений элементов ОСМП – 13.

Число вариантов заданных воздействий – 3.

Число перемещений узлов системы, к которым приложена нагрузка – 3.

Длины элементов – 4, 5, 4, 6, 5.

Отношения погонных жесткостей элементов – 1.25, 2, 1.25, 1.667, 1.

Типы элементов – 2, 2, 1, 1, 1.

[а] – матрица перемещений концевых сечений элементов ОСМП в единичных состояниях (матрица транспонирована):

0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0

(в строку записывается первый столбец матрицы а, затем аналогично второй и третий).

[] – матрица усилий в концевых сечениях элементов ОСМП от всех вариантов заданных воздействий (матрица транспонирована):

0, 0, 75, – 75, 0, 0, 0, 15, –15, 15, –18, 14.4, 18

(в строку записывается первый столбец матрицы , затем аналогично второй и третий).

[с] – матрица смещений узлов в единичных состояниях ОСМП (матрица транспонирована):

[F] – матрица узловых нагрузок по вариантам заданных воздействий (матрица транспонирована):

3.10. Результаты расчета по программе «METDEF»

На печать выдаются следующие расчетные параметры:

1. Матрица [r] внешней жесткости ОСМП (коэффициенты при неизвестных системы канонических уравнений метода перемещений):

r =

2. Матрица [R] свободных членов системы канонических уравнений перемещений по вариантам воздействий:

R =

3. Матрица [Z] основных неизвестных метода перемещений по вариантам воздействий:

Z =

4. Матрица [S] усилий в концевых сечениях элементов заданной системы по вариантам воздействий:

3.11. Построение эпюр внутренних усилий в заданной раме

Используя элементы матрицы S и округляя их до сотых, строим эпюры изгибающих моментов в заданной раме:

Mconst – от постоянной нагрузки (рис. 28,а);

MT – от изменений температуры (рис. 28,б) и MD – смещения опорных связей (рис. 28,в).

По эпюрам изгибающих моментов Мconst, МT, МD, частично используя данные матрицы S о концевых поперечных силах в сечениях 1, 2, 3, 5, 7 рамы и вычисляя недостающие ординаты эпюры поперечных сил Qconst в левом

Строительная механика

Главное меню

Присоединяйтесь

Метод перемещений при расчете статически неопределимых систем

Определить внутренние усилия ( M , Q , N ) в статически неопределимых системах в строймехе можно методом перемещений .

Для этого метода в систему вводятся дополнительные связи, а за неизвестные принимаются перемещения во введенных связях.

Так как за неизвестные принимаются перемещения (угловые и поступательное), то общее число неизвестных называется степенью кинематической неопределимости и рассчитывается по формуле:

где n угл – количество углов поворота жестких узлов (равно числу жестких узлов в системе) (рис. 1, г, д) ;

n лин – количество возможных линейных перемещений .

Например, в раме (рис. 1, а) n угл =2.

Рисунок 1. Степень кинематической неопределимости

При определении n лин во все жесткие узлы и опоры заданной системы устанавливают шарниры и определяют число линейных перемещений на базе известной формулы кинематического анализа:

В рассматриваемом примере (рис. 1, а): n лин =2 × 6 – 5 – 6 =1. Т.е. число независимых линейных перемещений равно числу стержней, которые надо ввести в шарнирную схему сооружения, чтобы превратить ее в геометрически неизменяемую.

Неизвестные перемещения обозначаются: Z1, Z2, . Zn.

После расчета количества неизвестных в заданную систему (ЗС) вводят столько же связей для предотвращения перемещений концов ее стержней. При этом система делится на однопролетные статически неопределимые балки. Полученная система является основной системой (ОС) метода перемещений. А сама ОС называется кинематически определимой.

В рассматриваемом примере в раму введем две заделки в жесткие узлы и одну шарнирно-подвижную опору. Полученная схема (рис. 1, в) будет ОС метода перемещений.

Для образования ОС метода перемещений требуется:

– в жесткие узлы заданной системы ввести n угл заделок;

– в направлении поступательных перемещений узлов заданной системы ввести n лин шарнирно-подвижных опор .

Введенная заделка в отличии от обычной заделки исключает лишь угловое перемещение узла, оставляя возможность линейного смещения.

Полученная ОС метода перемещений будет единственной.

Рама, приведенная на рис. 2, а, четырежды статически неопределима. При ее расчете методом сил нужно исключать четыре лишние связи и выбирать основную систему, например, такую как на рис. 2, б.

Рисунок 2. Канонические уравнения метода перемещений

В методе перемещений в раму необходимо ввести n= n угл + n лин =1+0=1 кинематическую связь (жесткую заделку – рис. 2, б). Если неизвестное угловое перемещение узла обозначить через Z, получим ОС показанную на рис. 2 в.

n лин =3 · 3 – 2 · 2 – 5=0

Чтобы усилия и деформации ОС были аналогичными ЗС, перемещение Z должно быть равно углу поворота узла рамы (рис. 2, а), а реактивный момент во введенной заделке основной системы (рис. 2, в) должен равняться нулю: R =0.

Указанную реакцию определяют рассматривая единичное и грузовое состояния основной системы.

В единичном состоянии введенной связи зададим единичное перемещение (угол поворота, равный единице) и определим возникающую в ней реакцию r (рис. 2, г). В грузовом состоянии будем учитывать только заданную внешнюю нагрузку и во введенной связи основной системы определим реакцию RP (рис. 2, д).

С учетом упругости системы и принципа суперпозиции получаем следующее уравнение:

где r – реактивный момент в заделке от поворота этой заделки на угол, равный 1 (или от линейного перемещения на 1).

Полученное уравнение называется каноническим уравнением метода перемещений.

Если известны величины реакций r и RP, то можно определить величину узлового перемещения:

Для стержневой системы, степень кинематической неопределимости которой равна n, ОС образуется введением n дополнительных связей с неизвестными Z1, Z2, …, Zn. Соответственно, необходимо составить n уравнений. Далее исследуются n единичных состояний и одно грузовое состояние.

где rii – главные коэффициенты;

rij – боковые коэффициенты;

Rip – грузовые коэффициенты.

Полученная система уравнений называется системой канонических уравнений метода перемещений.

Коэффициенты канонических уравнений метода перемещений можно определять статическим или кинематическим способами.

Статический способ основан на определении реакций во введенных связях основной системы из уравнений равновесия. Для этого необходимо вырезать отдельные узлы или части основной системы и составить уравнения равновесия (статики). Если искомая реакция является моментом, то она определяется из условия равенства нулю момента в узле , если же она является силой, то определяется из уравнения проекции на ось (например, на ось x) в направлении этой реакции . Статический способ достаточно прост для использования, поэтому является основным способом определения коэффициентов системы канонических уравнений.

Кинематический способ основан на определении коэффициентов канонических уравнений путем перемножения эпюр. Этот способ используется в случае когда статическим способом рассчитать сложно или для проверки результатов статического способа.

После определения всех коэффициентов они подставляются в систему канонических уравнений. После ее решения определяются неизвестные Z1, Z2, …, Zn. Далее аналогично методу сил определяются внутренние усилия.

Вначале рассчитываются изгибающие моменты:

Далее по эпюре изгибающих моментов ( M) определяются поперечные силы (Q), а по ним методом вырезания узлов – продольные силы (N).

Проверка правильности построения эпюр М, Q , N выполняется аналогично методу сил :

– статическая проверка состоит в составлении уравнений равновесия для реакций в опорах статически неопределимой системы, которые могут быть определены из построенных эпюр внутренних усилий, т.е.:

– деформационная проверка – в результате умножения окончательной эпюры изгибающих моментов М, полученной методом перемещений, на любую из единичных эпюр, построенных для основной системы метода сил. В результате должен получаться нуль.


источники:

http://vunivere.ru/work55723

http://5stroymeh.ru/staticheski-neopr-mye/metod-peremeshchenij/27-metod-peremeshchenij-pri-raschete-staticheski-neopredelimykh-sistem.html