Уравнения подобия для теплоотдачи труб

Критериальные уравнения теплообмена: расчет теплоотдачи в трубах и каналах

Теплоотдача при вынужденном течении жидкости в трубах и каналах

Теплоотдача в трубах и каналах может происходить при вынужденном или свободном характере конвекционных потоков (возможны также их сочетания в случае существенного влияния гравитационных сил).

При вынужденном течении (вынужденная конвекция) жидкость нагнетается или отводится под действием сил внешнего давления, например, ветра, насоса или вентилятора.

Свободное течение жидкости происходит под действием подъемных (гравитационных) сил за счет изменения ее плотности из-за разницы температуры – слой жидкости с меньшей плотностью стремиться занять верхнее положение относительно холодного слоя (свободная или естественная конвекция).

Интенсивность теплоотдачи, как при вынужденной, так и при свободной конвекции характеризуется коэффициентом теплоотдачи α, имеющим размерность Вт/(м 2 ·град), который определяется по формуле:

Nu – число Нуссельта; λ – коэффициент теплопроводности жидкости при средней температуре, Вт/(м·град);

d – эквивалентный диаметр, равный

F – площадь сечения канала, м 2 ; П – периметр канала, м.

Для трубы круглого сечения, эквивалентный диаметр равен внутреннему диаметру трубы.

В целом, расчет коэффициента теплоотдачи сводится к определению числа Нуссельта, значение которого задается соответствующими критериальными уравнениями конвективного теплообмена, зависящими от режима течения жидкости и формы канала.

Течение жидкости в трубах определяется значением числа Рейнольдса Re и в зависимости от его величины может быть ламинарным, переходным или турбулентным.

  • Ламинарный режим течения жидкости характеризуется величиной числа Re до 2300.
  • При значении числа Re от 2300 до 10000 режим течения в трубах является переходным.
  • Турбулентный режим течения в трубах наблюдается при числах Re более 10000.

Число (критерий) Рейнольдса представляет собой безразмерный комплекс, связывающий скоростные и вязкостные характеристики жидкости с определяющим размером канала (для трубы – это ее диаметр).

Число Re определяется по формуле:

w – скорость течения жидкости, м/с; d – эквивалентный диаметр канала, м; ν — кинематическая вязкость жидкости при средней температуре, м 2 /с.

Теплоотдача в трубах и каналах существенно зависит от режима течения жидкости. При ламинарном режиме интенсивность теплоотдачи значительно меньше, чем при развитом турбулентном.

Теплоотдача при ламинарном течении в трубах и каналах

Ламинарный режим течения жидкости обычно характеризуется низкой скоростью потока. При этом в некоторых случаях влиянием конвекции, обусловленной действием гравитационных сил, пренебрегать нельзя.

Для выбора правильного критериального уравнения теплообмена и оценки влияния естественной конвекции на интенсивность теплопередачи при ламинарном режиме служит критерий Грасгофа Gr.

g – ускорение свободного падения, м/с 2 ;

β – температурный коэффициент объемного расширения, град -1 ;

d – эквивалентный диаметр канала, м;

ν — кинематическая вязкость жидкости при средней температуре, м 2 /с;

Δt – средняя разность температур жидкости и стенки, °С.

Теплоотдача при ламинарном течении в трубах и каналах с учетом естественной конвекции. Если величина комплекса GrPr превышает 8·10 5 , то расчет коэффициента теплоотдачи необходимо проводить с учетом влияния естественной конвекции в потоке жидкости по следующему критериальному уравнению:

Индекс «ж» означает, что свойства среды, входящие в критерии подобия Re, Pr и Gr берутся при средней температуре жидкости.

Число Прандтля с индексом «с» Prс берется для жидкости при температуре стенки.

εL – коэффициент, учитывающий изменение теплоотдачи по длине трубы или канала. Его можно определить с помощью таблицы:

Значения коэффициента εL при ламинарном режиме

L/d125101520304050
εL1,91,71,441,281,181,131,051,021

Теплоотдача при ламинарном течении в трубах и каналах без учета естественной конвекции. При значении GrPr 5 , влияние естественной конвекции на теплоотдачу жидкости пренебрежительно мало, и расчет коэффициента теплоотдачи можно проводить по следующему критериальному уравнению:

d – эквивалентный диаметр канала, м;

L – длина трубы (канала), м.

Представленные критериальные уравнения теплообмена при ламинарном режиме позволяют определить среднее значение числа Нуссельта, по величине которого можно рассчитать средний коэффициент теплоотдачи:

λ – коэффициент теплопроводности жидкости при средней температуре, Вт/(м·град);

d – эквивалентный диаметр, м.

Теплоотдача в трубах и каналах при турбулентном режиме

Теплоотдача в трубах и каналах при турбулентном режиме осуществляется путем передачи тепла при интенсивном перемешивании слоев жидкости. Критериальное уравнение теплообмена для расчета средней теплоотдачи в трубах и каналах в этом случае имеет вид:

Критерии подобия Re и Pr берутся при средней температуре жидкости. Число Прандтля с индексом «с» Prс берется при температуре стенки.

Представленное критериальное уравнение применяется в диапазоне чисел Re от 1·10 4 до 5·10 6 и Pr от 0,6 до 2500.

εL – коэффициент, учитывающий изменение среднего коэффициента теплоотдачи по длине трубы или канала при турбулентном режиме течения. Значения εL приведены в следующей таблице при различных числах Рейнольдса и отношениях длины канала к его эквивалентному диаметру:

Значения коэффициента εL при турбулентном режиме

ReжL/d
125101520304050
1·10 41,651,51,341,231,171,131,071,031
2·10 41,511,41,271,181,131,11,051,021
5·10 41,341,271,181,131,11,081,041,021
1·10 51,281,221,151,11,081,061,031,021
1·10 61,141,111,081,051,041,031,021,011

Расчет теплоотдачи в изогнутых трубах и каналах проводится по тому же критериальному уравнению с добавлением множителя — поправки на действие центробежных сил, которая определяется по формуле:

R — радиус изгиба трубы или канала, м; d – эквивалентный диаметр трубы или канала, м.

Теплоотдача в изогнутых трубах проходит более интенсивно, чем в прямых, за счет большего вихреобразования и лучшего перемешивания жидкости.

Расчет теплоотдачи при вынужденной конвекции

Пример расчета. Рассчитаем средний коэффициент теплоотдачи воды, текущей по трубопроводу длиной 1 м, диаметром d=0,01 м с расходом Q=20 л/мин. Средняя температура воды tж=50°С, температура стенки трубы tс=10°С.

1. Определим физические свойства воды при температуре 50°С:

  • Теплопроводность воды λж= 0,648 Вт/(м·град);
  • Плотность воды ρж=988 кг/м 3 ;
  • Кинематическая вязкость воды νж=0,556·10 -6 , м 2 /с;
  • Число Прандтля при температуре жидкости Prж=3,54;
  • Число Прандтля при температуре стенки Prс=9,52.

2. Рассчитаем среднюю скорость течения воды w по трубе:

3. Определим число Рейнольдса Re:

4. Поскольку число Рейнольдса имеет значение больше 1·10 4 , то режим течения является турбулентным и расчет теплоотдачи необходимо проводить по следующему критериальному уравнению:

Определим коэффициент εL по соотношению L/d=1/0,01=100. Поскольку L/d>50, то коэффициент εL=1.

Выполним расчет числа Нуссельта по приведенному критериальному уравнению:

5. Рассчитаем средний коэффициент теплоотдачи от воды к стенке трубы по формуле:

Таким образом, средний коэффициент теплоотдачи от воды к стенке трубы составляет 14,65 кВт/(м 2 ·град).

Теплоотдача при свободной конвекции в трубах и каналах

Теплообмен при свободном движении жидкости (или газа) происходит вследствие разности плотностей нагретых и холодных ее слоев. Интенсивность теплоотдачи жидкости в трубах и каналах при свободной конвекции существенно зависит от их положения в пространстве относительно силы тяжести.

Теплоотдача при свободной конвекции имеет различный характер в случаях свободного течения в неограниченном пространстве и теплообмена в ограниченном объеме (в узкой трубе или канале).

Свободная конвекция в неограниченном пространстве

Конвекция в неограниченном пространстве протекает, например при охлаждении трубопровода центрального отопления, расположенного на улице в безветренную погоду, вблизи от которого отсутствуют препятствия для движения воздушных потоков.

Горизонтальный канал или труба. Интенсивность теплоотдачи при свободной конвекции зависит от величины комплекса GrPr. При значении GrPr от 10 3 до 10 9 критериальное уравнение, описывающее среднюю теплоотдачу от поверхности горизонтальных труб и каналов, имеет вид:

В качестве определяющего размера принимается наружный диаметр d канала или трубы.

Вертикальный канал (труба, пластина). Для вертикальных труб и каналов при значении GrPr от 10 3 до 10 9 критериальное уравнение, описывающее среднюю теплоотдачу, имеет вид:

При GrPr>10 9 :

Примечание: В приведенных критериальных уравнениях теплообмена свойства жидкости, входящие в числа Gr и Pr, определяются при температуре окружающей среды. Число Прандтля с индексом «с» Prс берется для жидкости при температуре стенки. В качестве определяющего размера принимается длина L (высота) вертикально стоящей трубы или канала.

Свободная конвекция в ограниченном объеме

Теплообмен жидкости в ограниченном объеме при свободной конвекции характеризуется совместным протеканием процессов нагрева и охлаждения соседних слоев жидкости (или газа). Эти процессы сопровождаются сложным течением нисходящих и восходящих потоков, зависящих от рода жидкости, разницы температуры, формы канала и его геометрических размеров.

Для упрощения расчета таких сложных процессов конвективного теплообмена принято рассматривать их, как явление теплопроводности в щели толщиной δ с учетом понятия эквивалентного коэффициента теплопроводности λэк.

Эквивалентный коэффициент теплопроводности определяется по формуле:

Q — количество переданного тепла, Вт; δ — толщина слоя жидкости (или газа), м; F — площадь теплоотдающей поверхности, м 2 ; Δt=tc1-tc2 — температурный напор между нагретой и холодной стенками, °С.

Отношение эквивалентного коэффициента теплопроводности λэк к величине теплопроводности окружающей жидкости при средней температуре называется коэффициентом конвекции εк, который определяется значением комплекса GrPr.

При малых значениях комплекса GrPr 3 6 :

При 10 6 10 :

Примечание: Числа подобия Gr и Pr рассчитываются при средней температуре жидкости (или газа), равной tж=0,5(tc1+tc2). В качестве определяющего размера принимается δ — толщина слоя жидкости.

Расчет теплоотдачи при свободной конвекции

Пример расчета. Рассчитаем потери тепла естественной конвекцией от горизонтального трубопровода центрального отопления, находящегося на открытом воздухе. Диаметр трубопровода d=0,15 м, длина L=5 м, средняя температура наружной стенки tс=80°С. Температура окружающего воздуха tж=20°С.

1. Определим физические свойства воздуха при температуре 20°С:

  • Теплопроводность воздуха λж= 0,0259 Вт/(м·град);
  • Кинематическая вязкость воздуха νж=15,06·10 -6 , м 2 /с;
  • Число Прандтля при температуре жидкости Prж=0,703;
  • Число Прандтля при температуре стенки Prс=0,69;
  • Коэффициент объемного расширения βж=1/(273+20)=0,00341 град -1 .

2. Вычислим число Грасгофа Gr по формуле:

3. Определим значение комплекса GrPr:

Этому значению комплекса соответствует следующее критериальное уравнение теплообмена при свободной конвекции в случае горизонтальной трубы:

4. Вычислим значение числа Нуссельта Nu:

5. Рассчитаем коэффициент теплоотдачи от трубы α по формуле:

6. Определим потери тепла с боковой поверхности трубопровода по формуле:

Подставляя численные значения, окончательно получаем потерю тепла:

Таким образом, только путем естественной (свободной) конвекции рассмотренный трубопровод отопления отдает воздуху 1681 Вт тепла.

Основы теории теплового подобия

7.2.1. Подобные процессы теплоотдачи

Теория теплового подобия – это система понятий и правил, обеспечивающих возможность переноса результатов экспериментов по определению коэффициентов теплоотдачи с одних объектов на другие.

Первые понятия о подобии даются в геометрии. В случае подобия двух треугольников каждая сторона большего треугольника превосходит сходственную сторону меньшего треугольника в определенное число раз. Это число называют к о н с т а н т о й п о д о б и я. Могут быть подобными и физические процессы.

Процессы конвективного теплообмена, протекающие в различных системах, при вполне определенных условиях могут быть подобны. Эти условия теплового подобия формулируются в виде трех правил [4].

1.Подобные процессы должны быть качественно одинаковыми, т.е должны иметь одинаковую физическую природу и описываться одинаковыми дифференциальными уравнениями. Так, например, процессы нагрева воды в закрытом сосуде и нагрева движущейся воды по трубе не могут считаться подобными, так как описываются различными дифференциальными уравнениями.

2.Условия однозначности подобных процессов должны быть одинаковы во всем, кроме численных значений постоянных, содержащихся в этих условиях.

3.Одноименные критерии подобных процессов должны иметь одинаковую численную величину.

Третье правило требует дополнительных разъяснений. Пусть в двух системах процессы конвективного теплообмена будут подобны. Запишем дифференциальные уравнения теплоотдачи для этих процессов с соответствующими индексами:

и (7.5)

Введем константы подобия одноименных величин:

где l — характерный геометрический размер системы.

Выразим величины второй системы через константы подобия и одноименные величины первой системы:

(7.6)

Уравнения (7.5) и (7.6) тождественны, так как они выражают связь между параметрами процесса, обусловленную дифференциальным уравнением теплоотдачи для одной и той же системы. Из условий тождественности уравнений следует, что

(7.7)

Равенство (7.7) накладывает ограничение на выбор констант для подобных явлений: определенная их комбинация должна быть равна единице.

Подставив в выражение (7.7) значения констант подобия, будем иметь:

(7.8)

Получили безразмерный комплекс величин, который для двух подобных систем имеет численно одинаковое значение. Этот безразмерный комплекс в честь немецкого ученого В. Нуссельта назван критериемНуссельта.

Таким образом, третье правило дает возможность распространить подобие на множество процессов теплообмена, отличающихся друг от друга величинами c, λ, ρ, cp, l и т.д., но имеющих численно одинаковые их комбинации.

Переход от обычных физических величин к критериям подобия, которые составлены из тех же величин, но в других сочетаниях, создает важные преимущества. Прежде всего, достигается уменьшение числа независимых переменных, участвующих в формулировке решения рассматриваемой задачи. Это позволяет систему дифференциальных уравнений, описывающих теплообмен, заменить функциональной связью между критериями подобия. Кроме того, значения критериев подобия могут быть получены как результат множества различных комбинаций величин. Следовательно, фиксированным значениям критериев соответствует не один процесс теплоотдачи, а целая совокупность подобных процессов. Это означает, что если функциональную связь между критериями представить в виде к р и т е р и а л ь н о г о уравнения, полученного в результате обработки экспериментальных данных теплоотдачи, то это уравнение будет справедливо и для других подобных процессов переноса тепла в пограничном слое.

Таким образом, метод теплового подобия дает возможность из дифференциальных уравнений и граничных условий, описывающих теплоотдачу, создать теоретическую основу для постановки опытов и обработки результатов экспериментов при получении критериальных уравнений.

Совершенно очевидно, что теория теплового подобия наиболее плодотворно может быть использована в том случае, когда невозможно аналитическое решение.

7.2.2. Критерии теплового подобия

Под критериями теплового подобия понимают безразмерные комплексы, составленных из определенных комбинаций величин, описывающих тот или иной процесс теплоотдачи.

Ниже приведены критерии, которые наиболее распространены в теории конвективного теплообмена.

Критерий Нуссельта, ,

где α – коэффициент теплоотдачи,

l – характерный геометрический размер;

λ – коэффициент теплопроводности

Критерий Нуссельта характеризует теплообмен на границе стенка – теплоноситель и устанавливает численное отношение между интенсивностью теплоотдачи и тепловой проводимостью (λ / l) теплоносителя.

Критерий Рейнольдса,

гдеc– скорость теплоносителя;

ν – коэффициент кинематической вязкости.

Критерий Рейнольдса характеризует режим течения теплоносителя и устанавливает соотношение между силами инерции и силами вязкости.

Критерий Прандтля, ,

где – коэффициент температуропроводности.

Критерий Прандтля характеризует физические свойства жидкости, является мерой подобия температурных и скоростных полей в потоке теплоносителя. При Pr = 1 толщины теплового и динамического пограничных слоев равны, т.е. δmд .

Критерий Грасгофа,

где g – ускорение земного притяжения;

β – коэффициент объемного расширения теплоносителя;

T– разность температур между теплоносителем и стенкой.

Критерий Грасгофа характеризует кинематическое подобие при свободном движении теплоносителя и устанавливает соотношение подъемной силы, возникающей вследствие разности плотностей жидкости и силы молекулярного трения.

В ряд критериев подобия входит характерный геометрический размер. В качестве характерного выбирают тот геометрический размер, который определяет развитие процесса течения теплоносителя около поверхности теплоотдачи. Этот размер называют определяющим.

Для труб круглого сечения таким определяющим размером является внутренний диаметр трубы. Для каналов некруглого сечения в качестве определяющего размера выбирается эквивалентный диаметр, который вычисляется по формуле:

, (7.9)

где F – площадь поперечного сечения канала;

П – смоченный периметр нормального сечения канала.

При поперечном обтекании трубы и пучка труб в качестве определяющего размера берется наружный диаметр трубы, а при обтекании плиты — ее длина по направлению движения потока.

Входящие в критерии подобия величины, характеризующие физические свойства теплоносителя, в значительной степени зависят от его температуры. Температура же теплоносителя в процессе теплоотдачи меняется как по толщине пограничного слоя, так и вдоль поверхности теплообмена. Поэтому важно условиться, какую температуру принимать в качестве определяющей для выбора физических параметров.

В инженерной практике за определяющую принимают ту температуру, которая в технических расчетах бывает задана или легко может быть определена в эксперименте. Это либо температура в ядре потока того сечения, для которого вычисляется коэффициент теплоотдачи, либо средняя по длине канала температура теплоносителя.

7.2.3. Критериальные уравнения

Теория теплового подобия позволяет определить величину коэффициента теплоотдачи при помощи соответствующего критериального уравнения.

Критериальным называют уравнение, которое зависимость между величинами, описывающими конвективный теплообмен в дифференциальной или другой форме, представляет зависимостью между критериями подобия.

Так, например, функциональная связь

Nu = f (Re, Gr, Pr) (7.10)

представляет собой критериальное уравнение в общем виде.

Для выявления критериев, входящих в критериальные уравнения и установления функциональной связи между ними, в настоящее время используются в основном два метода: метод масштабных преобразований и метод размерностей. Использование метода масштабных преобразований возможно при условии описания процесса конвективного теплообмена замкнутой системой дифференциальных уравнений с условиями однозначности. Подробно этот метод рассмотрен в работах [4. 6. 10].

Метод размерностей используется, когда рассматривается сложный и новый процесс, для которого еще нет аналитического описания. В этом

случае необходимо установить полный перечень существенных для процесса физических величин, т.е. тех, которые должны войти в дифференциальные уравнения и условия однозначности. Располагая списком размерных величин, можно установить список критериев подобия и вид критериального уравнения.

Пусть, например, установлены факторы, влияющие на коэффициент теплоотдачи в данной системе, т.е α = f ( c, ρ, ν, λ, cp, d ).

Допустим, что между этими величинами существует степенная функциональная связь вида

α = К с α ρ b ν f λ e cp r d g , (7.11)

где K – коэффициент пропорциональности (безразмерная величина).

Размерности обеих частей равенства должны быть одинаковы, т.е.

Дж/(м с К)=

Составив уравнения относительно показателей степеней для каждой размерности, получим систему:

метр: — 2 = a — 3b + 2f — e + g;

секунда: — 1 = — a — f – e;

кельвин: — 1 = — e – r;

килограмм: 0 = b – r.

Выразим искомые величины в этой системе через a и b :

f = 1 – a – 1 + b = b — a

Подставив значения a , b, e , r, и g в уравнение (7.11), получими

Сгруппировав величины с одинаковыми показателями степеней, выявим безразмерные комплексы:

(7.12)

Таким образом, используя метод размерностей, можно выявить критерии подобия и вид критериальных уравнений, описывающих подобные процессы теплоотдачи.

Использование критериальных уравнений вида (7.12) возможно, если известны значения величин К, α, b. Для их определения проводится серия опытов по экспериментальному исследованию коэффициента теплоотдачи

с измерением всех величин, входящих в критерии подобия рассматриваемого критериального уравнения. Причем от опыта к опыту параметры, влияющие на значение α, изменяются так, что диапазон изменения критериев становится существенным. Обработка результатов экспериментов ведется графоаналитическим методом. Поясним его сущность.

Предположим, что критерий Nu зависит только от критерия Re , т.е.

. (7.13)

Из серии экспериментов выбирают опытные данные для нескольких отличающихся друг от друга чисел Re и вычисляют соответствующие им значения Nu. Расположение опытных точек на графике, где по оси ординат отложены значения Nu , а по оси абсцисс – Re, покажет характер зависимости Nu = f (Re). Однако определить значения показателя степени и коэффициента пропорциональности K по полученному графику сложно. Задача упрощается, если выражение (7.13) линеаризировать и использовать логарифмическую систему координат.

Нанесем опытные данные на поле графика с координатами ln Nu

и ln Re , рис. 7.3. Экспериментальные точки расположатся вдоль прямой линии 1-2, которая представлена выражением (7.13) в логарифмическом виде:

ln Nu = ln K + ln Re.

Отсюда показатель степени числа Re для выражения (7.13) вычисляется как отношение катетов, т.е.

.

Коэффициент пропорциональностиопределяется из соотношения:

Рис.7.3

которому удовлетворяет любая точка прямой, (см. рис.7.3).

Eсли искомая величина Nu является функцией двух аргументов, например Nu = f(Re, Pr), то сначала при фиксированном значении Pr строят график и по нему определяют показатель при числе Re. Затем опытные данные представляют на графике в виде зависимости:

и определяют показатель степени b. Величину K находят из соотношения:

Полученные таким образом критериальные уравнения являются чисто эмпирическими. Они применимы для подобных явлений теплообмена лишь в тех пределах изменения критериев, в которых подтверждены опытом. Экстраполяция этих уравнений на большие или меньшие значения критериев, строго говоря, недопустима.

Дата добавления: 2015-02-16 ; просмотров: 7676 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Уравнения подобия

Уравнения подобия

  • Уравнение подобия Уравнение подобия относится к связи между определенным числом подобия и другими определенными числами подобия. Количество, необходимое для расчета теплового оборудования — это коэффициент теплопередачи a и гидравлическое сопротивление dr. Конвективный теплообмен характеризуется пятью сходствами: Nu, Eu, Pr, Gr и Re. Числовое значение Nu содержит

неизвестный коэффициент теплопередачи a, а числовое значение Ei содержит целевое значение Ap. Это характеризует гидравлическое сопротивление при движении жидкости. Следовательно, числа Nu и Ei определяются числами подобия, а числа Pr, Gr и Re являются решающими и. Для конвективного теплообмена уравнение подобия может быть выражено как: Nu = f, (Re, Gr, Pr); • (26-44) Eu = f2 (Re, Gr, Pr). ^ (26-45) Эта связь между числами подобия является результатом

второй теоремы теории подобия. Соотношение между числами подобия определяется в основном опытным путем. свободная конвекция очень мала по сравнению с принудительной конвекцией, что упрощает уравнение подобия теплопередачи. • Nu = / (Re, Pr). (26-46) Для некоторых газов значение числа Прандтля Pr во время конвективного теплообмена мало меняется с температурой, поэтому формула подобия принимает более простую форму. Nu = f (Re). (26-47)

При вынужденном движении жидкости и в развитом турбулентном режиме Людмила Фирмаль

Когда жидкость движется свободно, число Грасгофа необходимо ввести в уравнение подобия теплопередачи, когда нет принудительной конвекции вместо числа Рейнольдса. Отсюда U = / (Gr, Pr) ..- (26-48) Экспериментальные исследования теплопередачи капающей жидкости показали, что коэффициент теплопередачи ce имеет различные значения в условиях нагрева и охлаждения стенки. Это явление связано с изменением физических параметров жидкости в пограничном слое. Чтобы получить уравнение подобия, которое

одинаково справедливо как для зрелости, так и для охлаждения, дополнительно введено следующее соотношение: ^ /) K // CT, ai / | lst, Prz / Prst. Первое соотношение обычно используется для расчета теплопередачи газа, а два других соотношения используются для расчета теплопередачи капающей жидкости. Ученый М.А. Михеев рекомендует учитывать направление тепла: отношение теплового потока Rg / Prgst до 0,25. В этом случае общая формула для подобия конвективного теплообмена следующая: Nu = c Re «, Gr *, Prm, (Prz / Prst) 0-25. (26-49) Все уравнения в особых случаях могут отображаться

в одном формате. Количественная связь между показателями сходства [предмет экспериментальных исследований. моделирование Экспериментальные исследования различных физических явлений, особенно тепловых и тепловых явлений, могут проводиться путем изучения явлений, которые должны быть исследованы либо непосредственно на образце, либо на моделях. Условие, что модель и процессы, происходящие в ней, должны соответствовать теории

  • подобия. Применимость: теория сходства с опытом практически безгранична. В предыдущем разделе было установлено, что все подобные явления в определенной группе являются идентичными явлениями, приведенными в разных масштабах. Вывод: где взять; изучение любого явления в группе может быть распространено на все явления в этой группе. Таким образом, изучение конкретного конкретного явления в определенной группе эквивалентно изучению

других явлений в той же группе. Поэтому, если прямое экспериментальное исследование конкретного явления в природе образца затруднительно по техническим или экономическим причинам, оно будет заменено исследованием аналогичного явления в модели. Моделирование — это экспериментальный метод исследования, при котором изучение физических явлений проводится в сокращенной модели. Идея моделирования основана на

том факте, что [все явления описываются безразмерными переменными [отражают признаки группы похожих явлений]. Чтобы модель была похожа на модель, Вы можете моделировать процессы, которые имеют одинаковые физические свойства и описываются одними и теми же дифференциально-дифференциальными уравнениями. Явные

должны быть выполнены следующие условия: Людмила Фирмаль

условия должны быть одинаковыми во всех, кроме постоянных чисел, содержащихся в этих условиях. Требования двусмысленности требуют комфорта. Геометрическое сходство образца и модели, сходство условия G движения жидкости во входном сечении образца и модели, сходство физических параметров при сходстве образца и модели, Сходство температурного поля на границе жидкой среды. Кроме того, сходные числа сходства для похожих участков образца и модели должны быть численно одинаковыми. , ■ ч Перечисленные

условия сходства для образцов и моделей являются необходимыми и достаточными. Однако практически все условия моделирования трудно реализовать практически точно. По этой причине была разработана приближенная методика моделирования, состоящая из стабильности и надежности. Применение потоковых методов самоподобия и локальности. Геометрическое сходство от модели к модели легко реализовать. Аналогичное распределение скорости.

Тент на входе относительно легкий. Сходство физических параметров модели и потока жидкости образца является лишь приблизительным, и подобие поля температуры на нагретой поверхности модели и образца очень сложно реализовать. В связи с этим используется метод аппроксимации локального моделирования. Локальное моделирование основано на том факте, что подобие температурного поля выполняется не на всем устройстве, а в отдельном месте, то есть

на участке, где изучается теплообмен. Эквивалентность критериев выбора образца и модели может быть выполнена приблизительно. -Стабильность является характеристикой вязкости жидкости, которая всегда принимает одинаковое распределение скорости по площади поперечного сечения на одном и том же расстоянии от впускного отверстия, независимо от характера скорости входной площади поперечного сечения. \ Явление самоподобия связано с тем, что существует распределение скоростей, которое практически не изменяется в этом сечении, когда жидкость движется с довольно

широким диапазоном скоростей. Другими словами, он практически не зависит от Re. В настоящее время моделирование является одним из основных методов научных исследований и широко используется во многих областях науки и техники. Он стал мощным инструментом для выявления различных недостатков в существующем техническом оборудовании и поиска путей их устранения. Кроме того, моделирование в настоящее время широко используется для тестирования вновь созданных устройств, улучшая новые

конструкции, которые еще не реализованы на практике. XXVI глава вопросы безопасности 1. Что такое конвективный теплообмен? -2 Какие бывают типы конвекции? 3. Динамические и тепловые пограничные слои и их физические значения. • 4: Какая разница между типом движения жидкости и #? «» 5. Число Рейнольдса и его обозначение. 6. Что такое измерение числа Рейнольдса? 7. Критическое значение числа Рейнольдса. 8. Каков механизм теплообмена при ламинарном и турбулентном движении * жидкостей? 9. Обеспечивает определение динамических и

кинематических коэффициентов. Класс вязкости. «» LO. Какие факторы влияют на конвективный теплообмен? П. Определение коэффициента теплопередачи. * 12. Какова функция коэффициента теплопередачи? 13. Создать систему дифференциальных уравнений для конвективного теплообмена. 14. Что называется условием уникальности? 15. Почему теория подобия используется для определения коэффициента теплопередачи? • ‘•• 16. Какие условия лежат в основе теории подобия? 17. Зависит ли коэффициент

теплопередачи от такого количества? , 18. Три теоремы подобия. — 19. Из какого дифференциального уравнения можно получить сходство? •. ’20. Какое сходство можно получить из дифференциального уравнения конвективного теплообмена? •• ■ — • • 21. Что такое уравнение называется похожим уравнением? 22. Какое же число конвективных теплообменов между газом и капающей жидкостью? 23. Какое соотношение учитывает направление теплового потока?

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института


источники:

http://helpiks.org/2-65583.html

http://lfirmal.com/uravneniya-podobiya/