Уравнения приведенного трансформатора и схема замещения

Режимы работы и схема замещения трансформатора

Схема замещения трансформатора позволяет отдельно расчитывать цепи первичной и вторичных обмоток. В схему замещения трансформатора входят поля рассеивания магнитного потока, а вторичные цепи пересчитываются в первичную через коэффициенты трансформации.

Для составления схемы замещения возьмём трансформатор с двумя обмотками: первичной с количеством витков W1 для подключения к сети питания и вторичной с количеством витков W2 для подключения нагрузки. Его упрощенное устройство показано на рисунке 1.


Рисунок 1 Упрощенное устройство трансформатора

Принципиальная схема подключения нагрузки к источнику питания через трансформатор приведена на рисунке 2.


Рисунок 2 Принципиальная схема подключения нагрузки через трансформатор

Для создания схемы замещения трансформатора нам потребуются три режима его работы: режим холостого хода (ХХ), рабочий режим (номинальный режим) и режим короткого замыкания (КЗ). Режимы холостого хода и короткого замыкания трансформатора позволяют определить значения элементов схемы замещения трасформатора. Рассмотрим работу трансформатора в этих режимах.

Режим холостого хода трансформатора (ХХ)

В этом режиме сопротивление нагрузки равно бесконечности, в результате чего можно не учитывать вторичную обмотку и трансформатор работает как обычная катушка индуктивности с ферромагнитным сердечником. Кроме того, в режиме холостого хода трансформатора определяют его коэффициент трансформации. Схема замещения трасформатора в режиме холостого хода приведена на рисунке 3.


Рисунок 3 Схемы замещения трансформатора для режима холостого хода:
а — последовательная схема замещения,
б — параллельная схема замещения

На эквивалентных схемах трансформатора, приведенных на рисунке 2, показаны:

Индуктивность первичной обмотки, которая вместе с потерями в сердечнике влияет на к.п.д. трансформатора, можно рассчитать по следующей формуле:

(1)

Параллельная эквивалентная схема трансформатора более удобна по сравнению с последовательной для построения векторной диаграммы напряжений и токов для реальной катушки индуктивности. Эта диаграмма приведена на рисунке 3.


Рисунок 3 Векторная диаграмма напряжений и токов трансформатора в режиме холостого хода

Здесь δ — угол потерь в магнитопроводе
X1 — сопротивление индуктивности рассеяния LS1.

Обратите внимание, что в этом режиме работы трансформатора вектор ЭДС индуцированный в обмотке W2 (напряжение во вторичной обмотке) совпадает по фазе с eL, а напряжение U1, подаваемое на первичную обмотку трансформатора, является суммой э.д.с. на индуктивности первичной обмотки и падения напряжения на сопротивлениях индуктивности рассеивания и активного сопротивления первичной обмотки:

; (2)

Это выражение можно записать немного иначе:

При правильном проектировании трансформатора потери на омическом сопротивлении первичной обмотки малы, поскольку ток холостого хода много меньше номинального. Тогда угол сдвига фаз между током и напряжением (I10 и U1) определяется потерями в магнитопроводе. Это позволяет из опыта холостого хода и найти угол потерь δ и рассчитать потери в сердечнике.

Трансформатор является обращаемым устройством (первичную и вторичную обмотки можно поменять местами!), поэтому для каждой из обмоток записываем основную формулу трансформаторной ЭДС.

(3)
(4)

Разделив уравнение (3) на (4), получим выражение для коэффициента трансформации:

(5)

Подведем итоги Режим работы трансформатора на холостом ходе позволяет определить:

Коэффициент трансформации

Ток холостого хода I10 (для определения к.п.д.)

Режим короткого замыкания (КЗ)

Этот режим в условиях эксплуатации является аварийным. Он применяется только для экспериментального определения индуктивности рассеивания трансформатора. Измерения проводят в следующей последовательности. Входное напряжение устанавливают равным нулю. Замыкают выходные клеммы (). Плавно поднимают входное напряжение (U1) до тех пор, пока в обмотках не установятся номинальные токи. Величина называется напряжением короткого замыкания, является паспортной величиной трансформатора и обычно составляет 5. 10% от номинального напряжения U1ном. При этом, ток холостого хода I10 весьма мал по сравнению с номинальным и им можно пренебречь (считать равным нулю). Тогда эквивалентная схема трансформатора в режиме КЗ принимает вид, показанный на рисунке 5.


Рисунок 5 Эквивалентная схема трансформатора в режиме короткого замыкания

Ток холостого хода мы приняли равным нулю , поэтому в эквивалентной схеме трансформатора параллельная цепь L0r0 отсутствует. Входное сопротивление трансформатора полностью определяются индуктивностью рассеивания первичной и вторичной обмоток, а также их омическим сопротивлением:

(14)

Результирующее сопротивление — это сопротивление короткого замыкания трансформатора. Зная полное сопротивление короткого замыкания:

можно найти коэффициент передачи трансформатора, а в случае малой индуктивности рассеивания потери мощности в обмотках трансформатора.

Намагничивающая сила, создающая магнитный поток в сердечнике в режиме короткого замыкания (измерительный режим) практически равна нулю:

и если I10 = 0, то откуда находим отношение токов, а значит и коэффициент трансформации по току:

(15)

Знак минус в формуле (15) говорит о том, что магнитные потоки Ф1 и Ф2 направлены навстречу друг другу и взаимно компенсируются.

Рабочий режим (нагруженный или номинальный). Если к вторичной обмотке W2 подключить нагрузку Rн, то ее напряжение U2 вызовет ток нагрузки I2, как это показано на рисунке 1б. Токи I1 и I2 ориентированы различно относительно магнитного потока Ф0. Ток I1 создает поток Ф1, а ток I2 создаёт поток Ф2 и стремится уменьшить поток Ф1. Иначе говоря, в магнитопроводе появляются магнитные потоки Ф1 и Ф2, которые на основании закона Ленца направлены встречно и их алгебраическая сумма даёт: — магнитный поток холостого хода трансформатора.

Отсюда можно записать уравнение намагничивающих сил (закон полного тока):

(6)

Видно, что изменение тока I2 обязательно приведёт к изменению тока I1. Нагрузка образует второй контур, в котором ЭДС вторичной обмотки е2 является источником энергии. При этом, справедливы уравнения:

(7)
(8)

где r2 — омическое сопротивление вторичной обмотки
х2 — сопротивление индуктивности рассеяния вторичной обмотки.

По закону Киргофа сумма токов (6) может быть обеспечена параллельным соединением электрических цепей, поэтому в рабочем режиме трансформатор можно представить эквивалентной схемой, приведенной на рисунке 4.


Рисунок 4 Схема замещения трансформатора в рабочем режиме

Эквивалентная схема трансформатора в рабочем режиме, приведенная на рисунке 4 называется Т-образной схемой замещения или приведённым трансформатором. Приведение вторичной обмотки к первичной выполняется при условии равенства полных мощностей вторичных обмоток , или . Из этого равенства можно получить формулы пересчета в первичную обмотку напряжений и токов вторичной обмотки и из них получить приведенные значения сопротивлений нагрузки, вторичной обмотки и индуктивности рассеивания.

(9)
(10)

(11)

(12)

(13)

Токи и напряжения приводятся через коэффициент трансформации, а сопротивления — через квадрат коэффициента трансформации. Можно пересчитать вторичную цепь в первичную или наоборот.

Представление трансформатора в виде эквивалентной схемы позволяет методами теории цепей рассчитать любую, сколь угодно сложную схему с трансформаторами.

Если у трансформатора есть несколько вторичных обмоток, как показано на условно-графическом изображении трансформатора, приведенном на рисунке 6а, то пересчитанные сопротивления нагрузки на эквивалентной схеме соединяются параллельно и его эквивалентная схема принимает вид, показанный на рисунке 6б.


Рисунок 6 Схема замещения трансформатора с двумя вторичными обмотками

При этом значение импеданса (полного сопротивления) вторичных обмоток Z2 находится как сумма сопротивлений вторичных обмоток и сопротивления их индуктивностей рассеивания:

Понравился материал? Поделись с друзьями!

  1. Алиев И.И. Электротехнический справочник. – 4-е изд. испр. – М.: ИП Радио Софт, 2006. – 384с.
  2. Схема замещения трансформатора
  3. Режимы работы трансформатора
  4. Параметры схемы замещения трансформатора

Вместе со статьей «Режимы работы и схема замещения трансформатора» читают:

Что такое приведённый трансформатор

В некоторых ситуациях в электротехнике используют понятие «приведённого трансформатора». Приведённым называют трансформатор, не предусматривающий изменения характеристик напряжения и тока. Он влияет на электрическую цепь аналогичным образом, что и обычный агрегат, но коэффициент трансформации такого трансформатора равен 1. Рассмотрим особенности использования такого агрегата и необходимость ввода данного понятия.

Конструкция и принцип действия

Конструкция трансформатора предусматривает наличие следующих составных частей:

  • сердечника,
  • первичной и вторичной обмоток.

Принцип работы трансформатора

В зависимости от особенностей конструктивного устройства, работу трансформаторов обеспечивает наличие автоматических блоков, управляющих агрегатом, коммутационных узлов для подключения питания, масляных ёмкостей для охлаждения и пр.

При подаче напряжения на первичную катушку, образуется магнитное поле и возникает электродвижущая сила (ЭЛС), наводящая напряжение на вторичном контуре. Трансформация характеристик напряжения и тока достигается путём разного количества витков на входном и выходном контурах. У приведённого трансформатора число витков на входе и выходе условно принято равным, что обеспечивает указанное выше значение коэффициента трансформации, при сохранении количества фаз и других характеристик сети без изменения.

Классификация

Схема приведённого трансформатора может быть построена в результате условного преобразования следующих разновидностей агрегатов:

    силовых – широко применяемых в промышленной сфере для преобразования энергетических параметров,

Силовой трансформатор
автотрансформаторов – при соединении обмоток гальваническим способом, применяемых на пусковых системах мощных агрегатов, в защитных модулях,

Однофазный(слева) и трёхфазный(справа) – ЛАТРы
измерительных(трансформатор тока и напряжения) – используемых в контрольных приборах (счётчиках, вольтметрах и пр.), Высоковольтный ТТ(слева) и низковольтный ТТ(справа)

Высоковольтный ТН(слева) и низковольтный ТН(справа)
импульсных – для изготовления сердечника которых применяются ферромагнитные сплавы, обеспечивающие возможность импульсной работы (в вычислительной технике, радиолокационных системах и пр.).

Импульсный трансформатор

Каждый из перечисленных видов отличается своими особенностями. Выпускаются различные модели перечисленных разновидностей устройств, для расчёта которых используется приведённый трансформатор.

Сферы применения и особенности

Приведённый трансформатор – не реальный агрегат, а умозрительное понятие. Его ввод связан с необходимостью облегчения расчётов по физическим процессам, протекающим в обычном трансформаторе.

При высоких показателях коэффициента трансформации расчёт характеристик агрегата представляет серьёзную проблему, усложняя расчётные операции и построение векторных диаграмм, отображающих протекание физических процессов.

Если условно принять коэффициент трансформации равным 1, это преобразование позволит существенно упростить математическое описание процессов, протекающих в агрегате.

Подобный метод облегчает расчётные действия, позволяя выполнить:

  • построение схемы замещения,
  • определение опытных параметров указанной схемы,
  • расчёт потерь и КПД агрегата.

Данная методика не означает, что приведённый трансформатор может применяться физически. Это исключительно условное понятие. Но такое умозрительное преобразование позволяет получить необходимые расчётные данные, необходимые для проектирования реальных агрегатов.

Вводя различные нагрузочные параметры при указанной схеме можно получить модель поведения реального трансформатора при режиме от холостого хода до короткого замыкания. Процесс можно алгоритмизировать для использования в расчёте вычислительной техники.

Основные уравнения трансформатора. Приведённый трансформатор и схема замещения.

Схема замещения трансформатора представляет собой эквивалентную электрическую схему, которая отражает основ­ные электромагнитные явления, происходящие в трансформа­торе. Схему замещения составляют на основе уравнений транс­форматора (2.15) и (2.18).

Будем учитывать потери в цепи намагничивания парамет­рами

или

Полагаем при этом, что ток холостого хода Ī0 равен по модулю действующему значению тока холостого хода, а мощ­ность

равна мощности трансформатора в режиме холостого хода. С учетом этого можно решить систему основных уравне­ний трансформатора относительно тока Ī1 :

Уравнению (2.20) соответствует четырехполюсник — экви­валентная электрическая схема замещения, представленная на рис. 2.11.

Рис. 2.11. Эквивалентная электрическая схема замещения

Схема замещения включает в себя параметры первичной обмотки R1 и X1 приведенные параметры вторичной обмотки 2 и Х΄2 и параметры намагничивающего контура Rm и Хm. На вход четырехполюсника подается напряжение Ū1, к его выхо­ду подключено приведенное значение нагрузки H— По пер­вичной обмотке проходит ток Ī1 по вторичной — ток Ī2, по намагничивающему контуру — ток Ī0.

В соответствии с законом Кирхгофа сумма токов, сходя­щихся в узлах а или б, равна нулю: . По схеме замещения могут быть определены величины токов, мощность, мощность потерь и т. д.

Следует, однако, помнить, что параметры схемы замещения можно считать неизменными при изменении напряжения на первичной обмотке в пределах 10% от номинального значения. При дальнейшем увеличении напряжения происходит насыще­ние стали магнитопровода, уменьшается величина Хm и растет намагничивающий ток.

Параметры схемы замещениямогут быть определены по результатам опытов холостого хода и короткого замы­кания трансформатора.

Опыт холостого хода сводится к измерению первично­го напряжения, тока и мощности первичной обмотки при ра­зомкнутой вторичной обмотке (рис. 2.12,б).

Рис. 2.12. Опыт холостого хода (а) и схема замещения трансформатора в этом режиме (б)

При помощи регулятора напряжения РН устанавливают на первичной обмотке напряжение U0, равное номинальному зна­чению. Измеряют мощность Р0, потребляемую первичной об­моткой и ток холостого хода I0.

Опыту холостого хода трансформатора соответствует схе­ма замещения (рис. 2.12,6)

Поскольку ток холостого хода Ī0 мал по сравнению с номинальным током трансформатора Ī1, то электрическими потерями в обмотках, которые зависят от квадрата тока, пре­небрегают и считают, что вся мощность, потребляемая транс­форматором в режиме холостого хода, расходуется на ком­пенсацию магнитных потерь в стали:

. (2.21)

По измеренной мощности Р0 и току I0 можно по формуле (2.21) определить активное сопротивление намагничивающего контура Rm:

. (2.22)

Далее, поскольку поток рассеяния во много раз меньше основного потока, то полагают, что Х1 + Хm ≈ Хm, поэтому пол­ное сопротивление намагничивающего контура:

а его индуктивное сопротивление:

(2.24)

Измерив напряжения Ul0 и U20 первичной и вторичной об­моток, можно определить коэффициент трансформации:

Опыт короткого замыкания (рис. 2.13,a) заключается в том, что вторичную обмотку трансформатора замыкают че­рез амперметр накоротко (сопротивление ZH=0), а к первич­ной посредством регулятора напряжения РН подводят такое пониженное напряжение, чтобы токи первичной и вторичной обмоток были равны номинальным значениям I и I. Это напряжение называют напряжением короткого замыкания и обозначают UK.

Напряжение короткого замыкания UK мощных силовых трансформаторах обычно составляет 5. 15% от номинального, трансформаторов малой мощности — 25. 50%.

Рис. 2.13. Опыт короткого замыкания (а) и схема замещения (б)

Следует различать короткое замыкание в эксплуатацион­ных условиях и опыт короткого замыкания. Первое пред­ставляет собой аварийное состояние трансформатора: в об­мотках возникают недопустимо большие токи, внутри транс­форматора выделяется большое количество тепла, что может вызвать его разрушение.

Опыт короткого замыкания служит для определения важ­нейших параметров трансформатора: внутреннего падения напряжения, потерь в проводниках и т. п.

Электродвижущая сила Е2K, индуктируемая во вторичной обмотке при опыте короткого замыкания, должна быть равна падению напряжения вторичной обмотки, т.е. E2K = I2Z2 по­скольку U2 = 0. Следовательно, при опыте короткого замыка­ния Е составляет лишь несколько процентов от Е2 (2. 5%). Прямо пропорционально ЭДС Е уменьшается поток в сер­дечнике, а вместе с ним и намагничивающий ток, возбужда­ющий его.

В то же время при опыте короткого замыкания потери в проводниках обмоток такие же, как и при номинальном режиме нагрузки, а потери в сердечнике пренебрежимо малы, так как они пропорциональны (приближенно) потоку.

Поэтому можно считать, что при опыте короткого замыка­ния вся мощность Р1K затрачивается на электрические потери в проводниках обмоток трансформатора. Поскольку током намагничивания в этом режиме можно пренебречь, то Ī1 = Ī΄2.

(2.26)

С увеличением номинальной полной мощности SH транс­форматора активная мощность РKH, затрачиваемая во время опыта короткого замыкания при номинальном токе, относи­тельно убывает. Например, при номинальной полной мощности SH = 5. 20 кВА отношение РKH / SH = 3,7. 3%, а при SH = 320. 5600 кВА это отношение будет равно PKH / SH = 2. 1%. Это означает, что чем больше мощность трансформатора, тем меньше электрические потери в его обмотках и тем выше его КПД.

На основании (2.26) определяется активное сопротивле­ние упрощенной эквивалентной схемы трансформатора:

, (2.27)

которое называют активным сопротивлением короткого замыкания трансформатора. Это значение, определенное не­посредственно из результатов опыта короткого замыкания, только ориентировочно определяет величину активного со­противления RK нагруженного трансформатора. Чтобы обес­печить минимальные размеры трансформатора, обычно выби­рают плотность тока в проводниках и индукцию в сердечниках такой величины, которым при работе соответствуют предельно допустимые температуры нагревания. Нагрев существенно из­меняет активное сопротивление проводников обмоток транс­форматора и потери в них. Поэтому для определения потерь в обмотках при нагрузке значение RK, найденное из опыта ко­роткого замыкания, должно быть приведено к температуре 75 °С.

Как было показано выше, поток, замыкающийся по магнитопроводу, зависит от напряжения, приложенного к первичной обмотке трансформатора, а магнитные потери в стали пропор­циональны квадрату индукции или квадрату магнитного потока. Поэтому, ввиду малости UK, магнитными потерями в стали и током холостого хода можно пренебречь. Следовательно, можно считать, что Rm ≈ 0 и Хт ≈ 0. Тогда схема замещения принимает вид, представленный на рис. 2.13,б.

Параметры схемы замещения:

Треугольник, образуемый векторами падений напряжений на полном, индуктивном и активном сопротивлениях корот­кого замыкания называют характеристическим треугольником или треугольником ко­роткого замыкания (рис. 2.14).

Рис. 2.14. Характеристический треугольник

Катеты ĪКХК и ĪKRK называют соответственно реактивной и активной составляющими напряжения короткого замы­кания.При изменении тока нагрузки трансформатора они изменяются пропорционально изменению тока. Это позволяет строить векторные диаграммы для упрощенной схемы заме­щения трансформатора и производить количественные расчеты. Отношение напряжения UK =I1HZK к номинальному напря­жению трансформатора UH, выраженном в %, называют отно­сительным напряжением короткого замыкания при номи­нальном токе:

Относительное напряжение короткого замыкания являет­ся важным параметром и указывается в паспорте трансформатора. По известной величине иK% можно определить установившийся ток короткого замыкания в реальных условиях экс­плуатации, т. е. при номинальном напряжении:

Например, установившийся ток короткого замыкания трансформатора, имеющего иK% = 5 в двадцать раз превышает его номинальное значение, что является недопустимым, по­скольку ведет к разрушению трансформатора. Для защиты трансформаторов от токов короткого замыкания в реальных условиях эксплуатации используют автоматические выключа­тели, которые способны отключить цепь в течение периода. Отметим еще раз: чем больше мощность трансформатора, тем меньше его ток холостого хода и потери в нем, и тем больше ток короткого замыкания.

Таким образом, схема замещения трансформатора дают возможность исследовать его в различных режимах, а опыты холостого хода и короткого замыкания позволяют опреде­лить его основные параметры.


источники:

http://ofaze.ru/teoriya/privedyonnyj-transformator

http://megaobuchalka.ru/12/29118.html