Уравнения по физике в школе

Интегрированный урок (математика + физика) по темам «Квадратные уравнения» и «Реактивное движение»

Презентация к уроку

Посвящается году космонавтики

Урок посвящён году космонавтики и совмещает обобщение темы «Квадратные уравнения» с темой «Реактивное движение». Эти две темы близки прежде всего тем, что графиком квадратичной функции является парабола, а ракета же при своём полёте описывает путь, напоминающий параболу.

Цели урока:

  1. обобщение и систематизация изученного материала;
  2. формирование умений применять знания в комплексе с решением различной сложности задач, требующих привлечения сведений из различных разделов школьного курса физики;
  3. воспитание чувства коллективизма, патриотизма учащихся.

Оформление: портреты русского учёного К.Э.Циолковского, главного конструктора ракетно-космических систем академика С.П.Королёва и космонавтов (Ю.А. Гагарина, А.Н. Николаева и др.) (Приложение 3).

Оборудование: «бортовые журналы» полёта (т.е. тетради и дневники).

Использованная литература:

  1. Алгебра: Учеб. для 8 кл. общеобразоват. учреждений /Макарычев Ю.Н. и др., – М.: Просвещение, 2010. – 288с.
  2. Физика: Учеб. для 8 кл. общеобразоват. учреждений / С.В. Громов, Н.А. Родина. – 3-е изд. –2001. – С. 31-37.
  3. Енохович А.С. Справочник по физике и технике: учеб. Пособие для учащихся. – 3-е изд., перераб. и доп. – М.: Просвещение, 1989.– С. 69-85.
  4. Первопроходцы космоса. Андриян Николаев / Сост.: В.А. Иванова, А.А. Парпара, П.Р. Попович. – Чебоксары: Чуваш. книжн. изд-во, 1989. – 302с.

Ход урока

I. Постановка перед учащимися учебной проблемы

– Ребята, в жизни чувашского народа произошло знаменательное событие. Какое? Сейчас узнаем. В помощь я прочту вам строчки из стихотворения Петра Градова (Слайд 1):

Здесь тебя глубоко уважают,
Здесь земляк ни один не забыт.
Как Василий Иваныч Чапаев,
Ты в родной стороне знаменит.
Андриян!
Так тебя называют в Чувашии,
И улыбкою светится взгляд.
Андриян!
И фамилию можно не спрашивать
И понятно о ком говорят.

Сегодняшний урок мы посвятим году космонавтики. Используя наши знания по теме «Квадратные уравнения», узнаем некоторые интересные факты из космической биографии Андрияна Николаева (Слайд 2). Для проведения урока класс разделим на группы:

а) центр подготовки космонавтов (первый ряд);
б) экипаж космического корабля «Восток-3» (второй ряд);
в) центр управления полётом (третий ряд).

(Каждый ряд получает свой бортовой журнал, где будет отмечаться, кто как отвечал).

Итак, «Поехали!» (Слайд 3).

II. Устные упражнения

Но прежде чем отправиться в космос, экипажу нужно много и упорно тренироваться, чем мы сейчас и займемся. (Слайд 7).

В начале 1959 года под председательством академика М.В. Келдыша состоялось совещание, на котором вопрос о полете человека обсуждался уже вполне конкретно, вплоть до того: «А кому лететь?» [4, с. 86]. А кому, мы узнаем из следующей задачи.

Задача. (Слайды 8, 9).«Для такого дела, – сказал тогда Королев, – лучше всего подготовлены летчики: возраст не более лет, рост не более см, вес – до * кг». Комиссии было предложено более кандидатур, но пройти удалось лишь кандидатам. В ходе тренировок была сформирована группа в составе ()2 человек: Варламов, Гагарин, Карташов, Николаев, Попович, Титов. Скоро в этом составе произошли изменения. Вместо отчисленного по болезни Карташова в шестерку был введен Нелюбов. Вместо Варламова – Быковский.

(Так как данную задачу выдвинул центр управления полетом, то он и следит за правильностью ответа).

III. Устные вопросы

(Слайд 10). «После организации группы подготовки к полетам Королев стал больше уделять внимания обучению космонавтов, приезжал в Звездный городок, осматривал тренажеры, беседовал с космонавтами» [4, с. 87]. Мы тоже сейчас побеседуем с экипажем.

Вопросы (Слайд 11). (Проверяют задание первый и третий ряды).

IV. Решение задач

(Слайд 12). «Неплохо, – подвел итог Сергей Павлович, – на первых порах неплохо, но надо думать, что делать дальше. Без «заделов» нужного хода вперед не получится. Нам с вами предстоит большая работа. И чем дальше, тем работы будет больше» [4, с. 92].

– Ребята, нам тоже предстоит большая работа.

1. (Слайд 13). «Первая группа проходила положенные испытания на различных стендах. В декабре эти космонавты провели на тренажере зачетные тренировки… Наконец на 17-18 января 1960 года были назначены экзамены «шестерке». Первый день сдавали «практику» – в тренажере проверялось умение управлять кораблем» [4, с. 92].

А мы же сейчас, ребята, проверим ваше умение решать квадратные уравнения. Пусть это было экзаменом не только для космонавтов, а также будет экзаменом для наших центров подготовки и управления.

(Ученикам раздаются карточки с приведенными квадратными уравнениями и с кодами к ним: х1 – наименьший корень, х2 – наибольший корень. При решении уравнений применяется теорема Виета. Из ответов квадратных уравнений можно нарисовать космическую ракету).

Карточки с уравнениями (Приложение 1 или Слайды 14-17).

р 2 — 11р + 10 = 0

По этим расчетам конструкторы из центра подготовки строят на доске ракету (Приложение 2). В это время другие ученики изучают Слайд 18 и отвечают на вопрос: Какую температуру должна выдержать вся эта конструкция? (Ответ: Высокую.В термосфере (от 80 до 600 км от Земли) температура возрастает с увеличением высоты и достигает очень больших размеров (свыше 1000 °С).

2. (Слайд 19)Всё интенсивнее становились тренировки… Нагрузки возрастали. Космонавты тихо роптали. «Будущему космонавту-3 предстояло пройти исследование в термокамере» [4, с. 180].

Задача. (Слайд 20) Один из корней данного уравнения равен Т=-90. Найдите коэффициент t и второй коэффициент уравнения T 2 +20T-70t=0, где t – продолжительность пребывания Андрияна Николаева в термокамере перед стартом (в минутах), Т – температура в термокамере (в °С).

Ответ: (слайд 20).1,5 часа пробыл при температуре +70 °С (сверяется по тексту [4, с. 180]).

3. «На следующий день был экзамен по теории» (слайды 22, 23) [4, с.92].Давайте и мы обратимся к теории. Вспомним тему из курса физики тему «Реактивное движение».

4. Физкультминутка (Музыка песни «Пора в путь дорогу»)

Мы немножко подустали,
И поэтому все встали,
Высоко так подтянулись,
Раз нагнулись, два нагнулись.
Все тетрадки, ручки взяли
И к компьютерам пошли.
Сейчас у нас предстоит небольшое тестирование.

5. Тестирование на компьютере.

6. Подготовка к полету подходит к концу. Космический корабль построен и смотрит в небо (Чертёж, построенный по координатам на доске и слайд 24). (После чего учитель знакомит учащихся с некоторыми техническими характеристиками ракеты-носителя космического корабля «Восток-3») (слайд24):

Полёты ракет основаны на принципе реактивного движения. Реактивное движение − это движение тела, возникающее при отделении от него некоторой его части. Как известно из химии, горение топлива представляет собой бурно протекающий процесс окисления. Поэтому для горения необходим кислород (окислитель). В авиационных реактивных двигателях этот кислород берется из окружающего воздуха. Ракетные же двигатели должны работать и в верхних слоях атмосферы, где кислорода очень мало, и в космическом пространстве, где его вообще нет. По этой причине, помимо баков с горючим (например, с керосином), на ракетах размещают и значительные запасы окислителя. С помощью специальных насосов или под давлением сжатого газа горючее и окислитель подаются в камеру сгорания. Вступая в химическую реакцию между собой, компоненты топлива воспламеняются и сгорают. Истечение продуктов сгорания происходит через сопло специальной формы. Львиную долю от всей массы ракеты на старте должна составлять именно масса топлива. Полезная же нагрузка по сравнению с ней должна иметь очень малую массу.

По мере истечения рабочего тела освободившиеся баки, лишние части оболочки и т.д. начинают обременять ракету ненужным грузом, затрудняя ее разгон. Поэтому для достижения космических скоростей применяют многоступенчатые ракеты. Сначала в таких ракетах работают лишь блоки первой ступени. Когда запасы топлива в них кончаются, они отделяются, и включается вторая ступень; после исчерпания в ней топлива она также отделяется, и включается третья ступень. Находящийся в головной части спутник или какой-либо другой космический аппарат укрыт головным обтекателем, обтекаемая форма которого способствует уменьшению сопротивления воздуха при полете ракеты в атмосфере земли.

7. Далее дело берет в свои руки центр управления. Взревели двигатели, и корабль «Восток-3», преодолев земное притяжение, 11 августа 1962 г. вышел в открытый космос.

Задача. (слайд 25)Сколько времени пробыл Николаев первый раз в космосе и сколько оборотов он совершил вокруг Земли? Ответить на эти вопросы и поможет следующее уравнение: х 2 -95х+64=0, где t=-(х12) – время (в часах), n=х12 – число оборотов. (Используется теорема Виета).

Ответ: 95 часов, 64 оборота.

8. Задача. (слайд 26) На какой средней высоте прошел полет А. Николаева? Один из корней данного уравнения поможет ответить на этот вопрос: h 2 -251h+250=0. (Выполнить устно, используя свойства корней квадратного уравнения).

9. Задача. (слайд 27) Какой путь прошел корабль «Восток-3»? Используются формула , где , и результат предыдущей задачи. (При вычислении применяется калькуляторпульт управления).

Ответ: 2 672 768 км.

Ответы можно сверить по отрывку из речи Андрияна Николаева на митинге на Красной площади » [4, с.109]: (слайд 28) «Космический корабль «Восток-3» находился в полете почти четверо суток и совершил более 64 оборотов вокруг земного шара. Корабль прошел путь свыше 2 млн. 600 тыс. километров, превысив почти в 7 раз расстояние от Земли до Луны». Здесь также можно вспомнить темы «Стандартный вид числа», «Относительная погрешность», вычислить расстояние от Земли до Луны и после его сверить по справочнику.

10. (слайд 29) «Готовился новый старт. По замыслу руководителей он должен был стать самым продолжительным по времени и самым результативным в исследовательской деятельности. Утвержден экипаж: командир космического корабля «Союз-9» А.Г. Николаев, бортинженер В.И. Севастьянов. Всё уже готово к многодневному полёту. Всё проверено, всё отлажено» [4, с. 106].

Но тут случилось непредвиденное, из-за чего второй полёт А. Николаева чуть не сорвался. Что же могло произойти?

Задание.Из учебника [1] подбираются дробно-рациональные уравнения – это №№592 (ж), 593 (е), 595 (а): (слайд 30)

x+2=;

;

.

По ответам уравнений, используя следующую таблицу, можно прочитать слово «щука» (слайд 31).

Уравнения по физике в школе

Путь при равномерном движении:

Перемещение S (расстояние по прямой между начальной и конечной точкой движения) обычно находится из геометрических соображений. Координата при равномерном прямолинейном движении изменяется по закону (аналогичные уравнения получаются для остальных координатных осей):

Средняя скорость пути:

Средняя скорость перемещения:

Определение ускорения при равноускоренном движении:

Выразив из формулы выше конечную скорость, получаем более распространённый вид предыдущей формулы, которая теперь выражает зависимость скорости от времени при равноускоренном движении:

Средняя скорость при равноускоренном движении:

Перемещение при равноускоренном прямолинейном движении может быть рассчитано по нескольким формулам:

Координата при равноускоренном движении изменяется по закону:

Проекция скорости при равноускоренном движении изменяется по такому закону:

Скорость, с которой упадет тело падающее с высоты h без начальной скорости:

Время падения тела с высоты h без начальной скорости:

Максимальная высота на которую поднимется тело, брошенное вертикально вверх с начальной скоростью v0, время подъема этого тела на максимальную высоту, и полное время полета (до возвращения в исходную точку):

Формула для тормозного пути тела:

Время падения тела при горизонтальном броске с высоты H может быть найдено по формуле:

Дальность полета тела при горизонтальном броске с высоты H:

Полная скорость в произвольный момент времени при горизонтальном броске, и угол наклона скорости к горизонту:

Максимальная высота подъема при броске под углом к горизонту (относительно начального уровня):

Время подъема до максимальной высоты при броске под углом к горизонту:

Дальность полета и полное время полета тела брошенного под углом к горизонту (при условии, что полет заканчивается на той же высоте с которой начался, т.е. тело бросали, например, с земли на землю):

Определение периода вращения при равномерном движении по окружности:

Определение частоты вращения при равномерном движении по окружности:

Связь периода и частоты:

Линейная скорость при равномерном движении по окружности может быть найдена по формулам:

Угловая скорость вращения при равномерном движении по окружности:

Связь линейной и скорости и угловой скорости выражается формулой:

Связь угла поворота и пути при равномерном движении по окружности радиусом R (фактически, это просто формула для длины дуги из геометрии):

Центростремительное ускорение находится по одной из формул:

Динамика

Второй закон Ньютона:

Здесь: F — равнодействующая сила, которая равна сумме всех сил действующих на тело:

Второй закон Ньютона в проекциях на оси (именно такая форма записи чаще всего и применяется на практике):

Третий закон Ньютона (сила действия равна силе противодействия):

Общий коэффициент жесткости параллельно соединённых пружин:

Общий коэффициент жесткости последовательно соединённых пружин:

Сила трения скольжения (или максимальное значение силы трения покоя):

Закон всемирного тяготения:

Если рассмотреть тело на поверхности планеты и ввести следующее обозначение:

Где: g — ускорение свободного падения на поверхности данной планеты, то получим следующую формулу для силы тяжести:

Ускорение свободного падения на некоторой высоте от поверхности планеты выражается формулой:

Скорость спутника на круговой орбите:

Первая космическая скорость:

Закон Кеплера для периодов обращения двух тел вращающихся вокруг одного притягивающего центра:

Статика

Момент силы определяется с помощью следующей формулы:

Условие при котором тело не будет вращаться:

Координата центра тяжести системы тел (аналогичные уравнения для остальных осей):

Гидростатика

Определение давления задаётся следующей формулой:

Давление, которое создает столб жидкости находится по формуле:

Но часто нужно учитывать еще и атмосферное давление, тогда формула для общего давления на некоторой глубине h в жидкости приобретает вид:

Идеальный гидравлический пресс:

Любой гидравлический пресс:

КПД для неидеального гидравлического пресса:

Сила Архимеда (выталкивающая сила, V — объем погруженной части тела):

Импульс

Импульс тела находится по следующей формуле:

Изменение импульса тела или системы тел (обратите внимание, что разность конечного и начального импульсов векторная):

Общий импульс системы тел (важно то, что сумма векторная):

Второй закон Ньютона в импульсной форме может быть записан в виде следующей формулы:

Закон сохранения импульса. Как следует из предыдущей формулы, в случае если на систему тел не действует внешних сил, либо действие внешних сил скомпенсировано (равнодействующая сила равна нолю), то изменение импульса равно нолю, что означает, что общий импульс системы сохраняется:

Если внешние силы не действуют только вдоль одной из осей, то сохраняется проекция импульса на данную ось, например:

Работа, мощность, энергия

Механическая работа рассчитывается по следующей формуле:

Самая общая формула для мощности (если мощность переменная, то по следующей формуле рассчитывается средняя мощность):

Мгновенная механическая мощность:

Коэффициент полезного действия (КПД) может быть рассчитан и через мощности и через работы:

Формула для кинетической энергии:

Потенциальная энергия тела поднятого на высоту:

Потенциальная энергия растянутой (или сжатой) пружины:

Полная механическая энергия:

Связь полной механической энергии тела или системы тел и работы внешних сил:

Закон сохранения механической энергии (далее – ЗСЭ). Как следует из предыдущей формулы, если внешние силы не совершают работы над телом (или системой тел), то его (их) общая полная механическая энергия остается постоянной, при этом энергия может перетекать из одного вида в другой (из кинетической в потенциальную или наоборот):

Молекулярная физика

Химическое количество вещества находится по одной из формул:

Масса одной молекулы вещества может быть найдена по следующей формуле:

Связь массы, плотности и объёма:

Основное уравнение молекулярно-кинетической теории (МКТ) идеального газа:

Определение концентрации задаётся следующей формулой:

Для средней квадратичной скорости молекул имеется две формулы:

Средняя кинетическая энергия поступательного движения одной молекулы:

Постоянная Больцмана, постоянная Авогадро и универсальная газовая постоянная связаны следующим образом:

Следствия из основного уравнения МКТ:

Уравнение состояния идеального газа (уравнение Клапейрона-Менделеева):

Газовые законы. Закон Бойля-Мариотта:

Универсальный газовый закон (Клапейрона):

Давление смеси газов (закон Дальтона):

Тепловое расширение тел. Тепловое расширение газов описывается законом Гей-Люссака. Тепловое расширение жидкостей подчиняется следующему закону:

Для расширения твердых тел применяются три формулы, описывающие изменение линейных размеров, площади и объема тела:

Термодинамика

Количество теплоты (энергии) необходимое для нагревания некоторого тела (или количество теплоты выделяющееся при остывании тела) рассчитывается по формуле:

Теплоемкость (С — большое) тела может быть рассчитана через удельную теплоёмкость (c — маленькое) вещества и массу тела по следующей формуле:

Тогда формула для количества теплоты необходимой для нагревания тела, либо выделившейся при остывании тела может быть переписана следующим образом:

Фазовые превращения. При парообразовании поглощается, а при конденсации выделяется количество теплоты равное:

При плавлении поглощается, а при кристаллизации выделяется количество теплоты равное:

При сгорании топлива выделяется количество теплоты равное:

Уравнение теплового баланса (ЗСЭ). Для замкнутой системы тел выполняется следующее (сумма отданных теплот равна сумме полученных):

Если все теплоты записывать с учетом знака, где «+» соответствует получению энергии телом, а «–» выделению, то данное уравнение можно записать в виде:

Работа идеального газа:

Если же давление газа меняется, то работу газа считают, как площадь фигуры под графиком в pV координатах. Внутренняя энергия идеального одноатомного газа:

Изменение внутренней энергии рассчитывается по формуле:

Первый закон (первое начало) термодинамики (ЗСЭ):

Для различных изопроцессов можно выписать формулы по которым могут быть рассчитаны полученная теплота Q, изменение внутренней энергии ΔU и работа газа A. Изохорный процесс (V = const):

Изобарный процесс (p = const):

Изотермический процесс (T = const):

Адиабатный процесс (Q = 0):

КПД тепловой машины может быть рассчитан по формуле:

Где: Q1 – количество теплоты полученное рабочим телом за один цикл от нагревателя, Q2 – количество теплоты переданное рабочим телом за один цикл холодильнику. Работа совершенная тепловой машиной за один цикл:

Наибольший КПД при заданных температурах нагревателя T1 и холодильника T2, достигается если тепловая машина работает по циклу Карно. Этот КПД цикла Карно равен:

Абсолютная влажность рассчитывается как плотность водяных паров (из уравнения Клапейрона-Менделеева выражается отношение массы к объему и получается следующая формула):

Относительная влажность воздуха может быть рассчитана по следующим формулам:

Потенциальная энергия поверхности жидкости площадью S:

Сила поверхностного натяжения, действующая на участок границы жидкости длиной L:

Высота столба жидкости в капилляре:

При полном смачивании θ = 0°, cos θ = 1. В этом случае высота столба жидкости в капилляре станет равной:

При полном несмачивании θ = 180°, cos θ = –1 и, следовательно, h 8 м/с, она также может быть вычислена по формуле:

Скорости электромагнитной волны (в т.ч. света) в среде и в вакууме также связаны между собой формулой:

При этом показатель преломления некоторого вещества можно рассчитать используя формулу:

Оптика

Оптическая длина пути определяется формулой:

Оптическая разность хода двух лучей:

Условие интерференционного максимума:

Условие интерференционного минимума:

Формула дифракционной решетки:

Закон преломления света на границе двух прозрачных сред:

Постоянную величину n21 называют относительным показателем преломления второй среды относительно первой. Если n1 > n2, то возможно явление полного внутреннего отражения, при этом:

Формула тонкой линзы:

Линейным увеличением линзы Γ называют отношение линейных размеров изображения и предмета:

Атомная и ядерная физика

Энергия кванта электромагнитной волны (в т.ч. света) или, другими словами, энергия фотона вычисляется по формуле:

Формула Эйнштейна для внешнего фотоэффекта (ЗСЭ):

Максимальная кинетическая энергия вылетающих электронов при фотоэффекте может быть выражена через величину задерживающего напряжение Uз и элементарный заряд е:

Существует граничная частота или длинна волны света (называемая красной границей фотоэффекта) такая, что свет с меньшей частотой или большей длиной волны не может вызвать фотоэффект. Эти значения связаны с величиной работы выхода следующим соотношением:

Второй постулат Бора или правило частот (ЗСЭ):

В атоме водорода выполняются следующие соотношения, связывающие радиус траектории вращающегося вокруг ядра электрона, его скорость и энергию на первой орбите с аналогичными характеристиками на остальных орбитах:

На любой орбите в атоме водорода кинетическая (К) и потенциальная (П) энергии электрона связаны с полной энергией (Е) следующими формулами:

Общее число нуклонов в ядре равно сумме числа протонов и нейтронов:

Энергия связи ядра выраженная в единицах СИ:

Энергия связи ядра выраженная в МэВ (где масса берется в атомных единицах):

Закон радиоактивного распада:

Ядерные реакции

Для произвольной ядерной реакции описывающейся формулой вида:

Выполняются следующие условия:

Энергетический выход такой ядерной реакции при этом равен:

Основы специальной теории относительности (СТО)

Релятивистское сокращение длины:

Релятивистское удлинение времени события:

Релятивистский закон сложения скоростей. Если два тела движутся навстречу друг другу, то их скорость сближения:

Релятивистский закон сложения скоростей. Если же тела движутся в одном направлении, то их относительная скорость:

Энергия покоя тела:

Любое изменение энергии тела означает изменение массы тела и наоборот:

Полная энергия тела:

Полная энергия тела Е пропорциональна релятивистской массе и зависит от скорости движущегося тела, в этом смысле важны следующие соотношения:

Релятивистское увеличение массы:

Кинетическая энергия тела, движущегося с релятивистской скоростью:

Между полной энергией тела, энергией покоя и импульсом существует зависимость:

Равномерное движение по окружности

В качестве дополнения, в таблице ниже приводим всевозможные взаимосвязи между характеристиками тела равномерно вращающегося по окружности (T – период, N – количество оборотов, v – частота, R – радиус окружности, ω – угловая скорость, φ – угол поворота (в радианах), υ – линейная скорость тела, an – центростремительное ускорение, L – длина дуги окружности, t – время):

Расширенная PDF версия документа «Все главные формулы по школьной физике»:

Как успешно подготовиться к ЦТ по физике и математике?

Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:

  1. Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен, где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.
  2. Выучить все формулы и законы в физике, и формулы и методы в математике. На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  3. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.

Успешное, старательное и ответственное выполнение этих трех пунктов, а также ответственная проработка итоговых тренировочных тестов, позволит Вам показать на ЦТ отличный результат, максимальный из того, на что Вы способны.

Нашли ошибку?

Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на электронную почту (адрес электронной почты здесь). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

ЗАПРЕЩЕНО использование представленных на сайте материалов или их частей в любых коммерческих целях, а также их копирование, перепечатка, повторная публикация или воспроизведение в любой форме. Нарушение прав правообладателей преследуется по закону. Подробнее.

Статья по физике по теме » Использование линейных уравнений для решения задач по физике» (7, 9 классы)

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

МБОУ «Средняя общеобразовательная школа № 80»

Использование линейных уравнений для решения задач по теме «Равномерное движение»

Use linear equations to solve problems on the topic of «Uniform motion»

Материал статьи посвящен интеграции двух предметов школьного курса: физики и математики. Авторы обращают внимание на необходимость взаимосвязей между учебными предметами для отражения целостной картины мира, природы «в голове ученика», для создания истинной системы знаний и миропонимания.

The article is devoted to the integration of the two subjects of the school course of physics and mathematics. The authors draw attention to the need relationships between subjects to reflect a holistic picture of the world of nature «in the mind of the disciple», to create true knowledge and understanding of the world.

Ключевые слова: интеграция, математика, физика, равномерное движение, линейные уравнения, школьный курс

Математика и физика обычно считаются наиболее трудными предметами школьного курса. Эти направления научной мысли развивались взаимосвязано во все периоды формирования человеческого сознания, стимулируя обоюдный процесс. На всех уровнях изучения физики в школьном преподавании, интеграция с математикой может сделать изложение предметов более ясным и доступным. Общение с учениками показывает, что непонимание ими какого- либо вопроса из курса физики или неумение решить физическую задачу часто связаны с неумением проводить алгебраические преобразования и геометрические построения, отсутствием навыка анализа функциональных зависимостей, составления и решения математических уравнений.

Современное обучение требует сочетания экспериментального и теоретического методов изучения физики, выявления сути физических законов на основе доступных ученикам понятий элементарной математики.

Такой подход одновременно обеспечивает повышение уровня математических знаний, формирует логическое мышление, осознание единства материального мира. Ученики начинают испытывать удовлетворение, замечая, что абстрактные математические формулы и уравнения имеют реальное воплощение в физических процессах.

Приведем примеры изложения некоторых вопросов физики с использованием доступного учащимся математического аппарата.

Английский физик Поль Адриен Морис Дир ак писал: «Физический закон должен быть математически красивым»

Простейший вид механического движения — движение тела вдоль прямой линии с постоянной по модулю и направлению скоростью такое движение называется равномерным . При равномерном движении тело за любые равные промежутки времени проходит равные пути.

Изучая равномерное движение на уроках физики в 7 и 9 классах, учащиеся вспоминают линейные уравнения вида y = kx + b из курса математики.

Уравнение y = kx + b , называют линейным уравнением с двумя переменными х и у. Решением данного уравнения является пара чисел (х; у), которая удовлетворяет этому уравнению. Графиком такого уравнения является прямая.

Учащимся предлагается сравнить «математическое» уравнение y= kx + b и «физическое» x = x 0= + v x t , являющееся закономерностью изменения координаты х от времени t при равномерном движении. Данное сравнение позволяет учащимся сделать вывод, что выражение x = x 0= + v x t — линейная функция, где время t служит аргументом, а х— функцией. Уравнение x = x 0= + v x t . -уравнение равномерного прямолинейного движения точки, записанное в координатной форме. Оно позволяет найти координату х тела при этом движении в любой момент времени, если известны проекция его скорости на ось Ох и его начальная координата x 0 .

В природе очень мало примеров равномерного движения. Почти равномерно всплывают мелкие пузырьки в газированной воде, падают капли дождя, падает парашютист с раскрытым парашютом и т.д.

В различных равномерных движениях перемещения тел за одинаковые промежутки времени могут быть различными, а значит одинаковые перемещения будут совершаться ими за разное время.

Так, при прохождении расстояния между двумя остановками, автобус затратит времени меньше, чем велосипедист. Чтобы количественно охарактеризовать это различие между равномерными движениями, вводится новая физическая величина- скорость движения.

Скорость- одна из основных кинематических характеристик движения материальной точки, определяемая отношением перемещения ко времени, в течении которого оно произошло. Скорость обозначаем буквой v . Так как при равномерном движении скорость не меняется, то графиком зависимости v x ( t ) является прямая, параллельная оси t .

Порядок построения графиков зависимости х=х( t ) для равномерного движения можно задать в виде таблицы, содержащей определенное значение промежутка времени и длины пройденного пути, что соответствует

Алгоритм построения графика уравнения х=х( t ) аналогичен построению графика у= f (х):

1. Переменной t придается конкретное значение t = t 1 ; из уравнения x = x 0= + v x t находим соответствующее значение х 1 .

2. Переменной t придается другое значение t= t 2 , находим соответствующее значение х=х 2 .

3. Построить координатные плоскости хО t , выбирая необходимый масштаб.

4. На координатной плоскости хО t построить две точки ( t 1 , х 1 ) и (t 2, х 2 ).

5. Провести через эти точки прямую, являющуюся графиком уравнения x= x 0= + v x t .

С помощью графиков можно легко решать разные задачи о движении.

По графику движения можно судить о скорости движущейся точки, определять перемещение за любой промежуток времени и находить координату тела в данный момент времени.

Рассмотрим законы равномерного прямолинейного движения на конкретных примерах.

Пример 1. По уравнению движения тела x(t)=10+10t постройте график зависимости х( t ). Найдите начальную координату и проекцию скорости.

Решение: Используем алгоритм построения графика уравнения х=х( t ).

Уравнение координаты тела задается линейной функцией времени

Из уравнения определяем: х 0= 10м, v 0= 10 м/ c

Через 0 c тело будет иметь следующую координаты: x 1 (0) = 10, через 2 с , x 2 (2) = 30.

Строим координатную плоскость хО t , выбирая масштаб по оси х и оси t .

Отмечаем точки (0,10) и (2,30). Соединяем эти точки, получаем график зависимости х( t ), являющийся прямой.

рис.1 График зависимости х( t ).

Пример 2. По графику зависимости v ( t ), рис.2, определите скорость тела, найдите пройденный путь через 5 с от начала движения.

Решение: По графику v ( t ) определяем скорость движения. v =8м/с. Для определения пройденного пути воспользуемся формулой : s = vt . При t =5с, s = 40 м. Путь можно также найти как площадь фигуры под графиком скорости, ограниченной справа и слева линиями времени, данного по условию задачи.

рис. 2 График зависимости v ( t )

Таким образом, при изучении равномерного прямолинейного движения опираемся на знания учащихся, полученные на уроках математики по теме «Линейная функция и ее график». Если учащиеся хорошо владеют данным материалом, то они успешно справляются с заданиями по физике на построение графиков зависимости скорости, пути и координаты от времени, а также, читая графики, определяют промежуточные величины.

Межпредметные связи способствует систематизации, а, следовательно, глубине и прочности знаний, дает ученикам целостную картину мира.

В заключении можно сказать:

«О, физика, наука из наук!

Все впереди! Как мало за плечами!

Пусть химия нам будет вместо рук,

Пусть будет математика очами.

Не разлучайте этих трех сестер

Познание всего в подлунном мире,

Тогда лишь будет ум и глаз остер

И знанья человеческие шире».

Перышкин, А. В. Физика. 7 класс [Текст] : учебник для общеобразовательных учебных заведений. ФГОС / А. В. Перышкин. – 4-е изд., стререотип. – М. : Дрофа, 2015.

Перышкин, А. В. Физика. 9 класс [Текст] : учебник для общеобразовательных учреждений. / А. В. Перышкин, Е. М. Гутник. – М. : Дрофа, 2014.

Макарычев Ю.Н. Алгебра. 7 класс [Текст] : учебник для общеобразовательных учебных заведений. ФГОС / Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. и др./Под ред. Теляковского С.А.- М: Просвещение,2013.

Г.В. Дорофеев. Алгебра 7 класс [Текст] : учебник для общеобразовательных учебных заведений. ФГОС Г.В.Дорофеев, С.Б. Суворова, Е.А. Бунимович и др.; под ред. Г.В. Дорофеева. — М.: Просвещение, 2008 .


источники:

http://educon.by/index.php/formuly/formfiz

http://infourok.ru/statya-po-fizike-po-teme-ispolzovanie-lineynih-uravneniy-dlya-resheniya-zadach-po-fizike-klassi-2522544.html