Уравнения прямых параллельных оси 0х

Прямые на координатной плоскости

Линейная функция
График линейной функции
Прямые, параллельные оси ординат
Уравнения вида px + qy = r . Параллельные прямые. Перпендикулярные прямые

Линейная функция

Линейной функцией называют функцию, заданную формулой

y = kx + b,(1)

где k и b – произвольные (вещественные) числа.

При любых значениях k и b графиком линейной функции является прямая линия .

Число k называют угловым коэффициентом прямой линии (1), а число b – свободным членом .

График линейной функции

При k > 0 линейная функция (1) возрастает на всей числовой прямой, а её график ( прямая линия ) имеет вид, изображенный на рис. 1, 2 и 3.

Рис.1
Рис.2
Рис.3

При k = 0 линейная функция (1) принимает одно и тоже значение y = b при всех значениях x , а её график представляет собой прямую линию, параллельную оси абсцисс, и изображен на рис. 4, 5 и 6.

Рис.4
Рис.5
Рис.6

При k линейная функция (1) убывает на всей числовой прямой, а её график ( прямая линия ) имеет вид, изображенный на рис. 7, 8 и 9.

k y = kx + b1 и y = kx + b2 ,

имеющие одинаковые угловые коэффициенты и разные свободные члены , параллельны .

имеющие разные угловые коэффициенты , пересекаются при любых значениях свободных членов.

y = kx + b1 и

перпендикулярны при любых значениях свободных членов.

Угловой коэффициент прямой линии

y = kx(2)

равен тангенсу угла φ , образованному (рис. 10) при повороте положительной полуоси абсцисс против часовой стрелки вокруг начала координат до прямой (2).

Рис.10
Рис.11
Рис.12

Прямая (1) пересекает ось Oy в точке, ордината которой (рис. 11) равна b .

При прямая (1) пересекает ось Ox в точке, абсцисса которой (рис. 12) вычисляется по формуле

Прямые, параллельные оси ординат

Прямые, параллельные оси Oy , задаются формулой

x = c ,(3)

где c – произвольное число, и изображены на рис. 13, 14, 15.

Рис.13
Рис.14
Рис.15

Замечание 1 . Из рис. 13, 14, 15 вытекает, что зависимость, заданная формулой (3), функцией не является, поскольку значению аргумента x = c соответствует бесконечное множество значений y .;

Уравнение вида px + qy = r . Параллельные прямые. Перпендикулярные прямые

px + qy = r ,(4)

где p, q, r – произвольные числа.

В случае, когда уравнение (4) можно переписать в виде (1), откуда вытекает, что оно задаёт прямую линию .

что и требовалось.

В случае, когда получаем:

откуда вытекает, что уравнение (4) задает прямую линию вида (3).

В случае, когда q = 0, p = 0, уравнение (4) имеет вид

0 = r ,(5)

и при r = 0 его решением являются точки всей плоскости:

В случае, когда уравнение (5) решений вообще не имеет.

Замечание 2 . При любом значении r1 , не совпадающем с r прямая линия, заданная уравнением

px + qy = r1 ,(6)

параллельна прямой, заданной уравнением (4) .

Замечание 3 . При любом значении r2 прямая линия, заданная уравнением

qx + py = r2 ,(7)

перпендикулярна прямой, заданной уравнением (4) .

Пример . Составить уравнение прямой, проходящей через точку с координатами (2; – 3) и

  1. параллельной к прямой
    4x + 5y = 7 ;(8)
  2. перпендикулярной к прямой (8).

В соответствии с формулой (6), будем искать уравнение прямой, параллельной прямой (8), в виде

4x + 5y = r1 ,(9)

где r1 – некоторое число. Поскольку прямая (9) проходит через точку с координатами (2; – 3), то справедливо равенство

Итак, уравнение прямой, параллельной к прямой

В соответствии с формулой (7), будем искать уравнение прямой, перпендикулярной прямой (8), в виде

– 5x + 4y = r2 ,(10)

где r2 – некоторое число. Поскольку прямая (10) проходит через точку с координатами (2; – 3), то справедливо равенство

Уравнение параллельной прямой

Альтернативная формула:
Прямая, проходящая через точку M1(x1; y1) и параллельная прямой Ax+By+C=0 , представляется уравнением

назначение сервиса . Онлайн-калькулятор предназначен для составления уравнения параллельной прямой (см. также как составить уравнение перпендикулярной прямой).

Пример №2 . Написать уравнение прямой, параллельной прямой 2x + 5y = 0 и образующей вместе с осями координат треугольник, площадь которого равна 5.
Решение. Так как прямые параллельны, то уравнение искомой прямой 2x + 5y + C = 0. Площадь прямоугольного треугольника , где a и b его катеты. Найдем точки пересечения искомой прямой с осями координат:
;
.
Итак, A(-C/2,0), B(0,-C/5). Подставим в формулу для площади: . Получаем два решения: 2x + 5y + 10 = 0 и 2x + 5y – 10 = 0 .

Пример №3 . Составить уравнение прямой, проходящей через точку (-2; 5) и параллельной прямой 5x-7y-4=0 .
Решение. Данную прямую можно представить уравнением y = 5 /7x – 4 /7 (здесь a = 5 /7). Уравнение искомой прямой есть y – 5 = 5 / 7(x – (-2)), т.е. 7(y-5)=5(x+2) или 5x-7y+45=0 .

Пример №4 . Решив пример 3 (A=5, B=-7) по формуле (2), найдем 5(x+2)-7(y-5)=0.

Пример №5 . Составить уравнение прямой, проходящей через точку (-2;5) и параллельной прямой 7x+10=0.
Решение. Здесь A=7, B=0. Формула (2) дает 7(x+2)=0, т.е. x+2=0. Формула (1) неприменима, так как данное уравнение нельзя разрешить относительно y (данная прямая параллельна оси ординат).

Различные виды уравнений прямой на плоскости

Различные виды уравнений прямой на плоскости

  • Различные типы уравнений, действующих непосредственно на плоскости Самая простая линия — это прямая линия. Различные способы определения прямых соответствуют различным типам уравнений в декартовых системах координат. 1. Линейное уравнение с угловым коэффициентом Дает произвольную прямую линию на плоскости Ohu, которая не параллельна оси Oy. Его положение полностью определяется ординатой b пересечения N (Q; b) с осью Oy и углом a между осью Oh и линией. Под углом o; (0 ^ a Людмила Фирмаль

Знак свободного члена C общего уравнения для прямой. Пример: приведите уравнение -3x-b 4y + 15 = 0 к стандартной форме. ♦ Коэффициент нормализации Л = — ^ Д3 ^ 2 + 42 = Умножьте это уравнение на A, чтобы получить желаемое нормальное уравнение для линии. — 3 = 0.Это удовлетворяется координатами любой точки M (x; y) на прямой.

Вы можете видеть, что любая точка P (x; y) Примеры решения и задачи с методическими указаниями

Решение задачЛекции
Сборник и задачникУчебник
  • Не существует В этом случае линейное уравнение имеет вид х = а, (2) Где а — абсцисса пересечения линии и оси Ox. Обратите внимание, что уравнения (1) и (2) являются линейными уравнениями. 2. Общее уравнение прямой Рассмотрим уравнение первого порядка относительно общего вида x и y. Ax + By + C = 0, (3) Где A, B и C — произвольные числа, а A и B — одновременно ненулевые. Уравнение (3) указывает, что это линейное уравнение. Есть два случая. Если B = 0, форма уравнения (3) имеет вид Ax + C = 0, AΦ0, т.е. x = -Это линейное уравнение, параллельное оси Oy и проходящее через точку В случае ΦΦ0 y =-получается из уравнения (3).

Это линейное уравнение с угловым коэффициентом k = tgc * = -. Некоторые частные случаи общего уравнения прямой: 1) Если A = 0, уравнение сводится к виду y =. Это линейное уравнение, параллельное оси Ox 2) Когда B = 0, линия параллельна оси Oy. 3) Если C = 0, получить Ax + By = 0. Координаты точки 0 (0; 0) удовлетворяют уравнению, и линия проходит через начало координат.

Следовательно, уравнение (3) является линейным уравнением и называется общим линейным уравнением. Людмила Фирмаль

Линейное уравнение через заданную точку В этом направлении Сделайте так, чтобы линия проходила через точку M (x0; y0), и ее направление характеризуется угловым коэффициентом k. Уравнение для этой линии можно записать в виде y = kx 4-6. Поскольку прямая проходит через точку M (x0, y0), координаты точки удовлетворяют уравнению линии y0 = kx o + b.

Следовательно, 6 = уо-кхо. Подставляя значение b в выражение y = kx + b, получаем искомое выражение для строки y = kx + yo-kx0. у-йо = к (х-хо). (4) Уравнение (4) с различными значениями k также называется уравнением пучка вокруг точки M (x0 ‘, Y0). • Из этого карандаша невозможно определить только прямые линии, параллельные оси Oy. 4. Уравнение прямой, проходящей через две точки Пусть прямая проходит через точки M \ (x \ y ) и M2 (x2 ‘, Y2). Форма уравнения для прямой, проходящей через точку Mb: Y

2 / i = k (x-zi), (5) Где k — неизвестный коэффициент Поскольку прямая проходит через точку M2 (^ 22/2)>, координаты этой точки должны удовлетворять уравнению (5): Y2-Y1- = k (x2-x1).

Найти k = ^ отсюда — заменить найденное X2-X \ Получите уравнение для прямой, которая проходит через значения k, точек M \ и M ^ в уравнении (5). L = (б) 2 / 2-2 / 1- Для этого уравнения Xi × X2, Y \ Φy-X2 = xi прямая, проходящая через точки M \ yi) и M2 (x2] Y2), предполагается параллельной оси ординат. Форма уравнения: х = х . Если y2 = 2 / s, уравнение линии можно записать в виде y = y / i. Линия M-yM2 параллельна горизонтальной оси.

Уравнение отрезка Линия пересекает ось Ox в точке M \ (a; 0) и ось Oy в точке Mg (0; b). В этом случае уравнение (6) принимает следующий вид: U- 0 Это 6-0 0-а ‘ Это уравнение называется линейным сегментным уравнением. Это связано с тем, что числа a и b указывают, какой отрезок отрезает линия по координатным осям. , х-а Х у

+ I = L a b в Mg (0; 6) б \ ИЛИ ®

Уравнение прямой через заданную точку, перпендикулярную этому вектору Найти линейное уравнение через заданную точку M0 (x0 \ y0), перпендикулярную данному ненулевому вектору n = (A; B). Возьмем произвольную точку M (x; y) на прямой и рассмотрим вектор M0M- (x-x0; Y-Yo). • Векторы n и McM являются вертикальными, поэтому их скалярное произведение равно нулю. A (x-x0) + B (y-yo) = 0. (7) Уравнение (7) называется уравнением прямой, проходящей через данную точку, перпендикулярную данному вектору и y. Вектор ri = (A) B), перпендикулярный прямой, называется вектором нормали этой прямой.

Уравнение (7) можно переписать в следующем формате Ax + By + C = 0, (8) Где A и B — координаты нормального вектора, а C = —Aho — W / o — свободный член. Уравнение (8) является общим уравнением для линии (см. (3)). 7. Полярные координатные уравнения для прямых Найти линейные уравнения в полярных координатах. Его положение может быть определено путем указания расстояния p от полюса O до конкретной линии и угла a между полюсом OP и осью I через полюс O, перпендикулярный этой линии. Для любой точки M (r;

с другой стороны, pR / OM = \ OM \ cos (a-

Следовательно, линейное уравнение (9) в декартовой системе координат принимает вид: x-cosо4-у • sinа-р = 0. (10) Уравнение (10) называется линейным нормальным уравнением. 44 года п / / a \ x о Вот как можно сделать уравнение (3) прямой в виде (10). Умножим все слагаемые в уравнении (3) на некоторый коэффициент, чтобы получить Л ^ ОХЛх + ХВу + АС = 0. Это уравнение становится уравнением (10). В результате должно быть выполнено уравнение: A / 4 = cos a-, XB = sin a, A C = -p. Из первых двух уравнений найдите Л2А2 + A2J52 = cos2 a + sin2а, т.е. А = ±> * y / A2 + B’2 Х называется нормировочным фактором. Согласно третьему уравнению АС = -р, знак нормировочного коэффициента меняется на противоположный

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института


источники:

http://math.semestr.ru/line/parallel.php

http://lfirmal.com/razlichnye-vidy-uravnenij-pryamoj-na-ploskosti/