Уравнения приводимые к однородным примеры

Дифференциальные уравнения первого порядка, приводящиеся к однородным

К однородным уравнениям первого порядка приводится уравнение вида:
(1) ,
где f – функция.

Как определить, что дифференциальное уравнение приводится к однородному

Для того, чтобы определить, что дифференциальное уравнение приводится к однородному, нужно выделить две линейные формы:
a 1 x + b 1 y + c 1 , a 2 x + b 2 y + c 2 ,
и выполнить замену:
a 1 x + b 1 y + c 1 → t ( a 1 x + b 1 y + c 1 ) ;
a 2 x + b 2 y + c 2 → t ( a 2 x + b 2 y + c 2 ) .
Если, после преобразований, t сократится, то это уравнение приводится к однородному.

Пример

Определить, приводится ли данное дифференциальное уравнение к однородному:
.

Выделяем две линейные формы:
x + 2 y + 1 и x + 4 y + 3 .
Первую заменим на t ( x + 2 y + 1) , вторую – на t ( x + 4 y + 3) :
.
По свойству логарифма:

.
t сокращается:
.
Следовательно, это уравнение приводится к однородному.

Решение дифференциального уравнения, приводящегося к однородному уравнению

Решаем систему уравнений:
(2)

Здесь возможны три случая.

1) Система (2) имеет бесконечное множество решений (прямые a 1 x + b 1 y + c 1 = 0 и a 2 x + b 2 y + c 2 = 0 совпадают). В этом случае
;
.
Тогда
.
Это простейший вид уравнения с разделяющимися переменными:
.
Его решение:
y = Ax + C .

2) Система (2) не имеет решений (прямые a 1 x + b 1 y + c 1 = 0 и a 2 x + b 2 y + c 2 = 0 параллельны). В этом случае a 1 b 2 = a 2 b 1 .
Применим это соотношение.

.

Это означает, что a 2 x + b 2 y + c 2 является функцией от a 1 x + b 1 y + c 1 . Поэтому является функцией от a 1 x + b 1 y + c 1 . То есть f является функцией от a 1 x + b 1 y + c 1 . Обозначим такую функциею как g . Тогда исходное уравнение (1) имеет вид:
.
Это уравнение приводится к уравнению с разделяющимися переменными подстановкой
z = a 1 x + b 1 y + c 1 .

3) Система (2) имеет одно решение (прямые a 1 x + b 1 y + c 1 = 0 и a 2 x + b 2 y + c 2 = 0 пересекаются в одной точке). Обозначим это решение как x 0 , y 0 . Тогда
(3)
Делаем подстановку x = t + x 0 , y = u + y 0 , где u – это функция от t . Тогда
dx = dt, dy = du ;

.
Или
.
Это однородное дифференциальное уравнение первого порядка. Оно решается подстановкой u = z t , где z – это функция от t .

Пример решения дифференциального уравнения, приводящегося к однородному уравнению первого порядка

Решить уравнение
(П.1) .

1) Проверим, приводится ли это дифференциальное уравнение к однородному. Для этого выделяем две линейные формы:
2 x – y + 4 и x – 2 y + 5 .
Первую заменим на t (2 x – y + 4) , вторую – на t ( x – 2 y + 5) :
.
Делим на t :
.
t сократилось, поэтому это уравнение приводится к однородному.

2) Решаем систему

Из первого уравнения y = 2 x + 4 . Подставляем во второе:
x – 2(2 x + 4) + 5 = 0 ;
x – 4 x – 8 + 5 = 0 ;
– 3 x = 3 ;
x = – 1 ;
y = 2 x + 4 = 2·(–1) + 4 = 2 .
Итак, мы нашли решение системы:
x 0 = –1 , y 0 = 2 .

3) Делаем подстановку:
x = t + x 0 = t – 1 ;
y = u + y 0 = u + 2 ,
где u – функция от t . dx = dt, dy = du , ;
;
.
Подставляем в (П.1):
(П.2) .
Это – однородное уравнение.

4) Решаем однородное уравнение (П.2). Делаем подстановку:
u = z · t , где z – функция от t .
u′ = ( z · t ) ′ = z′t + z t′ = z′t + z .
Подставляем в (П.2):
.
Сокращаем на t и выполняем преобразования:
;
;
.
Разделяем переменные – умножаем на dt и делим на t ( z 2 – 1) . При z 2 ≠ 1 получаем:
.
Интегрируем:
(П.3) .
Вычисляем интегралы:
;

.
Подставляем в (П.3):
.
Умножим на 2 и потенцируем:
;
.
Заменим постоянную e 2 C → C . Раскроем знак модуля, поскольку нужный знак обеспечивается выбором знака постоянной C . Умножим на ( z + 1) 2 и применим формулу: z 2 – 1 = ( z – 1)( z + 1) .
.
Сократим на ( z – 1) :
.
Возвращаемся к переменным u и t , используя формулу: u = z t . Для этого умножим на t :
;
;
.
Возвращаемся к переменным x и y , используя формулы: t = x + 1 , u = y – 2 .
;
(П.4) .

Теперь рассмотрим случай z 2 = 1 или z = ±1 .
;
.
Для верхнего знака «+» имеем:
;
.
Это решение входит в общий интеграл (П.4) при значении постоянной C = 0 .
Для нижнего знака «–»:
;
.
Эта зависимость также является решением исходного дифференциального уравнения, но не входит в общий интеграл (П.4). Поэтому к общему интегралу добавим решение
.

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Автор: Олег Одинцов . Опубликовано: 30-07-2012 Изменено: 22-06-2015

Однородные дифференциальные уравнения
и приводящиеся к ним

Однородные уравнения

Функция называется однородной функцией своих аргументов измерения , если справедливо тождество .

Например, функция есть однородная функция второго измерения, так как

При имеем функцию нулевого измерения. Например, есть однородная функция нулевого измерения, так как

Дифференциальное уравнение вида называется однородным относительно и , если есть однородная функция своих аргументов нулевого измерения. Однородное уравнение всегда можно представить в виде

Вводя новую искомую функцию , уравнение (1) можно привести к уравнению с разделяющими переменными:

Если есть корень уравнения , то решение однородного уравнения будет или (прямая, проходящая через начало координат).

Замечание. При решении однородных уравнений необязательно приводить их к виду (1). Можно сразу делать подстановку .

Пример 1. Решить однородное уравнение .

Решение. Запишем уравнение в виде так что данное уравнение оказывается однородным относительно и . Положим , или . Тогда . Подставляя в уравнение выражения для и , получаем . Разделяем переменные: . Отсюда интегрированием находим

Так как , то, обозначая , получаем , где или . Заменяя на , будем иметь общий интеграл .

Отсюда общее решение: .

При разделении переменных мы делили обе части уравнения на произведение , поэтому могли потерять решение, которые обращают в ноль это произведение.

Положим теперь и . Но в силу подстановки , а из соотношения получаем, что , откуда . Непосредственной проверкой убеждаемся, что функции и также являются решениями данного уравнения.

Пример 2. Рассмотреть семейство интегральных кривых однородного уравнения . Показать, что касательные в соответственных точках к кривым, определяемым этим однородным дифференциальным уравнением, параллельны между собой.

Примечание: Будем называть соответственными те точки на кривых , которые лежат на одном луче, выходящем из начала координат.

Решение. По определению соответственных точек имеем , так что в силу самого уравнения , где и — угловые коэффициенты касательных к интегральным кривым и , в точках и соответственно (рис. 12).

Уравнения, приводящиеся к однородным

А. Рассмотрим дифференциальное уравнение вида

где — постоянные, а — непрерывная функция своего аргумента .

Если , то уравнение (3) является однородным и оно интегрируется, как указано выше.

Если хотя бы одно из чисел отлично от нуля, то следует различать два случая.

1) Определитель . Вводя новые переменные и по формулам , где и — пока неопределенные постоянные, приведем уравнение (3) к виду

Выбирая и как решение системы линейных уравнений

получаем однородное уравнение . Найдя его общий интеграл и заменив в нем на , a на , получаем общий интеграл уравнения (3).

2) Определитель . Система (4) в общем случае не имеет решений и изложенный выше метод неприменим; в этом случае , и, следовательно, уравнение (3) имеет вид . Подстановка приводит его к уравнению с разделяющимися переменными.

Пример 3. Решить уравнение .

Решение. Рассмотрим систему линейных алгебраических уравнений

Определитель этой системы .

Система имеет единственное решение . Делаем замену . Тогда уравнение (5) примет вид

Это уравнение является однородным уравнением. Полагая , получаем

Интегрируя, найдем или .

Возвращаемся к переменным :

Пример 4. Решить уравнение .

Решение. Система линейных алгебраических уравнений несовместна. В этом случае метод, примененный в предыдущем примере, не подходит. Для интегрирования уравнения применяем подстановку , . Уравнение примет вид

Разделяя переменные, получаем

Возвращаясь к переменным , получаем общий интеграл данного уравнения

Б. Иногда уравнение можно привести к однородному заменой переменного . Это имеет место в том случае, когда в уравнении все члены оказываются одинакового измерения, если переменному приписать измерение 1, переменному — измерение и производной — измерение .

Пример 5. Решить уравнение .

Решение. Делаем подстановку , где пока произвольное число, которое мы выберем позже. Подставляя в уравнение выражения для и , получим

Заметим, что имеет измерение имеет измерение , имеет измерение . Полученное уравнение будет однородным, если измерения всех членов одинаковы, т.е. если выполняется условие , или .

Положим ; исходное уравнение принимает вид

Положим теперь . Тогда это уравнение примет вид , откуда .

Разделяем переменные в этом уравнении . Интегрируя, найдем

Заменяя через , получаем общий интеграл данного уравнения

Уравнение имеет еще очевидное решение , которое получается из общего интеграла при , если интеграл записать в виде , а затем перейти к пределу при . Таким образом, функция является частным решением исходного уравнения.

Учебное занятие «Однородные уравнения и уравнения, сводимые к однородным»

Разделы: Математика

Дидактическая цель: Создать условия для осознания и осмысления новой информации и успешного применения ранее полученных знаний.

Тип урока: Урок изучения и первичного закрепления нового материала.

Триединая дидактическая цель:

Образовательная:

  • продолжить формирование знаний по решению тригонометрических уравнений и умения применять эти знания в стандартной ситуации;
  • создавать условия для выработки умений применять известные алгоритмы в стандартной ситуации.

Развивающая:

  • создавать условия для развития аналитических навыков при решении однородных тригонометрических уравнений.

Воспитательная:

  • создание условий для качественного выполнения работы;
  • воспитание воли и упорства в достижении поставленной цели.

Технология проблемного обучения

Форма организации учебной деятельности индивидуальная, фронтальная.

Конспект занятия

I. Математический диктант с самопроверкой (актуализация знаний)

Карточки с уравнениями на магнитах крепятся к доске. Ответы ученики пишут в тетрадях.

Уравнение

Ответ

Уравнение

Ответ

cos x = 0

x = + n, nZ

sin x = 0

x = n, nZ

tg x = —

x = + n

tg x = 1

x = + n

sin x = — 1

x = + 2n

ctg x = —

x = + n

tg x = 1

x = + n

cos x = 1

x = 2n

ctg x = —

x = + n

tg x =

x = +n

II. Изучение нового материала

A. sin x cos x = 0 — однородное уравнение первой степени.

Заканчивая предыдущий урок, я сказала, что пока мы не умеем решать такое уравнение, но некоторые сомневались и предлагали разделить обе части уравнения на cos x. Сохранится ли равносильность? Может быть, решения уравнения cos x = 0 являются решениями данного уравнения? Нет! Почему? Как это доказать?

Если cos x = 0 , то sin x 0 = 0 sin x = 0, что невозможно, т.к. теряет смысл тождество sin 2 x + cos 2 x = 1. Синус и косинус одного и того же аргумента не могут быть равны 0 одновременно. Следовательно, при делении на cos x получаем уравнение, равносильное данному.

sin x cos x = 0 | : cos x

tg x = 0; tg x = ; x = + n, n Z

(Ответ: x = + n, nZ)

Если это неубедительно, то обратимся к квадратному уравнению у 2 у = 0; если разделим его на у, то потеряем корень 0.

Можно ли делить на sin x? Если делить на sin x, то выдвигать условие sin x 0. Будут ли значения x, при которых sin x = 0, корнями данного уравнения? Нет! Если sin x = 0, то cos x = 0 , что невозможно, т.к. теряет смысл основное тригонометрическое тождество sin 2 x + cos 2 x = 1.

Учащиеся изучают “Материалы к уроку”.

Материалы к уроку (раздаются каждому ученику)

Тема урока: “Однородные уравнения и уравнения, сводимые к однородным”

a·sin 2 x + b·sin x·cos x + c·cos 2 x = 0,

a·sin 3 x + b·sin 2 x·cos x + c·sin x·cos 2 x + d·cos 3 x = 0 и т.д.,

где a, b, с, d — действительные числа, называют однородными относительно sin x и cos x.

2. Сумма показателей степеней при sin x и cos x у всех членов такого уравнения одинакова. Эта сумма называется степенью однородного уравнения. Рассмотренные уравнения имеют соответственно первую, вторую и третью степень.

3. Делением на cos k x, где k степень однородного уравнения, уравнение приводится к алгебраическому относительно функции tg x.

4. Разделим обе части уравнения на cos x. Значения x, при которых cos x = 0, не являются решениями данного уравнения, т.к. если cos х = 0, то и sin x должен обращаться в 0, а косинус и синус одного аргумента не могут быть равны нулю одновременно. Следовательно, при делении на cos x получаем уравнение, равносильное данному.

5. Например, sin x cos x = 0. Если cos x = 0, то sin x — ·0 = 0 sin x = 0, что невозможно, т.к. теряет смысл основное тригонометрическое тождество sin 2 x + cos 2 x = l.

B. sin 2 x + sin x cos x — 2cos 2 x = 0 — однородное II степени.

sin 2 x + sin x cos x — 2cos 2 x = 0 | : cos 2 x

cos 2 x 0, т.к. если cos x = 0, то sin 2 x + sin x ·0 — 2 ·0 = 0 sin x = 0, что невозможно (противоречит основному тригонометрическому тождеству).

tg 2 x + tg x — 2 = 0

Пусть tg x = t, тогда t 2 + t — 2 = 0.

В полученном квадратном уравнении a + b + c = 0, значит, t1 = 1, t2 = 2.

tg x = 1 или tg x = — 2

x = + n, nZ; x = arctg 2 + k, kZ

Ответ: x = + n, nZ; x = — arctg 2 + k, kZ

C. sin x cos x — 3cos 2 x + 1 = 0. Является ли уравнение однородным?

Нет, т.к. слагаемое 1 — нулевой степени. Следовательно, чтобы привести это уравнение к однородному необходимо заменить 1 на sin 2 x + cos 2 x.

sin x cos x — 3cos 2 x + sin 2 x + cos 2 x = 0

sin 2 x + sin x cos x 2 cos 2 x = 0 | : cos 2 x

tg 2 x + tg x — 2 = 0 и т.д. (см. пример B).

D. 4 sin 2 x + sin x cos x + cos 2 x = 3 — уравнение не является однородным.

4 sin 2 x + sin x cos x + cos 2 x = 3(sin 2 x + cos 2 x)

4 sin 2 x + sin x cos x + cos 2 x 3 sin 2 x 3 cos 2 x = 0

sin 2 x + sin x cos x 2 cos 2 x = 0 | : cos 2 x однородное II степени

tg 2 x + tg x — 2 = 0 и т.д. (см. пример B).

E. sin 2 x + 3sin x cos x 8cos 2 x = — 2 — уравнение не является однородным.

sin 2 x + 3sin x cos x 8cos 2 x + 2(sin 2 x + cos 2 x) = 0

3sin 2 x + 3sin x cos x 6cos 2 x = 0 | : 3

sin 2 x + sin x cos x 2 cos 2 x = 0 | : cos 2 x однородное II степени

tg 2 x + tg x — 2 = 0 и т.д. (см. пример B)

III. Устная работа

Указать прием решения уравнения:

2) 3sin 2 x 4sin x cos x + cos 2 x = 0

3) sin 3 x cos x 2sin 2 x cos 2 x = 3sin x cos 3 x — 6cos 4 x

4) sin 2 x + sin 2x = 0 (sin 2 x + 2sin x cos x = 0)

5) cos 2 x + sin 2x = 0 (cos 2 x + 2sin x cos x = 0)

IV. Неполные однородные уравнения

Уравнения 4) и 5) из устной работы два ученика решают одновременно на доске.

Традиционная ошибка школьников при решении неполных однородных уравнений II степени делением на одну из функций — потеря корней. Решая уравнения разложением на множители оба ученика получают две серии корней. А при решении новым способом (деление на функцию) у одного получаются две серии корней, а у другого — одна. В чём ошибка?

После обсуждения проблемы сформулировали вывод: “дели на то, чего мало”.

sin 2 x + 2sin x cos x = 0.

разложим левую часть уравнения на множители

sin x = 0 или sin x + 2cos x = 0 | : cos x (получили однородное уравнение I степени)

x = n, nZ; tg x = 2; x = arctg 2 + k, kZ

Ответ: x = n, nZ; x = — arctg 2 + k, kZ

Решаем данное уравнение как однородное II степени

sin 2 x + 2sin x cos x = 0 | : cos 2 x

tg 2 x + 2tg x = 0

tg x = 0 или tg x + 2 = 0

x = n, nZ; tg x = 2; x = arctg2 + k, kZ

cos 2 x + 2sin x cos x = 0.

I способ (решаем как однородное уравнение II степени):

cos 2 x + 2sin x cos x = 0 | : sin 2 x (“дели на то, чего мало”)

если sin x = 0, то cos 2 x + 2·0·cos x = 0 U сos x = 0,что невозможно

сtg 2 x + 2сtg x = 0

сtg x = 0 или сtg x + 2 = 0

х = + n, nZ; x = — arcctg 2 + k, kZ.

Ответ: х = + n, nZ; x = — arcctg 2 + k, kZ

II способ для проверки (решаем разложением на множители):

cos x (cos x + 2sin x ) = 0

cos x = 0 или cos x + 2sin x = 0 | : cos x

х = + n, nZ; 1 + 2tg x = 0 ; tg x = ;

x = arctg + k, kZ

V. Самостоятельная работа

1)sin x — cos x = 0

1)sin x + cos x = 0

2)3cos 2 x 5sin 2 x — 2sin x cos x = 0

2)3cos 2 x = 4sin x cos x sin 2 x

3)6sin 2 x + sin 2x 5cos 2 x = 2

3)6sin 2 x + sin 2x cos 2 x = 2

4)sin 2 ( + x) + 3 cos 2 ( + x) =1

4)4 cos 2 sin x + 5sin 2 = 3

5)2sin x + cos x = 2

5)sin 4x — 3cos 4x = 8 sin 2 2x

Ответы: во всех случаях полагается n, kI Z

1)x = + n.

1)x = — + n.

2)x = — + n; x = arctg + k.

2)x = + n; x = arctg 3 + k.

3)x = + n; x = — arctg + k.

3)x = — + n; x = arctg + k.

4)x = ± + n.

4)x = + 2n; x = 2arctg + 2k.

5)x = + 2n; x = 2arctg + 2k.

5)x

VI. Домашнее задание (Колмогоров А.Н. и др., “Алгебра и начала анализа”)

VII. Рефлексия (ответы на вопросы ученики пишут на листочках и сдают их учителю)


источники:

http://mathhelpplanet.com/static.php?p=odnorodnye-differentsialnye-uravneniya

http://urok.1sept.ru/articles/212251