Уравнения переноса в твердых телах

Явления переноса в твердых телах

§ 1. Теплопроводность в твердых телах.

1.1. Понятие теплопроводности.

1.2. Теплопроводность металлов.

1.3. Теплопроводность диэлектриков.

§ 2. Перенос массы в твердых телах (диффузия).

§3. Перенос импульса в твердых телах (вязкое трение).

§4. Перекресные процессы переноса в твердых телах.

Введение.

Явления переноса — неравновесные процессы, в результате которых в физической системе происходит пространственный перенос электрического заряда, вещества, импульса, энергии, энтропии или какой-либо другой физической величины.

Общую феноменологическую теорию явлений переноса, применимую к любой системе (газообразной, жидкой или твёрдой), даёт термодинамика неравновесных процессов. Более детально явления переноса изучает кинетика физическая . Явления переноса в газах рассматриваются на основе кинетической теории газов с помощью кинетического уравнения Больцмана для функции распределения молекул; явления переноса в металлах — на основе кинетического уравнения для электронов в металле; перенос энергии в непроводящих кристаллах — с помощью кинетического уравнения для фононов кристаллической решётки. Общая теория явлений переноса развивается в неравновесной статистической механике на основе Лиувилля уравнения для функции распределения всех частиц, из которых состоит система.

Причиной явлений переноса являются — возмущения, нарушающие состояние термодинамического равновесия: действие внешнего электрического поля, наличие пространственных неоднородностей состава, температуры или средней скорости движения частиц системы.

Перенос физической величины происходит в направлении, обратном её градиенту, в результате чего изолированная от внешних воздействий система приближается к состоянию термодинамического равновесия. Если внешние воздействия поддерживаются постоянными, явления переноса протекают стационарно, которые характеризуются необратимыми потоками Ji физической величины, например, диффузионным потоком вещества, тепловым потоком или тензором потока импульса, связанного с градиентами скоростей.

При малых отклонениях системы от термодинамического равновесия потоки линейно зависят от термодинамических сил Х k , вызывающих отклонение от термодинамического равновесия, и описываются феноменологическими уравнениями

где Li k — феноменологический коэффициент переноса (в термодинамике неравновесных процессов) или кинетические коэффициенты (в физ. кинетике), вычисляемые с помощью решения кинетических уравнений. Термодинамические силы Х k вызывают необратимые потоки; например, градиент температурыры вызывает поток теплоты (теплопроводность ),градиент концентрации вещества — поток компонента смеси (диффузия ),градиент массовой скорости — поток импульса (вязкость ).
Перенос вещества, вызванный градиентом температуры, — термодиффузию и обратный ей процесс переноса тепла вследствие градиента концентрации (Дюфура эффект )называют перекрёстными процессами. Для перекрёстных процессов в отсутствии магнитного поля имеет место соотношение симметрии Li k = Lki (Онсагера теорема ), являющееся следствием микроскопической обратимости уравнений, описывающих движение частиц. Если магнитное поле отлично от нуля, то при замене i k нужно изменить направление магнитного поля на противоположное.

Явления переноса обычно сопровождаются производством энтропии в единицу времени:

Это выражение является формулировкой второго начала термодинамики для явлений переноса.
Целью данной курсовой работы является изучение явление переноса в твердых телах, ………………………………………………………………………………………

§ 1. Теплопроводность в твердых телах.

Теплопроводность – это процесс переноса энергии от более нагретых частей тела (или тел) к менее нагретым частям (или телам), осуществляемый хаотически движущимися частицами тела. В газах, жидких и твердых диэлектриках такими частицами являются атомы и молекулы. Хотя атомарно – молекулярный характер переноса энергии является отличительной чертой теплопроводности во всех телах, механизм теплопроводности в различных агрегатных состояниях различен, что связано с различным характером теплового движения атомов и молекул. Механизм теплопроводности в твердых диэлектриках связан с тепловыми колебаниями атомов или молекул около положений равновесия. В области с повышенной температурой частицы тела имеют более высокую энергию и совершают колебания с большей амплитудой. Поскольку частицы связаны между собой упругими силами, то увеличение амплитуды колебаний частиц в одном месте вызывает увеличение амплитуды колебаний соседних частиц. В результате в теле возникает упругая волна, распространяющаяся со скоростью звука и переносящая энергию тепловых колебаний. Механизм распространения тепловых волн аналогичен механизму распространения звуковых волн, поэтому их обычно называют акустическими.

Теория тепловых волн в кристаллической решетке была разработана в 1912 году Дебаем. В ее основе лежит представление о квантовании энергии. Согласно этим представлениям энергия решетки, в которой распространяется волна с частотой ν (энергия упругой волны) может принимать только дискретные значения:

(1)

где n = 0, 1, 2, 3… — квантовое число,

h – постоянная Планка, h = 6,62·10 -34 Дж·с.

Эти значения энергии изображены на рис. 2 в виде энергетических уровней. Минимальная энергия решетки соответствует уровню n = 0 и равна h ν (так называемая, нулевая энергия). Наименьшая порция энергии, которую может испустить или поглотить решетка при тепловых колебаниях, соответствует переходу с данного энергетического уровня на ближайший соседний уровень:

Рис. 1

Эту порцию, или квант энергии тепловых колебаний решетки, называют фононом. В зависимости от степени возбуждения решетки, она может испускать то или иное число фононов. Так, если энергия решетки соответствует 3-му уровню (рис. 1), то есть

то это означает, что решетка испустила три одинаковых фонона с энергией ε = h ν каждый. Среднее число фононов с одинаковой энергией ε при данной температуре Т равно

(3)

где e – основание натурального логарифма, k – постоянная Больцмана.

Из формулы (3) следует, что при Т = 0 в кристалле нет фононов, а с ростом температуры их число быстро увеличивается. В кристалле может одновременно распространяться много слабо связанных между собой волн с различными частотами νi, которым соответствуют разного сорта фононы. Среднее число фононов других сортов (других энергий) также определяется формулой (3).

Введение фононов позволяет рассматривать термически возбужденное твердое тело как сосуд, наполненный газом фононов, свободно перемещающихся внутри него со скоростью звука. Однако фононы отличаются от обычных частиц тем, что они не могут существовать в вакууме – для фононов нужна среда и этой средой является кристалл. Подобного рода частицы называются квазичастицами. Используя понятие фонового газа, теплопроводность в кристаллических телах (решеточную теплопроводность) можно объяснить следующим образом. В той части тела, где выше температура, плотность фононов, согласно формуле (3), больше, фононы будут двигаться в ту часть тела, где температура ниже (меньше плотность), стремясь выравнять плотность по всему телу. При таком движении фононов от горячего конца к холодному происходит перенос тепла. Поскольку скорость движения фононов, равная скорости звука, велика (порядка 103 м/с), то, казалось бы, тепло должно распространяться в твердом теле очень быстро. Однако происходит рассеяние фононов на фононах (столкновение фононов), вследствие чего средняя длина свободного пробега фонона (за исключением низких температур) оказывается маленькой. Рассмотренный механизм передачи энергии не обеспечивает ее быстрого переноса и поэтому теплопроводность твердых диэлектриков мала.

Опыт показывает, что теплопроводность металлов, как правило, значительно больше теплопроводности диэлектриков. Это объясняется тем, что в металлах в переносе тепла кроме фононов участвуют валентные электроны, образующие электронный газ, подобный идеальному атомарному газу. Механизм электронной теплопроводности металла подобен механизму теплопроводности газа: валентные электроны, пролетая большие расстояния между столкновениями с узлами решетки, переносят энергию из одной части в другую. В чистых металлах электронная часть теплопроводности значительно больше решеточной теплопроводности.

При достаточно высоких температурах решеточная (фононная) теплопроводность составляет 1 –2 % от электронной теплопроводности. В сплавах со структурными неоднородностями кристаллической решетки электронная теплопроводность может быть сравнима с решеточной, а общая теплопроводность приближается к теплопроводности диэлектриков.

Уравнение теплопроводности Количественно явление теплопроводности во всех телах описывается уравнением Фурье, согласно которому количествотепла dQ, прошедшее за время dt через некоторую площадку s,перпендикулярную направлению распространения тепла,выражается формулой:

(4)

Как следует из формулы (4) К измеряется в системе СИ в единицах Дж/м·с·К.

Величина dT/dl характеризует быстроту изменения температуры в направлении распространения тепла и численно равна изменению температуры тела на единице длины в этом направлении. Она называется градиентом температуры .

Знак минус в уравнении Фурье указывает, что поток тепла направлен в сторону, противоположную градиенту температуры.

Коэффициент К, зависящий от физической природы вещества и его состояния, называется коэффициентом теплопроводности . Физический смысл его можно установить из следующих соображений. Если положить в формуле (4) s = 1; dt = 1; и dT/dl = 1, то dQ = K. Это означает, что коэффициент теплопроводности численно равен количеству тепла, переносимому за 1 секунду через единицу площади, перпендикулярной направлению распространения тепла, если градиент температуры равен единице.

Метод определения коэффициента теплопроводности.

В данной работе для определения коэффициента теплопроводности К используется уравнение Фурье (4). При этом величины dQ/dt, s , dT/dl измеряются опытным путем. Исследуемый материал взят в виде сплошного медного стержня круглого сечения. Для создания потока тепла вдоль стержня его концы помещены в термостаты А и В (рис. 2).

Термостат А представляет собой металлическую коробку цилиндрической формы, в которую впаяны две трубки для входа и выхода водяного пара. Такое же устройство имеет термостат В, через который протекает холодная вода. Расход воды через термостат В поддерживается постоянным с помощью сосуда Д. Это достигается постоянством уровня воды в сосуде Д, для чего он снабжен трубкой Н, служащей для отвода излишков воды. Контроль за уровнем воды в сосуде Д осуществляется с помощью водомерной стеклянной трубки h. Вода, протекающая через термостат В, служит приемником тепла, переносимого через исследуемый стержень от его горячего конца к холодному. Термометры Т1 и Т2 позволяют определить увеличение температуры воды. В точках «а» и «в» исследуемого стержня в специальных углублениях помещаются спаи термопары, соединенной с гальванометром Г и служащей для определения градиента температуры. Стержень помещен в ящик, наполненный пористым веществом лигнином, являющимся хорошим теплоизоляционным материалом. При хорошей изоляции стержня можно пренебречь отдачей тепла через боковую поверхность и считать, что тепло распространяется только вдоль стержня. Через некоторое время после подачи пара в термостат А в стержне устанавливается стационарный процесс переноса тепла, характеризуемый постоянством температуры в каждом сечении стержня. Такое состояние возможно, если через любое поперечное сечение за равные промежутки времени проходит одинаковое количество тепла (dQ/dt = const).

Из уравнения (4) следует, что при этом градиент температуры dT/dl можно считать одинаковым для всех сечений стержня. Поэтому он может быть определен в виде:

(5)

где l – расстояние между двумя сечениями стержня, ΔТ – разность температур в этих сечениях, определяемая по показаниям гальванометра.

Для определения dQ/dt (количества тепла, протекающего через поперечное сечение стержня за 1 секунду) поступают следующим образом. При стационарном процессе переноса тепла:

(6)

За время t теплота Q будет передана воде, протекающей через термостат В. При этом вода нагреется от Т1 до Т2 (см. рис. 3). Если за это же время через термостат В протечет количество воды, масса которой М, то

где с – удельная теплоемкость воды, Т1 и Т2 – показания соответствующих термометров.

Подставляя формулы (5), (6) и (7) в уравнение Фурье (4). Получим формулу для определения К:

(8)

S – площадь поперечного сечения стержня.

Наиболее впечатляющим успехом модели Друде в то время, когда она была предложена, явилось объяснение эмпирического закона Видемана и Франца (1853г.). Закон Видемана-Франца утверждает, что соотношение теплопроводности к электропроводности для большинства металлов прямо пропорционально температуре, причем коэффициент пропорциональности с достаточной точностью одинаков для всех металлов. Эта закономерность видна из таблицы , где приведены измеренные значения теплопроводности и отношение (называемое числом Лоренца) для некоторых металлов при двух температурах, 273 К и 373К.

Для объяснения этой закономерности в рамках модели Друде предполагают, что основная часть теплового потока в металле переносится электронами проводимости. Это предположение основано на том эмпирическом наблюдении, что металлы проводят тепло гораздо лучше, чем диэлектрики. Поэтому теплопроводность, обусловленная ионами, которые имеются и в металлах, и в диэлектриках, гораздо менее важна по сравнению с теплопроводностью, обусловленной электронами проводимости (присутствующими только в металлах).

Экспериментальные значения коэффициента теплопроводности и числа Лоренца некоторых металлов
Элемент273К 373К
χ / σ T, 10 -8 Вт ∙Ом/К 2 χ / σ T , 10 -8 Вт∙Ом/К 2
Li0.712.220.732.43
Na1.382.12
K1.02.23
Rb0.62.42
Cu3.852.203.822.29
Ag4.182.314.172.38
Au3.12.323.12.36
Be2.32.361.72.42
Mg1.52.141.52.25
Nb0.522.900.542.78
Fe0.802.610.732.88
Zn1.132.281.12.30
Cd1.02.491.0
Al2.382.142.302.19
In0.882.580.802.60
Ti0.52.750.452.75
Sn0.642.480.602.54
Pb0.382.640.352.53
Bi0.093.530.083.35
Sb0.182.570.172.69

Чтобы дать определение коэффициента теплопроводности и рассчитать его, рассмотрим металлический стержень, вдоль которого температура медленно меняется. Если бы на концах стержня не было источников, и стоков тепла, поддерживающих градиент температуры, то его горячий конец охлаждался бы, а холодный – нагревался, то есть тепловая энергия текла бы в направлении, противоположном градиенты температуры. Подводя тепло к горячему концу с той же скоростью, с которой оно отсюда уходит, можно добиться установления стационарного состояния с градиентом температуры и постоянным потоком тепловой энергии. Мы определяем плотность потока тепла j q как вектор, параллельный направлению потока тепла и равный по абсолютной величине количеству тепловой энергии, пересекающей за единицу времени единичную площадь, перпендикулярную потоку. Для малых градиентов температуры поток тепла оказывается пропорциональным (закон Фурье):

где — коэффициентом теплопроводности. Он положителен, поскольку направление потока тепла противоположно направлению градиента температуры.

Большинство кинетических свойств металлов не имеет аналогов у диэлектриков. Однако диэлектрики, являясь электрическими изоляторами, все же проводят тепло. Конечно, они проводят не так хорошо, как металлы: верхний конец серебряной ложки, опущенной в кофе, становится горячим гораздо быстрее, чем ручка керамической чашки. Тем не менее с точки зрения модели статистической решетки в диэлектриках вообще не существует механизма, который обеспечивал бы даже небольшой перенос тепла. Действительно, в частично заполненных зонах диэлектриков содержится столь малое число электронов, что их недостаточно для выполнения этой задачи. Теплопроводность диэлектриков обусловлена в первую очередь решеточными степенями свободы.

Теплопроводность реальных диэлектриков не бесконечна по ряду обстоятельств:

1) Неизбежные несовершенства решетки, примеси, изотопические неоднородности и т.п., всегда присутствующие в реальных кристаллах, играют роль рассеивающих центров для фононов и служат препятствиями тепловому потоку.

2) Даже в совершенно чистом кристалле фононы обязательно сталкиваются с поверхностью образца, что также ограничивает тепловой поток.

3) Даже в совершенно чистом бесконечном кристалле стационарные состояния гармонического гамильтониана представляют собой всего лишь приближенные стационарные состояния полного ангармонического гамильтониана, поэтому состояние с определенной совокупностью фононных чисел заполнения не будет оставаться неизменным с течением времени.

Предположим, что вдоль оси х в кристалле диэлектрика приложен небольшой градиент температуры. (рис. 3)

Рис. 3: Перенос тепла фононами при наличии постоянного градиента температуры вдоль оси х.

Поток тепла в точке х0 обусловливается фононами, испытавшими последнее столкновение в среднем на расстоянии от х0 . Фононы, скорость которых в точке х0 составляет угол θ с осью х , испытали последнее столкновение в точке Р, расположенной на расстоянии выше по градиенту температуры, и поэтому переносимая ими плотность энергии равна , а компонента скорости вдоль оси х равна . Полный поток тепла пропорционален произведению этих величин, усредненному по телесному углу.

В отсутствии процессов переброса диэлектрический кристалл имеет бесконечно большую теплопроводность.

Теплопроводность совершенного бесконечного ангармонического кристалла конечна при низких температурах лишь из-за того, что в этих условиях имеется небольшая вероятность осуществления нарушающих закон сохранения квазиимпульса процессов переброса,которые уменьшают тепловой поток. С понижением температуры число фононов, способных принять участие в процессах переброса, спадает по экспоненте. Без процессов переброса теплопроводность имела бы бесконечно большую величину.

Поведение теплопроводности во всем диапазоне температур должно быть следующим. При очень низких температурах теплопроводность будет ограничиваться температурно-независимыми процессами рассеяния, определяемыми геометрией образца и чистотой вещества, из которого он изготовлен. Поэтому он будет расти пропорционально Т 3 так же, как удельная теплоемкость. Рост продолжается до тех пор, пока не будет достигнута температура, при которой процессы переброса становятся столь частыми, что длина свободного пробега оказывается меньше не зависящей от температуры длины свободного пробега. В этой точке теплопроводность достигает максимума, а затем начинает очень быстро падать за счет экспоненциального возрастания частоты процессов переброса с повышением температуры. Резкое экспоненциальное падение скоро заменяется медленным степенным убыванием (из-за того, что при высоких температурах велико число фононов, способных принять участие в процессе рассеяния (с перебросом)).

На Рис. 4 Показаны типичные экспериментальные кривые температурной зависимости теплопроводности.

Рис.4: Теплопроводность изотопически чистых кристаллов LiF .

§ 2. Перенос массы в твердых телах (диффузия).

Диффузия (от лат. diffusio — распространение, растекание), взаимное проникновение соприкасающихся веществ друг в друга вследствие теплового движения частиц вещества. Диффузия происходит в направлении падения концентрации вещества и ведёт к равномерному распределению вещества по всему занимаемому им объёму (к выравниванию химического потенциала вещества).

Самым известным примером диффузии является перемешивание газов или жидкостей (если в воду капнуть чернил, то жидкость через некоторое время станет равномерно окрашенной). Другой пример связан с твёрдым телом: если один конец стержня нагреть или электрически зарядить, распространяется тепло (или соответственно электрический ток) от горячей (заряженной) части к холодной (незаряженной) части. В случае металлического стержня тепловая диффузия развивается быстро, а ток протекает почти мгновенно. Если стержень изготовлен из синтетического материала, тепловая диффузия протекает медленно, а диффузия электрически заряженных частиц — очень медленно. Диффузия молекул протекает в общем ещё медленнее. Например, если кусочек сахара опустить на дно стакана с водой и воду не перемешивать, то пройдёт несколько недель, прежде чем раствор станет однородным. Ещё медленнее происходит диффузия одного твёрдого вещества в другое. Например, если медь покрыть золотом, то будет происходить диффузия золота в медь, но при нормальных условиях (комнатная температура и атмосферное давление) золотосодержащий слой достигнет толщины в несколько микрометров только через несколько тысяч лет.

Диффузия имеет место в газах, жидкостях и твёрдых телах, причём диффундировать могут как находящиеся в них частицы посторонних веществ, так и собственные частицы (самодиффузия).

Самодиффузия , частный случай диффузии в чистом веществе или растворе постоянного состава, при котором диффундируют собственные частицы вещества. При самодиффузии атомы, участвующие в диффузионном движении, обладают одинаковыми химическими свойствами, но могут различаться по своим физическим характеристикам (составом атомного ядра). При различии изотопного состава вещества за процессом самодиффузии можно наблюдать, применяя радиоактивные изотопы или анализируя изотопный состав при помощи масс-спектрометров. Изменение концентрации данного изотопа в рассматриваемом объёме вещества в зависимости от времени описывается обычными уравнениями диффузии, а скорость процесса характеризуется соответствующим коэффициентом самодиффузии. Диффузионные перемещения частиц твёрдого тела могут приводить к изменению его формы и к другим явлениям, если на образец длительно действуют такие силы, как поверхностное натяжение, сила тяжести, упругие силы, электрические силы и т. д. При этом может наблюдаться сращивание двух пришлифованных образцов одного и того же вещества, спекание порошков, растягивание тел под действием подвешенного к ним груза (диффузионная ползучесть материалов) и т. д. Изучение кинетики этих процессов позволяет определить коэффициент самодиффузии вещества.

Диффузия крупных частиц, взвешенных в газе или жидкости (например, частиц дыма или суспензии), осуществляется благодаря их броуновскому движению. В дальнейшем, если специально не оговорено, имеется в виду молекулярная диффузия.

Наиболее быстро она происходит в газах, медленнее в жидкостях, ещё медленнее в твёрдых телах, что обусловлено характером теплового движения частиц в этих средах. Траектория движения каждой частицы газа представляет собой ломаную линию, т.к. при столкновениях частицы меняют направление и скорость своего движения. Неупорядоченность движения приводит к тому, что каждая частица постепенно удаляется от места, где она находилась, причём её смещение по прямой гораздо меньше пути, пройденного по ломаной линии. Поэтому диффузионное проникновение значительно медленнее свободного движения (скорость диффузионного распространения запахов, например, много меньше скорости молекул). Смещение частицы меняется со временем случайным образом, но средний квадрат его `L2 за большое число столкновений растёт пропорционально времени t. Коэффициент пропорциональности D в соотношении: `L2

Dt называется коэффициентом диффузии. Это соотношение, полученное А. Эйнштейном, справедливо для любых процессов диффузии.

В твёрдом теле могут действовать несколько механизмов диффузии: обмен местами атомов с вакансиями (незанятыми узлами кристаллической решётки), перемещение атомов по междоузлиям, одновременное циклическое перемещение нескольких атомов, прямой обмен местами двух соседних атомов и т.д. Первый механизм преобладает, например, при образовании твёрдых растворов замещения, второй — твёрдых растворов внедрения.

Твёрдые растворы, твёрдые фазы переменного состава, в которых атомы раз личных элементов смешаны в известных пределах или неограниченно в общей кристаллической решётке. Растворимость в твёрдом состоянии свойственна всем кристаллическим твёрдым телам. Б большинстве случаев эта растворимость ограничена узкими пределами, но известны системы с непрерывным рядом Т. р. (например, Cu — Au, Ti — Zr, Ge — Si, GaAs — GaP). По существу все кристаллические вещества, известные как «чистые» или «особо чистые», являются твердыми растворами с очень малым содержанием примесей, поскольку абсолютная чистота практически недостижима. Наличие широкой области твердых растворов на основе соединений или главным образом металлов имеет громадное значение в технике, так как образующиеся при этом сплавы отличаются более высокими механическими, физическими и другими свойствами, чем исходные компоненты. При распаде твердых растворов сплавы приобретают новые, часто особые свойства.

Коэффициент диффузии в твёрдых телах крайне чувствителен к дефектам кристаллической решётки, возникшим при нагреве, напряжениях, деформациях и других воздействиях. Увеличение числа дефектов (главном образом вакансий) облегчает перемещение атомов в твёрдом теле и приводит к росту коэффициента диффузии, для которого в твёрдых телах характерна резкая (экспоненциальная) зависимость от температуры. Так, коэффициент диффузии цинка в медь при повышении температуры от 20 до 300°С возрастает в 1014 раз.

Для большинства научных и практических задач существенно не диффузионное движение отдельных частиц, а происходящее от него выравнивание концентрации вещества в первоначально неоднородной среде. Из мест с высокой концентрацией уходит больше частиц, чем из мест с низкой концентрацией. Через единичную площадку в неоднородной среде проходит за единицу времени безвозвратный поток вещества в сторону меньшей концентрации — диффузионный поток j. Он равен разности между числами частиц, пересекающих площадку в том и другом направлениях, и потому пропорционален градиенту концентрации ÑС (уменьшению концентрации С на единицу длины). Эта зависимость выражается законом Фика (1855): j = -DÑC.

Единицами потока j в Международной системе единиц являются 1/м 2 ·сек или кг/м 2 ·сек, градиента концентрации — 1/м 4 или кг/м 4 , откуда единицей коэффициента диффузии является м 2 /сек. Математически закон Фика аналогичен уравнению теплопроводности Фурье. В основе этих явлений лежит единый механизм молекулярного переноса: в 1-м случае переноса массы, во 2-м — энергии.

Диффузия возникает не только при наличии в среде градиента концентрации (или химического потенциала). Под действием внешнего электрического поля происходит диффузия заряженных частиц (электродиффузия), действие поля тяжести или давления вызывает бародиффузию, в неравномерно нагретой среде возникает термодиффузия.

Все экспериментальные методы определения коэффициента диффузии содержат два основных момента: приведение в контакт диффундирующих веществ и анализ состава веществ, изменённого диффузией. Состав (концентрацию продиффундировавшего вещества) определяют химически, оптически (по изменению показателя преломления или поглощения света), масс-спектроскопически, методом меченых атомов и др.

Рассмотрим влияние точечных дефектов на диффузию. Точечные дефекты оказывают наиболее значительное влияние на скорость диффузии в кристаллах и на электропроводность в диэлектрических кристаллах. Остановимся, прежде всего, на возможных механизмах диффузии в кристаллах.

Атомы в кристаллах могут перескакивать из одного положения в другое. Возможные варианты таких перескоков изображены на рис. 5. Два или четыре атома могут поменяться местами (см. рис. 5 (1, 2)). Однако атому гораздо легче (это показывают как наглядные соображения о том, как «легче протиснуться атому между другими, раздвигая их», так и строгие расчеты) перескакивать в вакансию (см. рис. 5 (3)). Также сравнительно легко перескакивать межузельному атому, особенно если он небольшого размера (см. рис. 5 (4)). Поэтому основными механизмами диффузии в твердых телах считают вакансионный, связанный с перегруппировками атомов вблизи вакансий (см. рис. 5(3)) и межузельный, связанный с перемещениями, как правило, сравнительно мелких атомов по междоузлиям (см. рис. 5 (4)).

Рис.5. Наиболее распространенные механизмы диффузии атомов в кристаллах: 1 — обмен местами двух соседних атомов; 2 — обмен местами нескольких соседних атомов; 3 — перескок атома в вакансию; 4 — перескоки межузельных атомов в соседние междоузлия.

Во всех случаях диффузии атомы должны преодолевать потенциальный барьер; происхождение которого связано главным образом с квантовыми силами отталкивания, сильно увеличивающимися при сближении атомов. Рассмотрим наиболее простой для анализа случай перескакивания межузельного атома в соседнее междоузлие. На рис. 6 схематически изображена зависимость энергии межузельного атома от координаты х . Энергия, необходимая для такого перескока, называется энергией активации Еа. . Она обычно значительно больше средней энергии теплового движения ( ). Вероятность такого события очень мала и задается формулой Больцмана:

(1)

Поэтому атомы в кристаллах в течение длительного времени испытывают колебания около положения равновесия с некоторой частотой ν, и только очень редко, когда случайно энергия тепловых колебаний превысит энергию активации, могут перепрыгнуть на новое место. Можно приблизительно оценить частоту f таких перескоков как:

(2)

Рис.6 Зависимость энергии межузельного атома от координаты x . Энергия атома минимальна в междоузлиях и максимальна в положениях А.

Таким образом, атом в твердых телах перемещается редкими прыжками, на расстояние a и частотой f как это схематически показано на рис 7.

Рис.7. Схематическое изображение процесса диффузии межузельных атомов в примитивной кубической решетке

С помощью такой модели движения атомов рассчитаем коэффициент диффузии межузельных атомов в случае простой кубической решетки с параметром a . Пусть частота перескоков из данного междоузлия в соседнее равна f .

Вспомним закон диффузии Фика, связывающий поток числа атомов dN / dt через площадку S и градиент концентрации dC / dx :

(3)

Параметр D называется коэффициентом диффузии. Он зависит от типа диффундирующего атома и вещества, в котором происходит диффузия заданных атомов. Рассмотрим в кристалле направление [100] и перпендикулярную ему плоскость S , и проходящую через узлы решетки (отмечены кружочками на рис. 8 а). Также рассмотрим две параллельные соседние плоскости 1 и 2, проходящие соответственно слева и справа через ближайшие к выбранной плоскости междоузлия (обозначены квадратиками). Расстояние между плоскостями 1 и 2, равное расстоянию между междоузлиями, равно также параметру решетки и «длине перескока» a . Пусть на участке площади S плоскости 1 находится N 1 межузельных атомов, а на таком же по площади участке плоскости 2 – N 2 межузельных атомов (см. рис. 8 а).

Можно рассчитать входящие в закон диффузии концентрации C 1 и C 2 межузельных атомов в точке с координатой x и . Очевидно:

; (4)

Рис. 8. Расположение узлов и междоузлий кубической примитивной решетке (а) Расположение междоузлий ближайших к заданному (б) в этой решетке

Вычислим число атомов ΔN 1 , пересекших за Δt плоскость S слева направо. Каждый атом первой плоскости может перепрыгнуть в одно из шести ближайших мест (см. рис. 8 б), только одно из них соответствует пересечению атомом выбранной центральной плоскости. Тогда

(5)

Аналогично вычисляется число атомов ΔN 2 , пересекших за Δt выбранную плоскостьS справа налево:

(6)

Общее число атомов, пересекших плоскость, окажется равным:

(7)

(8)

Сравнивая (3) и (8), получим, что коэффициент диффузии оказывается равным:

(9)

Примерно по такой же схеме можно рассчитать коэффициенты диффузии и в других изображенных на рис. 5 случаях, характерная энергия активации будет другой, причем в случаях 1 и 2 она будет больше, чем в случаях 3 и 4. Заметим, что энергия активации при перегруппировке атомов вблизи вакансии будет значительно меньше, чем в случаях 1 и 2. Несмотря на то, что число вакансий в соответствии с (1) обычно небольшое, вклад в диффузию по механизму 3 значительно превосходит вклад в диффузию по механизму 1 и 2 из-за меньшей энергии активации и, следовательно, большей вероятности перескока атомов.

Общим для всех случаев диффузии, изображенных на рис. 5, окажется экспоненциальная зависимость коэффициента диффузии от температуры вида:

(10)

Параметры D 0 и Ea этой формулы измерены экспериментально для каждой пары диффундирующий элемент — вещество, в котором происходит диффузия (см. табл. 2).

Параметры D 0 и Ea формулы (10) для некоторых пар диффундирующий элемент — вещество.

Элементы , м 2 /с , эВ
в 3,0
в 2,5
в 2,5
в 2,5
в 4,5
в 1,45
в 2,05
в 1,98
в (ОЦК-железо) 0,9
в 1,20

На рис. 9 изображена зависимость коэффициента диффузии углерода в ОЦК железе от температуры. Видно, что соотношение (10) выполняется весьма точно.

Рис.9 .Зависимость коэффициента диффузии углерода в ОЦК железе от температуры

С помощью рассмотренной выше модели диффузии можно оценить среднее смещение 2 > атома в кристалле за время t = Nt 1 = N / f (здесь t 1 =1/ f среднее время между последовательными перескоками атома). Для этого вычисляют величину 2 > в предположении о полной независимости последующих прыжков друг от друга [2]. В этом случае можно получить формулу:

(11)

Эта формула используется для экспериментального определения величины D .

Диффузию в твердых телах в настоящее время наиболее эффективно изучают с использованием «меченых атомов». Для таких исследований на поверхность вещества наносят определенное количество радиоактивных меченых атомов. Затем образец выдерживается при заданной температуре в течение времени достаточного для диффузии «меченых атомов» на глубину порядка 0,3-1 мм. Затем измеряется активность образца. После удаления шлифованием слоя вещества заданной толщины снова измеряется активность образца, и так несколько раз. Таким образом можно определить среднюю глубину проникновения «меченых атомов» в вещество и вычислить коэффициент диффузии D при заданной температуре. Проделав серию опытов при различных температурах можно определить параметры D 0 и Ea формулы (10).

Можно по формулам (1) и (2) и данным таблицы получить оценки частот перескоков атомов при различных температурах. Так атом углерода в альфа-железе при температуре 1800 К перескакивает 1011 раз в секунду, при комнатной температуре — 1 раз за десятки секунд. Таким образом, заметную роль диффузия играет только при высоких температурах, сопоставимых с температурой плавления вещества. Известно, что защитное никелевое или хромовое покрытие железа при комнатной температуре практически не «впитывается» в железо, а при температуре 1000-1300 К этот процесс сильно ускоряется. Кратковременные нагревы для легирования полупроводника примесями используются в полупроводниковой технике изготовления интегральных схем: нанесенные напылением на нужные участки поверхности полупроводникового кристалла легирующие примеси при нагреве на несколько сотен градусов диффундируют в полупроводник и легируют его, образуя в кристалле сложную систему областей полупроводников p — и n- типа.

Диффузия, происходящая главным образом за счет перемещения дефектов, является механизмом постепенного изменения числа дефектов в веществе. Известно, что вероятность образования дефекта при температуре, значительно меньшей температуры плавления вещества, очень мала. Однако обычно число дефектов во много раз больше, так как дефекты зарождались при высоких температурах: либо во время роста кристаллов, либо после закалки от высокой температуры. Постепенно плотность дефектов уменьшается. Происходит это благодаря либо попаданию межузельных атомов в вакансию (рекомбинация дефектов, подобная рекомбинации электронов и дырок в полупроводниках), либо благодаря перемещению дефекта на поверхность кристалла или границы кристаллического зерна. В некоторых случаях точечные дефекты — примесные атомы группируются, образуя выделения новой фазы. Перечисленные процессы называют залечиванием дефектов.

Часто проводят специальные термообработки, состоящие в длительных выдержках детали при постепенно понижающейся температуре, имеющие целью ускорить залечивание дефектов. После такой термообработки количество дефектов меньше меняется впоследствии, а значит, меньше изменяются и свойства материала в процессе его эксплуатации. По таким схемам обрабатывают, например, калиброванные электросопротивления точных приборов, постоянные магниты и т. п.

§3. Перенос импульса в твердых телах (вязкое трение).

Явление вязкости или внутреннего трения наблюдается как в газах и жидкостях, так и в твердых телах. Оно приводит к возникновению силы сопротивления при движении тела в жидкости или газе, и к затуханию звуковых волн при прохождении их через различные среды. В частности, с явлением вязкого трения связан процесс затухания колебаний в механических осцилляторах.

Рассмотрим твердое тело, движущееся в жидкости. Как показывает опыт, слои жидкости, непосредственно примыкающие к движущемуся телу, как бы прилипают к нему и вовлекаются в направленное движение. За счет обмена молекулами между слоями это движение передается соседним слоям, от них — следующим и т. д. Таким образом возникает поток импульса от слоев, обладающих большей скоростью, к слоям с меньшей скоростью. Именно в этом и состоит механизм жидкого трения , или вязкости .

Действительно, увеличение импульса жидкости означает, что на нее со стороны тела действует какая-то сила (изменение импульса системы равно импульсу внешних сил, действующих на нее). Следовательно, согласно третьему закону Ньютона со стороны жидкости на тело действует сила, направленная в противоположную сторону. Это и есть сила жидкого трения.

Причина возникновения вязкого трения — это внутреннее трение.

Если твёрдое тело движется в неподвижной среде, прилипший к нему слой воды или воздуха перемещается вместе с ним. При этом он скользит вдоль соседнего слоя. Возникает сила трения, увлекающая этот слой. Он приходит в движение и в свою очередь увлекает следующий слой и т. д.

Чем дальше от поверхности тела, тем медленнее движутся слои жидкости или газа.

Сила трения между слоями тормозит более быстрые слои и, значит, само твёрдое тело. Оно тормозится непосредственно вязким трением.

То же самое происходит, когда поток жидкости или газа течёт мимо неподвижного тела.

Поток импульса от слоев, движущихся быстро, к слоям, движущимся с меньшей скоростью, пропорционален разности скоростей этих слоев. Коэффициент пропорциональности между потоком импульса и разностью скоростей называется коэффициентом вязкости жидкости η .

Это явление возникновения касательных сил, препятствующих перемещению частей жидкости или газа друг по отношению к другу. Смазка между двумя твердыми телами заменяет сухое трение скольжения трением скольжения слоев жидкости или газа по отношению друг к другу. Скорость

частиц среды плавно меняется от скорости одного тела до скорости другого тела.

Величина силы вязкого трения пропорциональна скорости относительного движения V тел, пропорциональна площади S и обратно пропорциональна расстоянию между плоскостями h.

Коэффициент пропорциональности, зависящий от сорта жидкости или газа, называют коэффициентом динамической вязкости . Самое важное в характере сил вязкого трения то, что при наличии любой сколь угодно малой силы тела придут в движение, то есть не существует трения покоя.

Если движущееся тело полностью погружено в вязкую среду и расстояния от тела до границ среды много больше размеров самого тела, то в этом случае говорят о трении или сопротивлении среды. При этом участки среды (жидкости или газа), непосредственно прилегающие к движущемуся телу, движутся с такой же скоростью, как и само тело, а по мере удаления от тела скорость соответствующих участков среды уменьшается, обращаясь в нуль на бесконечности. Сила сопротивления среды зависит от ее вязкости, от формы тела, от скорости движения тела относительно среды. Например, при медленном движении шарика в вязкой жидкости силу трения можно найти, используя формулу Стокса:

Пропорциональность силы трения скорости движения тела в среде выполняется только при малых скоростях движения. Критерием малости служит безразмерное число Рейнольдса:

Здесь — плотность среды, а R- характерный размер тела. Для шара таким размером является его радиус. Для тела определенной формы существует максимальное (критическое) число Рейнольдса, при котором трение остается вязким, например, для шара это число 100. При больших скоростях движения характер силы трения меняется величина силы трения перестает быть пропорциональной скорости движения тела.

§4. Перекрестные процессы переноса в твердых телах.

Явления переноса — необратимые процессы пространственного переноса массы, импульса, энергии или др. Причины этих процессов- пространственные неоднородности состава, скорости движения частиц системы, температуры. Перенос происходит в направлении, обратном градиенту концентрации, температуры или др., что приближает систему к равновесию.

Явления переноса в покоящейся среде осуществляются только в результате хаотического движения молекул (молекулярный перенос). В текущих средах к этому механизму переноса добавляется конвективный перенос, а при высоких числах Рейнольдса еще и турбулентный перенос, связанный с хаотическим перемещением вихрей. Общую феноменологическую теорию явлений переноса, применимую к газообразной, жидкой или твердой системе, дает термодинамика необратимых процессов.

Перенос массы (диффузия) происходит при наличии в системе градиента концентрации, а перенос теплоты (теплопроводность) — вследствие градиента температуры. Строго говоря, движущей силой диффузии является градиент химического потенциала, который лишь вблизи положения равновесия приводится к градиенту концентрации, фигурирующему в уравнении закона Фика. Однако практическая необходимость выражать диффузионный поток через градиент химического потенциала (что существенно усложняет задачу) возникает лишь в специальных случаях, например при расчете процесса вблизи критической точки. Законы Фика и Фурье не учитывают взаимное влияние потоков при переносе массы и теплоты (перекрестные процессы).

При существенных градиентах температуры и давления (последнее может быть вызвано, например, внешним полем) необходим учет дополнительного потока массы вследствие градиентов температуры (термодиффузия) и градиентов давления (бародиффузия), а также учет дополнительного потока теплоты, вызванного переносом массы. При определенных условиях для перекрестных потоков выполняется теорема Онсагера.

Гипотезу, согласно которой перенос определяется градиентом параметра в рассматриваемой точке пространства в данный момент времени, используют для самых различных процессов, например при описании диффузии в пористых материалах, продольного перемешивания в каналах, заполненных насадкой или зернистым слоем, и т.д. Из этой гипотезы, в частности, следует, что локальные концентрационные возмущения проявляются мгновенно во всех точках системы. Но скорость распространения концентрационных возмущений не может быть больше средней скорости молекул. Учет конечной скорости переноса массы, импульса или теплоты приводит к релаксационным уравнениям. В простейшем случае одномерной диффузии в отсутствие химических превращений связь между плотностью диффузионного потока и градиентом концентрации в системе координат, неподвижной относительно среды, имеет вид:

где De — коэффициент эффективной диффузии (при рассмотрении молекулярных процессов перехода Dе следует заменить на коэффициент D); τ-время релаксации диффузионного процесса, характеризующее «память среды»; t- время. По порядку величины τ совпадает со временем свободного пробега диффундирующих частиц. Аналогичные уравнения могут быть записаны для плотности потока импульса и теплоты.

Все рассмотренные примеры характеризуются общим свойством — переносом некоторого признака (энергии в первом примере, вещества во втором и импульса в третьем) из одних областей системы в другие. Неслучайно поэтому, что явления такого рода называются явлениями переноса . Каждое из них характеризуется своим коэффициентом переноса, и задача теории — уметь их вычислять. В общем случае это очень трудная задача, до сих пор полностью не решенная.

Оказывается, все три коэффициента (теплопроводности, диффузии и вязкости) пропорциональны длине свободного пробега молекул (l ) и средней скорости их теплового движения (υ ): . Такая зависимость коэффициентов переноса от характеристик молекулярного движения очень естественна. Ведь средняя скорость молекул υ определяет скорость переноса того или иного признака в процессе установления равновесия. Длина же свободного пробега l появляется в формуле потому, что после каждого столкновения параметры движения молекулы определяются параметрами системы в тех местах, где эти столкновения происходят, то есть в точках, отстоящих друг от друга на расстояние l . Так, в нашем примере с теплопроводностью величина энергии, передаваемой молекулой при очередном столкновении, определяется разностью температур в тех точках среды, где произошло это и предыдущее столкновение.

В данной курсовой работе были рассмотрены явления переноса в твердых телах. Явления переноса объединяют группу процессов, связанных с выравниванием неоднородностей плотности, температуры или скорости упорядоченного перемещения отдельных слоев вещества.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Ашкрофт Н., Мермин Н. Физика твердого тела: Пер. с англ. В 2-х т. М.: Мир, 1979. Т. 1, Т. 2

2. Городецкий Е.Е. О явлениях переноса //Квант. — 1986. — № 9. — С. 27-29.

3. Епифанов. Г. И. Физика твердого тела. М.: Высшая школа,1977.

4. Зисман Г. А., Тодес О. М. Курс общей физики. В 3 т. – М.: Наука, 1995. – 343 с.

5. Кухлинг Х. Справочник по физике: Пер. с нем. – М.: Мир, 1983. – 520 с.

6. Савельев И. В. Курс общей физики. М.: Наука, 1986.Т. III.

7. Сивухин Д. В. Общий курс физики. М.: Наука, 1979. Т. III.

8. Толубинский E В Теория процессов переноса. К., 1969;

9. Шьюмон П., Диффузия в твердых телах, пер. с англ., М., 1966

Лекция на тему «Явления переноса «

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Описание презентации по отдельным слайдам:

Лекция 22-23. Явления переноса Макроскопические явления переноса. Внутреннее трение (перенос импульса): закон Ньютона — Стокса. Теплопроводность: закон Фурье. Диффузия: закон Фика. Уравнение переноса. Явление переноса в газах. Связь коэффициентов переноса с молекулярно-кинетическими характеристиками газа. Связь между коэффициентами переноса и их зависимость от температуры и плотности. Особенности процессов переноса в жидких и твердых телах.

Явления переноса Термодинамика — системы в равновесном состоянии. Система в неравновесном состоянии — переход к равновесному состоянию посредством явлений переноса. Время достижения равновесия — время релаксации. Рассмотрим три основных явления переноса – внутреннее трение (вязкость), теплопроводность и диффузию. Вязкость. При относительном движении различных частей фазы возникают факторы, стремящиеся уменьшить относительную скорость, т. е. возникают силы торможения, или вязкость. Механизм этих сил в газах сводится к обмену импульсом упорядоченного движения между различными слоями газа, т. е. к переносу импульса упорядоченного движения. Возникновение сил трения в жидкостях также обусловлено процессом переноса импульса упорядоченного движения молекул.

Явления переноса Теплопроводность. В состоянии равновесия температура Т во всех точках системы одинакова. При отклонении температуры от равновесного значения в некоторой области в системе возникает движение теплоты в таких направлениях, чтобы сделать температуру всех частей системы одинаковой. Связанный с этим движением перенос теплоты называется теплопроводностью. Диффузия. В состоянии равновесия плотность каждой из компонент во всех точках фазы одинакова. При отклонении плотности от равновесного значения в некоторой области в системе возникает движение компонент вещества в таких направлениях, чтобы сделать плотность каждой из компонент постоянной по всему объему системы. Связанный с этим движением перенос вещества компонент, составляющих фазу, называется диффузией.

Явления переноса Внутреннее трение: закон Ньютона — Стокса

Явления переноса Теплопроводность: закон Фурье

Явления переноса Диффузия: закон Фика Бинаная смесь. Через перпендикулярную к z площадку S устанавливается поток молекул 1-го сорта массы M1:

Явления переноса Уравнение переноса. Явление переноса в газах. Общее уравнение переноса. Пусть G характеризует некоторое молекулярное свойство, отнесенное к одной молекуле. Этим свойством может быть энергия, импульс, концентрация, электрический заряд и т. д. При наличии градиента G имеет место движение G в направлении его уменьшения. Пусть ось X направлена вдоль градиента G. Среднее расстояние, пробегаемое молекулами, пересекающими площадку dS после последнего столкновения, равно 2 /3. Эта величина в большинстве случаев достаточно мала и G на расстоянии 2 /3 от площадки dS можно представить в виде

Явления переноса Среднее расстояние вдоль оси Z, которое проходят молекулы, пересекающие площадку dS после последнего столкновения dN — число молекул, пересекших площадку dS и на пути от элемента объема dV не испытавших ни одного последующего столкновения Поток числа молекул в направлении оси X равен n0 /4. Следовательно, поток G сквозь площадку dS в направлении отрицательных и положительных значений оси X равны

Явления переноса Полный поток в положительном направлении оси X в точке х имеет вид Уравнение является основным уравнением процессов переноса количества G. Теплопроводность. G — средняя энергия теплового движения, приходящаяся на одну молекулу. IG — поток теплоты, который будем обозначать Iq. Из теоремы о равнораспределении энергии по степени свободы

Явления переноса Уравнение переноса (уравнение Фурье или закон Фурье) где — теплопроводность, — соответственно плотность Главное изменение теплопроводности при фиксированной концентрации частиц газа проистекает из-за различия в средней скорости . Благодаря этому легкие газы обладают начительно большей теплопроводностью, чем тяжелые. Кислород — 0,024 Вт/(м • К), водород — 0,176 Вт/(м • К). и удельная теплоемкость газа при постоянном объеме.

Явления переноса Поскольку n0 = 1/σ не зависит от давления, a

Т1/2 и также не зависит от давления, можно заключить, что теплопроводность не зависит от давления, что хорошо подтверждается экспериментом, и увеличивается приблизительно прямо про- пропорционально корню квадратному из температуры. Здесь использовано выражение «приблизительно» потому, что с увеличением температуры поперечное сечение σ несколько уменьшается.

Явления переноса Вязкость. В результате теплового движения молекулы перелетают из одного слоя газа в другой, перенося при этом свой импульс упорядоченного движения из одного слоя в другой. В результате обмена молекулами между слоями, движущимися с различ- различными скоростями, импульс упорядоченного движения быстрее движущегося слоя уменьшается, а медленнее движущегося — увеличивается. Это означает, что быстрее движущийся слой тормозится, а медленнее движущийся ускоряется. В этом и состоит механизм возникновения силы внутреннего трения между слоями газа, движущимися с различными скоростями.

Явления переноса Сила трения, τ, отнесенная к площади трущихся поверхностей газа, равна потоку импульса упорядоченного движения в перпендикулярном скорости направлении. — динамическая вязкость (Дж. Максвелл, 1860 г.) динамическая вязкость не зависит от давления и растет в основном пропорционально корню квадратному от температуры, (небольшой рост связан с уменьшением σ при росте температуры.

Явления переноса Независимость динамической вязкости, т. е. силы трения, от давления и, следовательно, от плотности газа. Длина свободного пробега изменяется обратно пропорционально давлению, а концентрация молекул — прямо пропорционально. Переносимый каждой молекулой импульс упорядоченного движения прямо пропорционален длине свободного пробега, т. е. обратно пропорционален давлению. Поскольку концентрация молекул, переносящих импульс, прямо пропорциональна давлению, получается, что суммарный переносимый молекулами импульс, отнесенный к промежутку времени и объему, не зависит от давления (подтверждается экспериментально). Единицей динамической вязкости является 1 Па∙с. Динамическая вязкость газов при температуре 20°С и атмосферном давлении имеет порядок 10-5 Па∙с. Кинематическая вязкость:

Явления переноса Самодиффузия. Пусть молекулы равномерно заполняют некоторый объем. Допустим, что все молекулы одинаковы по всем своим механическим и динамическим параметрам, однако могут отличаться по некоторому признаку, не оказывающему влияние ни на взаимодействие между молекулами, ни на их движения. Таким образом, переносимым признаком в этом случае является просто идентичность молекул, т. е. признак их индивидуальной идентификации. Назовем условно этот признак «цветом» и будем считать, что имеются белые и черные молекулы. Предположим, что концентрация белых и черных молекул в пространстве неоднородна. Очевидно, что в состоянии равновесия как «черный», так и «белый» сорт молекул должен равномерно заполнить весь объем. Поэтому при неоднородном распределении начнется выравнивание концентраций в результате столкновений между молекулами. Переносимым количеством в этом случае является концентрация рассматриваемого сорта молекул.

Явления переноса Пусть концентрация первого сорта молекул n1(х). Учитывая, что G в уравнении переноса есть характеристика переносимого количества, отнесенная к одной молекуле, имеем где n0 — равновесная концентрация. Уравнение переноса принимает вид где — коэффициент диффузии.

Явления переноса При фиксированной температуре =const, а l

1/р. Следовательно, при T=const D

1/р. С другой стороны, при фиксированном давлении l

Т, a Следовательно, при p=const D

Т3/2. Эти заключения были тщательно проверены в экспериментах. Соотношение Dp = const, соблюдается в довольно широком интервале давлений для не очень плотных газов с точностью до нескольких десятков процентов. В зависимости от температуры D растет несколько быстрее, чем пропорционально Т3/2. Это объясняется тем, что при росте Т несколько уменьшается поперечное сечение, что приводит к дополнительному увеличению длины свободного пробега. Коэффициент диффузии для кислорода и азота в воздухе при нормальных условиях имеет порядок 10-5 м2/с.

Явления переноса Связь между коэффициентами, характеризующими уравнение переноса. где cv— удельная теплоемкость при постоянном объеме, ρ — плотность вещества. Наличие этой связи между коэффициентами процессов переноса обусловлено одинаковостью физической природы процессов переноса.

Явления переноса Взаимодиффузия в газе из различных молекул. Если имеется два сорта молекул, различающихся динамическими свойствами и характером взаимодействия, то процесс диффузии значительно усложняется. Пусть для определенности имеются тяжелые и легкие молекулы. Обозначим концентрации молекул n1 и n2. Условие постоянства давления и температуры по всему объему по закону Дальтона имеет вид Для диффузионных потоков молекул каждого сорта

Явления переноса Очевидно, что в общем случае D1 и D2 не равны, поэтому диффузионные потоки не компенсируют друг друга, вследствие чего должно нарушиться постоянство давления по объему газа. Поэтому наряду с диффузионными потоками должен возникнуть гидродинамический поток, т. е. движение газа как целого, такой, чтобы сохранить постоянство давлений. Обозначая v — гидродинамическую скорость потока газа как целого, можно условие неизменности давления записать в виде Отсюда

Явления переноса Поэтому полный поток первой компоненты, являющийся суммой диффузионного и гидродинамического потоков этой компоненты, равен где Таким образом, задача сводится к громоздким вычислениям средних длин свободных пробегов. Дж. Максвелл и Ц. Стефан для вычисления этих величин в модели жестких, абсолютно упругих шаров предложили следующие формулы:

Явления переноса Физические явления в разреженных газах Вакуум. При уменьшении давления длина свободного пробега увеличивается. Когда она становится равной линейным геометрическим размерам объекта, то молекулы сталкиваются лишь со стенками сосуда (если объем ограничен стенками) и практически не сталкиваются друг с другом. Такая ситуация называется вакуумом. Понятие вакуума относительно. Чем больше линейные размеры области, тем при меньшем давлении он достигается. При нормальных атмосферных условиях l

10-6 см. Теплопередача при малых давлениях. Столкновения между молекулами практически отсутствуют, молекулы являются переносчиками энергии от более горячих стенок к более холодным. Правильнее говорить о теплопередаче газом теплоты, поскольку никакого градиента температур в объеме сосуда нет.

Явления переноса Зависимость способности к теплопередаче от давления у газа другая, чем зависимость теплопроводности от давления. При высоком давлении теплопроводность не зависит от давления, теплопередача же при низком давлении увеличивается с ростом давления, поскольку увеличивается частота ударов молекул о стенки сосудов. И наоборот, теплопередача уменьшается при уменьшении давления до сколь угодно малых значений. Примером практического использования этого являются сосуды Дьюара. В полых стенках создаются условия вакуума с достаточно низкой теплопередачей. Диффузия при малых давлениях. Поскольку столкновений между молекулами в объеме практически нет, передача молекулярных признаков происходит со скоростью движения молекул, т. е. очень быстро. Время уравнивания концентраций даже в очень больших объемах является малым.

Явления переноса Трение при малых давлениях. Если имеются две твердые поверхности, движущиеся друг относительно друга, причем между поверхностями находится газ в условиях вакуума, то между поверхностями возникают силы трения, стремящиеся затормозить более быстро движущуюся и ускорить медленнее движущуюся поверхности. Это явление похоже по внешнему виду на возникновение аналогичных сил при достаточно высоком давлении, но механизм совершенно другой. В условиях вакуума между движущимися поверхностями не возникает слоев газа, движущихся поступательно друг относительно друга, в результате чего возникает сила внутреннего трения, передающаяся от слоя к слою. При столкновении с движущейся поверхностью молекула приобретает соответствующий импульс упорядоченного движения и, пролетев без столкновений пространство между поверхностями, обменивается импульсом своего упорядоченного движения с другой поверхностью.

Явления переноса Импульс, переданный поверхности молекулами в каждую секунду, численно равен силе трения. Таким образом, в условиях вакуума отсутствует внутреннее трение в газе в том смысле, в каком оно существует при более высоком давлении, но имеется взаимное трение движущихся друг относительно друга поверхностей. Сосуды, сообщающиеся через пористую перегородку. Размеры пор в пористой перегородке могут быть столь малыми, что в них соблюдаются условия вакуума уже при нормальном атмосферном давлении. Если по разные стороны пористой перегородки имеется один и тот же газ и поддерживаются различные температуры, то устанавливается равновесное состояние, при котором давления по разные стороны пористой перегородки различны.

Явления переноса В условиях равновесия число молекул, перелетающих из одной половины в другую через пористую перегородку, равно числу молекул, пролетающих через пористую перегородку в обратном направлении. Поскольку сами поры молекулы проходят без столкновений, то это условие имеет вид где Sэф — эффективная суммарная «площадь» пор в перегородке. Учитывая, что т. е. там, где температура больше, давление также больше. Такая ситуация при нормальных условиях невозможна, поскольку возникшие при разности давлений гидродинамические потоки быстро выравнивают давление.

Явления переноса Явления переноса в твердых телах Диффузия. В жидкостях и твердых телах также имеют место явления переноса, но механизм этих явлений отличается от механизма в газах. Это обусловлено тем, что, во-первых, в жидкостях и твердых телах теряет смысл представление о длине свободного пробега и, во-вторых, силы взаимодействия между молекулами очень велики и оказывают постоянное влияние на их движение. В твердых телах наблюдается как самодиффузия, так и взаимодиффузия. Наиболее наглядно это демонстрируется фактом взаимопроникновения вещества двух тел, находившихся достаточно долгое время в тесном контакте друг с другом.

Явления переноса Самодиффузия осуществляется главным образом с помощью трех следующих механизмов. 1. Если в узле кристаллической решетки имеется вакансия, то один из соседних атомов может совершить переход из своего узла в вакантный узел. Этот переход эквивалентен движению вакансии. Для того чтобы имел место процесс самодиффузии, обусловленный движением вакансий, необходимо, чтобы в решетке присутствовало неравномерное распределение вакансий, т. е. градиент плотности вакансий. При создании вакансий важную роль играют дислокации. Для осуществления диффузии посредством движения вакансий необходимо одновременное наличие двух условий: существования вакансии и образования у одного из соседних атомов достаточно большой энергии колебания, чтобы он смог покинуть свой узел.

Явления переноса 2. Если у атома в узле кристаллической решетки образовалась достаточно большая энергия колебаний, то он покидает свой узел. Если по соседству нет вакансии, то он располагается между узлами и затем движется в междоузлиях. 3. Может произойти обмен атомами в соседних узлах решетки. Диффузия в твердом теле описывается уравнением Фика, однако коэффициент диффузии D определяется другими факторами. определяется другими факторами. Главную роль в диффузии играет движение вакансий. Обозначим: τ — среднее время «оседлой» жизни атома в узле решетки, — смещение атома при перескоке (период решетки). Средняя скорость движения атомов при перескоках = / . Атом может равновероятно сделать перескок по шести независимым направлениям. Следовательно,

Явления переноса Для осуществления перескока необходимо, чтобы имелась вакансия и соседний атом имел достаточную энергию для совершения перескока в вакансию. Обозначим εв энергию, при приобретении которой атом покидает обязательно свой узел, в результате чего образуется вакансия. В соответствии с распределением Гиббса вероятность образования вакансии равна С другой стороны, обозначая εп энергию, которую должен иметь атом, чтобы совершить перескок в имеющуюся вакансию, можно для вероятности перескока при наличии вакансии написать

Явления переноса Отсюда для вероятности того, что одновременно будет иметься вакансия и совершится перескок в эту вакансию, можем написать W — энергия активации диффузии. Очевидно, что частота перескоков прямо пропорциональна вероятности перескока, т. е. вещества. Коэффициент диффузии в твердых телах очень мал (неизмеримо меньше, чем для газов). Например, для золота он равен 10-35 м2/с, в то время как для кислорода в атмосфере он равен примерно 10-5 м2/с. — постоянная, определяемая свойствами

Явления переноса Теплопроводность. Она осуществляется не тем, что молекулы перемещаются в твердом теле, а посредством взаимодействия между молекулами, в результате которого их тепловое движение приобретает коллективный характер. где vзв — скорость звука в твердом теле; — средняя длина свободного пробега фононов. Константа определяется свойствами вещества. Теплопроводность твердых тел во много раз превосходит теплопроводность газов.

Явления переноса Явления переноса в жидкостях Диффузия. Механизм диффузии в жидкостях аналогичен механизму диффузии в твердом теле. Молекула скачками меняет свое окружение и переходит в другую точку. Если среднее время «оседлой» жизни молекулы между скачками обозначить , то — среднее расстояние, на которое перескакивает молекула при изменении своего окружения. Время в жидкости также определяется через вероятность перескока. Энергия активации W молекулы, так же как и D0, определяется свойствами жидкости. Коэффициент диффузии у жидкостей много меньше, чем у газов, но много больше, чем у твердых тел (

Явления переноса Теплопроводность. Так же как и в тв. телах, теплопроводность в жидкостях осуществляется передачей теплового движения от одних молекул к другим в результате взаимодействия. Вязкость. Механизм возникновения вязкости в жидкостях не удается представить столь просто, как в разреженных газах, когда картина сводится к переносу импульса упорядоченного движения слоев газа при переходе молекул из одного слоя в другой в результате молекулярного движения. Если принять эту картину и применить механизм «скачков» молекулы из «оседлого» положения в одном слое в «оседлое» положение молекулы в другом слое, то для динамической вязкости получается противоречащая эксперименту зависимость от температуры, а именно в то время как эксперимент обнаруживает

Явления переноса «Перескоки» молекулы из одного «оседлого» положения в другое необходимо рассматривать в направлении действия силы, т.е. перпендикулярно градиенту скорости. При этом процесс оказывается зависящим от конкретных особенностей межмолеку- межмолекулярных сил. Молекуле приходится «вырываться» из своего окружения, чтобы передвинуться в направлении действия силы. Связи между молекулами, которые при этом приходится преодолевать, аналогичны тем, которые преодолеваются при испарении. Динамическая вязкость достаточно хорошо описывается формулой вида где А и b определяются свойствами жидкости. Следствие: при повышении температуры динамическая вязкость сильно уменьшается. Такое поведение динамической вязкости жидкостей противоположно наблюдаемому у газов.

Явления переноса. Диффузия, вязкость, теплопроводность. Коэффициенты диффузии, вязкости, теплопроводности.

Явления переноса в термодинамически неравновесных системах
В термодинамически неравновесных системах возникают особые необратимые процес­сы, называемые явлениями переноса, в результате которых происходит пространствен­ный перенос энергии, массы, импульса. К явлениям переноса относятся теплопровод­ность (обусловлена переносом энергии), диффузия (обусловлена переносом массы) и внутреннее трение (обусловленопереносом импульса). Для простоты ограничимся одномер­ными явлениями переноса. Систему отсчета выберем так, чтобы ось х была ориен­тирована в направлении переноса.

1. Теплопроводность. Если в одной области газа средняя кинетическая энергия молекул больше,чем в другой, то с течением времени вследствие постоянных сто­лкновений молекул происходит процесс выравнивания средних кинетических энергий молекул, т. е., иными словами, выравнивание температур.
Перенос энергии в форме теплоты подчиняетсязакону Фурье:
(48.1)
где jEплотность теплового потока — величина, определяемая энергией, переносимой в форме теплоты в единицу времени через единичную площадку, перпендикулярную оси х, l теплопроводность, — градиент температуры, равный скорости изменения температуры на единицу длины х в направлении нормали к этой площадке. Знак минус показывает, что при теплопроводности энергия переносится в направлении убывания температуры (поэтому знаки jE и – противоположны). Теплопроводность l численно равна плотности теплового потока при градиенте температуры, равном единице.
Можно показать, что
(48.2)
где сV— удельная теплоемкость газа при постоянном объеме (количество теплоты, необходимое для нагревания 1 кг газа на 1 К при постоянном объеме), r — плотность газа, — средняя скорость теплового движения молекул, — средняя длина сво­бодного пробега.
2. Диффузия. Явление диффузии заключается в том, что происходит самопроиз­вольное проникновение и перемешивание частиц двух соприкасающихся газов, жид­костей и даже твердых тел; диффузия сводится к обмену масс частиц этих тел, возникает и продолжается, пока существует градиент плотности. Во время становления молекулярно-кинетической теории по вопросу диффузии возникли противоречия. Так как молекулы движутся с огромными скоростями, диффузия должна происходить очень быстро. Если же открыть в комнате сосуд с пахучим веществом, то запах распространяется довольно медленно. Однако противоречия здесь нет. Молекулы при атмосферном давлении обладают малой длиной свободного пробега и, сталкиваясь с другими молекулами, в основном «стоят» на месте.
Явление диффузии для химически однородного газа подчиняется закону Фука:
(48.3)
где jmплотность потока массы — величина, определяемая массой вещества, диффундирующего в единицу времени через единичную площадку, перпендикулярную оси х, D —диффузия (коэффициент диффузии), dr/dx — градиент плотности, равный скорости изменения плотности на единицу длины х в направлении нормали к этой площадке. Знак минус показывает, что перенос массы происходит в направлении убывания плотности (поэтому знаки jm и dr/dx противоположны). Диффузия D численно равна плотности потока массы при градиенте плотности, равном единице. Согласно кинети­ческой теории газов,
(48.4)
Коэффициент диффузиив жидкости увеличивается с температурой, что обусловлено «разрыхлением» структуры жидкости при нагреве и соответствующим увеличением числа перескоков в единицу времени.

В твёрдом теле могут действовать несколько механизмов диффузии: обмен местами атомов с вакансиями(незанятыми узлами кристаллической решётки), перемещение атомов по междоузлиям, одновременное циклическое перемещение нескольких атомов, прямой обмен местами двух соседних атомов и т.д. Первый механизм преобладает, например, при образовании твёрдых растворов замещения, второй — твёрдых растворов внедрения.

Коэффициент диффузиив твёрдых телах крайне чувствителен к дефектам кристаллической решётки, возникшим при нагреве, напряжениях, деформациях и др. воздействиях. Увеличение числа дефектов (главном образом вакансий) облегчает перемещение атомов в твёрдом теле и приводит к росту коэффициента диффузии.Для коэффициента диффузии в твёрдых телах характерна резкая (экспоненциальная) зависимость от температуры. Так, коэффициент диффузиицинка в медь при повышении температуры от 20 до 300°С возрастает в 1014 раз.

3. Внутреннее трение (вязкость). Механизм возникновения внутреннего трения меж­ду параллельными слоями газа (жидкости), движущимися с различными скоростями, заключается в том, что из-за хаотического теплового движения происходит обмен молекулами между слоями, в результате чего импульс слоя, движущегося быстрее, уменьшается, движущегося медленнее — увеличивается, что приводит к торможению слоя, движущегося быстрее, и ускорению слоя, движущегося медленнее.
Согласно формуле (31.1), сила внутреннего трения между двумя слоями газа (жидкости) подчиняется закону Ньютона:
(48.5)
где h — динамическая вязкость (вязкость), dv/dx — градиент скорости, показывающий быстроту изменения скорости в направлении х, перпендикулярном направлению дви­жения слоев, S —площадь, на которую действует сила F.
Взаимодействие двух слоев согласно второму закону Ньютона можно рассматри­вать как процесс, при котором от одного слоя к другому в единицу времени передается импульс, по модулю равный действующей силе. Тогда выражение (48.5) можно пред­ставить в виде
(48.6)
где jp —плотность потока импульса — величина, определяемая полным импульсом, переносимым в единицу времени в положительном направлении оси х через единичную площадку, перпендикулярную оси х, градиент скорости. Знак минус указывает, что импульс переносится в направлении убывания скорости (поэтому знаки и противоположны).
Динамическая вязкость h численно равна плотности потока импульса при градиенте скорости, равном единице; она вычисляется по формуле
(48.7)
Из сопоставления формул (48.1), (48.3) и (48.6), описывающих явления переноса, следует, что закономерности всех явлений переноса сходны между собой. Эти законы были установлены задолго до того, как они были обоснованы и выведены из молекулярно-кинетической теории, позволившей установить, что внешнее сходство их математи­ческих выражений обусловлено общностью лежащего в основе явлений теплопровод­ности, диффузии и внутреннего трения молекулярного механизма перемешивания молекул в процессе их хаотического движения и столкновений друг с другом.
Рассмотренные законы Фурье, Фика и Ньютона не вскрывают молекулярно-кинетического смысла коэффициентов l, D иh. Выражения для коэффициентов переноса выводятся из кинетической теории. Они записаны без вывода, так как строгое рассмот­рение явлений переноса довольно громоздко, а качественное — не имеет смысла. Формулы (48.2), (48.4) и (48.7) связывают коэффициенты переноса и характеристики теплового движения молекул. Из этих формул вытекают простые зависимости между l, D иh:

Используя эти формулы, можно по найденным из опыта одним величинам определить другие.

Вязкость.

Вязкость — сопротивление, оказываемое телом движению отдельной его части без нарушения связи целого. Такое движение составляет характеристику жидкостей, как «капельных», так и «упругих», т. е. газов.
Внутреннее трение жидкостей возникает при движении жидкости из-за переноса импульса в направлении, перпендикулярном к направлению движения. Перенос импульса из одного слоя в другой осуществляется при скачках молекул, о которых говорилось выше.
Очевидно, что жидкость будет тем менее вязкой, чем меньше время t между скачками молекул, и значит, чем чаще происходят скачки.

Дата добавления: 2015-01-15 ; просмотров: 1272 ; Нарушение авторских прав


источники:

http://infourok.ru/lekciya-na-temu-yavleniya-perenosa-4556162.html

http://lektsii.com/1-72714.html

Читайте также:
  1. Levha, ilan Вывески, объявления
  2. Абсолютные числа разводов и общие коэффициенты разводимости в США и СССР,
  3. АНДРОНОЦЕНТРИЗМ (греч. andros – мужчина) — взгляд на явления с мужской точки зрения.
  4. Бактериальный шок: 1) определение, этиология, клинические проявления 2) наиболее характерные входные ворота 3) факторы прорыва 4) патологическая анатомия 5) причины смерти.
  5. Белки, их роль в питании. Проявления недостаточного и избыточного их поступления в организм.
  6. Билет № 15. 1.Характерные дефекты блока цилиндров, способы их выявления и устранения.
  7. В 1960 году П. Медавару и Ф. Бернету за открытие и истолкование явления иммунологической толерантности была присуждена Нобелевская премия.
  8. В случае невозобновления дыхания оживление проводить до появления явных трупных признаков.
  9. Весовые коэффициенты важности критериев
  10. Взаимосвязи индексов. Индексный метод выявления роли отдельных факторов динамики сложных явлений.