Уравнения первого порядка контрольная работа

Контрольные по дифференциальным уравнениям:
примеры оформления

Ниже представлены некоторые работы по дифференциальным уравнениям, выполненные в МатБюро. Оформляем подробно: назван тип уравнения, комментируется ход решения, выписываются все интегралы, находится общее решение/интеграл или решение задачи Коши.

  • Контрольная по дифференциальным уравнениям 1
    Объем 15 страниц.
    Темы: ДУ первого порядка, линейные и нелинейные ДУ, однородные ДУ, ДУ 2-го порядка с постоянными коэффициентами, системы ДУ.
  • Контрольная по дифференциальным уравнениям 2
    Объем 5 страниц.
    Темы: ДУ высшего порядка, определитель Вронского.

Контрольная работа и индивидуальные задания по теме «Дифференциальные уравнения 1-го порядка»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

Контрольные задания для самопроверки по теме «Дифференциальные уравнения первого порядка»

1. Решить уравнение .

2. Решить уравнение .

3. Решить уравнение .

4. Решить уравнение .

5. Решить уравнение .

6. Найти интегрирующий множитель и решить уравнение

7. Найти решение дифференциального уравнения, удовлетворяющее указанному условию: .

по теме: «Дифференциальные уравнения первого порядка»

Задание 1.1. Решить уравнение:

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 949 человек из 80 регионов

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 681 человек из 75 регионов

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 314 человек из 70 регионов

Ищем педагогов в команду «Инфоурок»

Дистанционные курсы для педагогов

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 568 676 материалов в базе

Другие материалы

  • 27.05.2018
  • 341
  • 1
  • 27.05.2018
  • 459
  • 3
  • 27.05.2018
  • 300
  • 2
  • 27.05.2018
  • 547
  • 0
  • 27.05.2018
  • 305
  • 5
  • 27.05.2018
  • 252
  • 4
  • 27.05.2018
  • 452
  • 4
  • 27.05.2018
  • 372
  • 3

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 27.05.2018 555
  • DOCX 49 кбайт
  • 14 скачиваний
  • Оцените материал:

Настоящий материал опубликован пользователем Лещенко Марина Юрьевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

  • На сайте: 7 лет и 2 месяца
  • Подписчики: 10
  • Всего просмотров: 61864
  • Всего материалов: 36

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

В Воронеже продлили удаленное обучение для учеников 5-11-х классов

Время чтения: 1 минута

Объявлен конкурс дизайн-проектов для школьных пространств

Время чтения: 2 минуты

Количество бюджетных мест в вузах по IT-программам вырастет до 160 тыс.

Время чтения: 2 минуты

Тринадцатилетняя школьница из Индии разработала приложение против буллинга

Время чтения: 1 минута

В Забайкалье в 2022 году обеспечат интернетом 83 школы

Время чтения: 1 минута

Рособрнадзор не планирует переносить досрочный период ЕГЭ

Время чтения: 0 минут

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Дифференциальные уравнения (варианты)

Это уравнение вида — линейное дифференциальное уравнение I порядка. Такое уравнение можно решать методом Бернулли с помощью подстановки где u и v две неизвестные функции. Подставляя в исходное уравнение получим

или

Так как одна из неизвестных функций может быть выбрана произвольно, возьмем в качестве v одно из частных решений уравнения

Тогда исходное дифференциальное уравнение примет вид

Рассмотрим каждое из получившихся уравнений. Первое уравнение – дифференциальное уравнение с разделяющимися переменными. Разделяем переменные:

Подставим найденную функцию v во второе уравнение . Получим откуда

Это дифференциальное уравнение с разделяющимися переменными. Решая его, находим функцию и:

Возвращаясь к функции у, получим

Используем условие . Тогда , Окончательно

Ответ:

Решим соответствующее однородное уравнение

Составим характеристическое уравнение Его корни

Так как его корни действительные и есть кратные, общее решение однородного уравнения имеет вид .

Частное решение неоднородного уравнения будем искать в виде , тогда , . Подставим в исходное , . Приравнивая коэффициенты при одинаковых степенях х в левой и правой части получим систему:

Тогда частное решение

Общее решение неоднородного примет вид:

Продифференцируем по х второе уравнение

Исключая с помощью первого уравнения и с помощью второго уравнения системы, получим

, ,

Таким образом, задача свелась к линейному неоднородному уравнению с постоянными коэффициентами второго порядка. Решим соответствующее однородное уравнение.

Характеристическое уравнение имеет корни и . Следовательно, общее решение для х будет .

Частное решение неоднородного уравнения будем искать в виде , тогда , .

Подставим в исходное , , . Приравнивая коэффициенты при одинаковых степенях х в левой и правой части получим систему:

Тогда частное решение

Общее решение неоднородного примет вид:

Из второго уравнения

Ответ:

Вариант 2

Данное уравнение – уравнение с разделяющимися переменными. Разделим переменные: . Интегрируем:

Посчитаем интегралы отдельно:

Тогда: или

Ответ:

Это уравнение вида — линейное дифференциальное уравнение I порядка. Такое уравнение можно решать методом Бернулли с помощью подстановки где u и v две неизвестные функции. Подставляя в исходное уравнение получим

или

Так как одна из неизвестных функций может быть выбрана произвольно, возьмем в качестве v одно из частных решений уравнения

Тогда исходное дифференциальное уравнение примет вид

Рассмотрим каждое из получившихся уравнений. Первое уравнение – дифференциальное уравнение с разделяющимися переменными. Разделяем переменные:

Подставим найденную функцию v во второе уравнение . Получим откуда

Это дифференциальное уравнение с разделяющимися переменными. Решая его, находим функцию и:

Возвращаясь к функции у, получим

Используем условие . Тогда , Окончательно

Ответ:

Данное уравнение не содержит у, следовательно понизить его порядок можно с помощью подстановки , тогда .

Отсюда — линейное дифференциальное уравнение. Приведём к виду: ,

Замена где u и v две неизвестные функции. Подставляя в исходное уравнение получим

или

Так как одна из неизвестных функций может быть выбрана произвольно, возьмем в качестве v одно из частных решений уравнения

Тогда исходное дифференциальное уравнение примет вид

Рассмотрим каждое из получившихся уравнений. Первое уравнение – дифференциальное уравнение с разделяющимися переменными. Разделяем переменные:

Подставим найденную функцию v во второе уравнение . Получим

Это дифференциальное уравнение с разделяющимися переменными. Решая его, находим функцию и:

Возвращаясь к функции у, получим

Ответ:

Решим соответствующее однородное уравнение

Составим характеристическое уравнение Его корни

Так как его корни действительные и есть кратные, общее решение однородного уравнения имеет вид .

Частное решение неоднородного уравнения будем искать в виде , тогда , . Подставим в исходное , . Приравнивая коэффициенты при одинаковых степенях х в левой и правой части получим систему:

Тогда частное решение

Общее решение неоднородного примет вид:

Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.

Решение уравнения будем искать в виде y = erx. Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами: r3-3r2+4= 0

Корни характеристического уравнения:

R1 = -1 и корень характеристического уравнения r2 = 2 кратности 2.

Следовательно, фундаментальную систему решений составляют функции: y1 = e-x, y2 = e2x, y3 = xe2x

Общее решение однородного уравнения имеет вид:

Рассмотрим правую часть: f(x) = (2•x-3)•e-x

Уравнение имеет частное решение вида:

Y’ =

Y» =

Y»’ =

которые подставляем в исходное дифференциальное уравнение:

-3+4=

Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:

Частное решение имеет вид:

Таким образом, общее решение дифференциального уравнения имеет вид:

Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.

Решение уравнения будем искать в виде y = erx. Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами: r3 — 16r = 0

Корни характеристического уравнения:r1 = -4, r2 = 0, r3 = 4

Следовательно, фундаментальную систему решений составляют функции:

Y1 = e-4x, y2 = e0x, y3 = e4x

Общее решение однородного уравнения имеет вид:

Правая часть F(x) = e2•x+3cos2x-sinx

Будем искать отдельно частные решения для F1(x) = e2•x, F2(x) = 3cos2x, F3(x) = — sinx

Рассмотрим правую часть: F1(x) = e2•x

Линейное дифференциальное уравнение с постоянными коэффициентами и правой частью вида: R(x) = eαx(P(x)cos(βx) + Q(x)sin(βx)), где P(x), Q(x) — некоторые полиномы

Имеет частное решение y(x) = xkeαx(R(x)cos(βx) + S(x)sin(βx))

Где k — кратность корня α+βi характеристического полинома соответствующего однородного уравнения, R(x), S(x) — полиномы, подлежащие определению, степень которых равна максимальной степени полиномов P(x), Q(x).

Здесь P(x) = 1, Q(x) = 0, α = 2, β = 0.

Следовательно, число α + βi = 2 + 0i не является корнем характеристического уравнения.

Уравнение имеет частное решение вида:

Которые подставляем в исходное дифференциальное уравнение:

Y»’ -16y’ = (8•A•e2x) -16(2•A•e2x) = e2•x или -24•A•e2x = e2•x

Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:

Решая ее, находим: A = -1/24;

Частное решение имеет вид: y* = -1/24e2x

Рассмотрим правую часть: F2(x) = 3•cos(2•x)

Поиск частного решения.

Уравнение имеет частное решение вида:y* = Acos(2x) + Bsin(2x)

Которые подставляем в исходное дифференциальное уравнение:

Y»’ -16y’ = (8•A•sin(2x)-8•B•cos(2x)) -16(2•B•cos(2x)-2•A•sin(2x)) = 3•cos(2•x)

или 40•A•sin(2x)-40•B•cos(2x) = 3•cos(2•x)

Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:

Решая ее, находим: A = 0;B =-3/40;

Частное решение имеет вид:

Поиск частного решения.

Уравнение имеет частное решение вида: y* = Acos(x) + Bsin(x)

Которые подставляем в исходное дифференциальное уравнение:

Y»’ -16y’ = (A•sin(x)-B•cos(x)) -16(B•cos(x)-A•sin(x)) = — sin(x)

или 17•A•sin(x)-17•B•cos(x) = — sin(x)

Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:

Решая ее, находим: A = -1/17;B = 0;

Частное решение имеет вид: y* = -1/17cos(x) + 0sin(x) или y* = -1/17cos(x)

Окончательно, общее решение данного уравнения

Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.

Решение уравнения будем искать в виде y = erx. Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами: r2 -6 r + 8 = 0

Корни характеристического уравнения: r1 = 2, r2 = 4

Следовательно, фундаментальную систему решений составляют функции: y1 = e4x, y2 = e2x

Общее решение однородного уравнения имеет вид:

Для поиска частного решения воспользуемся методом вариации произвольных постоянных. Для этого решим систему:

Тогда окончательно

Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.

Решение уравнения будем искать в виде y = erx. Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами: r2 -4 r + 4 = 0

Корни характеристического уравнения:

Корень характеристического уравнения r1 = 2 кратности 2.

Следовательно, фундаментальную систему решений составляют функции: y1 = e2x, y2 = xe2x

Общее решение однородного уравнения имеет вид:

Рассмотрим правую часть: f(x) = e2•x•sin(5•x)

Поиск частного решения.

Линейное дифференциальное уравнение с постоянными коэффициентами и правой частью вида: R(x) = eαx(P(x)cos(βx) + Q(x)sin(βx)), где P(x), Q(x) — некоторые полиномы

Имеет частное решение y(x) = xkeαx(R(x)cos(βx) + S(x)sin(βx))

Где k — кратность корня α+βi характеристического полинома соответствующего однородного уравнения, R(x), S(x) — полиномы, подлежащие определению, степень которых равна максимальной степени полиномов P(x), Q(x).

Здесь P(x) = 1, Q(x) = 0, α = 2, β = 5.

Следовательно, число α + βi = 2 + 5i не является корнем характеристического уравнения.

Уравнение имеет частное решение вида: y* = e2x(Acos(5x) + Bsin(5x))

Которые подставляем в исходное дифференциальное уравнение:

Y» -4y’ + 4y = (-e2x((20•A+21•B)•sin(5x)+(21•A-20•B)•cos(5x))) -4(e2x((2•B-5•A)•sin(5x)+(2•A+5•B)•cos(5x))) + 4(e2x(Acos(5x) + Bsin(5x))) = e2•x•sin(5•x)

или -25•A•e2x•cos(5x)-25•B•e2x•sin(5x) = e2•x•sin(5•x)

Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:

Решая ее, находим: A = 0;B = -1/25;

Частное решение имеет вид: y* = e2x(0cos(5x) -1/25sin(5x)) илиy* =-1/25 e2x sin(5x)

Таким образом, общее решение дифференциального уравнения имеет вид:

Используем начальные условия

Тогда окончательно,

Характеристическое уравнение исходного дифференциального уравнения имеет мнимые корни . Следовательно, общее решение дифференциального уравнения . Тогда . Подставляем в первое граничное условие

. Тогда .

Подставляем во второе граничное условие

При А=0 и В=0 – тривиальное решение у=0

Поэтому и — собственные значения

— собственные векторы

Метод исключения неизвестных.

Продифференцируем по х первое уравнение

Исключая с помощью второго уравнения , получим ,

Таким образом, задача свелась к линейному неоднородному уравнению с постоянными коэффициентами второго порядка. Решим соответствующее однородное уравнение.

Характеристическое уравнение имеет корни и . Следовательно, общее решение для х будет .

Частное решение неоднородного уравнения будем искать в виде , тогда , . Подставим в исходное ,

Тогда частное решение

Общее решение неоднородного примет вид:

Из первого уравнения

Ответ:

Продифференцируем по х второе уравнение

Исключая с помощью первого уравнения , получим

, ,

Таким образом, задача свелась к линейному неоднородному уравнению с постоянными коэффициентами второго порядка. Решим соответствующее однородное уравнение.

Характеристическое уравнение имеет корни и . Следовательно, общее решение для х будет .

Частное решение неоднородного уравнения будем искать в виде , тогда , . Подставим в исходное , . Приравнивая коэффициенты при одинаковых степенях х в левой и правой части получим систему:

Тогда частное решение

Общее решение неоднородного примет вид:

Из второго уравнения

Ответ:

Вариант 5

Данное уравнение – уравнение с разделяющимися переменными. Разделим переменные: . Интегрируем:

Посчитаем интегралы отдельно:

Тогда: или

Ответ:

Это уравнение вида — линейное дифференциальное уравнение I порядка. Такое уравнение можно решать методом Бернулли с помощью подстановки где u и v две неизвестные функции. Подставляя в исходное уравнение получим

или

Так как одна из неизвестных функций может быть выбрана произвольно, возьмем в качестве v одно из частных решений уравнения

Тогда исходное дифференциальное уравнение примет вид

Рассмотрим каждое из получившихся уравнений. Первое уравнение – дифференциальное уравнение с разделяющимися переменными. Разделяем переменные:

Интегрируя, находим

Подставим найденную функцию v во второе уравнение . Получим откуда

Это дифференциальное уравнение с разделяющимися переменными. Решая его, находим функцию и:

Возвращаясь к функции у, получим

Используем условие . Тогда , Окончательно

Ответ:

Данное уравнение не содержит у, следовательно понизить его порядок можно с помощью подстановки , тогда .

Отсюда — линейное дифференциальное уравнение. Приведём к виду: ,

Замена где u и v две неизвестные функции. Подставляя в исходное уравнение получим

или

Так как одна из неизвестных функций может быть выбрана произвольно, возьмем в качестве v одно из частных решений уравнения

Тогда исходное дифференциальное уравнение примет вид

Рассмотрим каждое из получившихся уравнений. Первое уравнение – дифференциальное уравнение с разделяющимися переменными. Разделяем переменные:

Подставим найденную функцию v во второе уравнение . Получим

Это дифференциальное уравнение с разделяющимися переменными. Решая его, находим функцию и:

Возвращаясь к функции у, получим

Ответ:

Решим соответствующее однородное уравнение

Составим характеристическое уравнение Его корни

Так как его корни действительные и есть кратные, общее решение однородного уравнения имеет вид

.

Частное решение неоднородного уравнения будем искать в виде , тогда , . , , .

Подставим в исходное , . Приравнивая коэффициенты при одинаковых степенях х в левой и правой части получим систему:

Тогда частное решение

Общее решение неоднородного примет вид:

Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.

Решение уравнения будем искать в виде y = erx. Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами: r2 — r= 0

Вынесем r за скобку. Получим: r(r-1) = 0

Корни характеристического уравнения:r1 = 0, r2 = 1

Следовательно, фундаментальную систему решений составляют функции: y1 = e0x, y2 = ex.

Общее решение однородного уравнения имеет вид:

Рассмотрим правую часть: f(x) =

Уравнение имеет частное решение вида:

которые подставляем в исходное дифференциальное уравнение:

Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:

Частное решение имеет вид:

Таким образом, общее решение дифференциального уравнения имеет вид:

Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.

Составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами:

Корни характеристического уравнения:(комплексные корни): r1 = 4i, r2 = -4i

Общее решение однородного уравнения имеет вид:

Рассмотрим правую часть: f(x) = 16•cos(4•x)-16•e4x, будем искать отдельно частные решения для f1(x)= 16•cos(4•x) и для f2(x)= 16•e4x

Для f1(x) = 16•cos(4•x) имеем

Уравнение имеет частное решение вида: y ч1* = x (Acos(4x) + Bsin(4x))

Которые подставляем в исходное дифференциальное уравнение:

Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:

Решая ее, находим: A = 0;B = 2;

Частное решение имеет вид: yч1* = x (0cos(4x) + 2sin(4x)) или y ч1* = 2xsin(4x)

Частное решение ищем в виде y(x) = xkeαx(R(x)cos(βx) + S(x)sin(βx))

Где k — кратность корня α+βi характеристического полинома соответствующего однородного уравнения, R(x), S(x) — полиномы, подлежащие определению, степень которых равна максимальной степени полиномов P(x), Q(x).

Здесь P(x) = 16, Q(x) = 0, α = 4, β = 0.

Следовательно, число α + βi = 4 + 0i не является корнем характеристического уравнения.

Уравнение имеет частное решение вида:

Которые подставляем в исходное дифференциальное уравнение:

Y» + 16y = (16•A•e4x) + 16(Ae4x) = 16•e4•x или 32•A•e4x = 16•e4•x

Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:

Решая ее, находим: A = 1/2;

Частное решение имеет вид: y*ч2 = 1/2e4x

Таким образом, общее решение дифференциального уравнения имеет вид:

Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.

Составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами: r2 + 9 = 0

Корни характеристического уравнения: r1 = -3i, r2 = 3i

Общее решение однородного уравнения имеет вид:

Для поиска частного решения воспользуемся методом вариации произвольных постоянных. Для этого решим систему:

Тогда окончательно

Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.

Решение уравнения будем искать в виде y = erx. Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами: r2 + 1 = 0

Корни характеристического уравнения:(комплексные корни): r1 = i,

Следовательно, фундаментальную систему решений составляют функции:

Общее решение однородного уравнения имеет вид:

Рассмотрим правую часть: f(x) = 2•cos(3•x)-3•sin(3•x)

Поиск частного решения.

Линейное дифференциальное уравнение с постоянными коэффициентами и правой частью вида: R(x) = eαx(P(x)cos(βx) + Q(x)sin(βx)), где P(x), Q(x) — некоторые полиномы

Имеет частное решение y(x) = xkeαx(R(x)cos(βx) + S(x)sin(βx))

Где k — кратность корня α+βi характеристического полинома соответствующего однородного уравнения, R(x), S(x) — полиномы, подлежащие определению, степень которых равна максимальной степени полиномов P(x), Q(x).

Здесь P(x) = 2, Q(x) = -3, α = 0, β = 3.

Следовательно, число α + βi = 0 + 3i не является корнем характеристического уравнения.

Уравнение имеет частное решение вида: y* = Acos(3x) + Bsin(3x)

Которые подставляем в исходное дифференциальное уравнение:

Y» + y = (-9(A•cos(3x)+B•sin(3x))) + (Acos(3x) + Bsin(3x)) = 2•cos(3•x)-3•sin(3•x)

или -8•A•cos(3x)-8•B•sin(3x) = 2•cos(3•x)-3•sin(3•x)

Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:

Решая ее, находим: A = -1/4;B = 3/8;

Частное решение имеет вид: y* = -1/4cos(3x) + 3/8sin(3x)

Таким образом, общее решение дифференциального уравнения имеет вид:

Используем начальные условия

Тогда окончательно,

Характеристическое уравнение исходного дифференциального уравнения имеет мнимые корни . Следовательно, общее решение дифференциального уравнения . Подставляем в первое граничное условие

. Тогда .

Подставляем во второе граничное условие

При А=0 и В=0 – тривиальное решение у=0

Поэтому и — собственные значения

— собственные векторы

Продифференцируем по х второе уравнение

Исключая с помощью первого уравнения и с помощью второго уравнения системы, получим

,

Таким образом, задача свелась к линейному однородному уравнению с постоянными коэффициентами второго порядка. Характеристическое уравнение имеет корни . Следовательно, общее решение для будет .

Из второго уравнения

Ответ:

Найдём сначала общее решение соответствующей однородной системы

Продифференцируем по х второе уравнение

Исключая с помощью первого уравнения и с помощью второго уравнения системы, получим

,

Таким образом, задача свелась к линейному однородному уравнению с постоянными коэффициентами второго порядка. Характеристическое уравнение имеет корни . Следовательно, общее решение для будет .

Из второго уравнения Общее решение однородной системы:

Принимаем частное решение первоначальной системы в виде:

Решаем данную систему по формулам Крамера, получим два дифференциальных уравнения первого порядка:

Окончательно,

Или

Ответ:


источники:

http://infourok.ru/kontrolnaya-rabota-i-individualnie-zadaniya-po-teme-differencialnie-uravneniya-go-poryadka-3066395.html

http://matica.org.ua/primery/primery/differentcialnye-uravneniia-varianty