Уравнения равномерного движения по графику

Уравнение движения, графики равномерного прямолинейного движения

п.1. Прямолинейное равномерное движение на координатной прямой

Система отсчета, с помощью которой можно описать прямолинейное движение состоит из:
1) тела отсчета; 2) координатной прямой; 3) часов для отсчета времени.
Пусть телом отсчета будет дом.
В начальный момент времени машина стоит в 20 м справа от дома.

Рассмотрим движение машины со скоростью 10 м/с вправо.
Направим координатную прямую параллельно вектору скорости, вправо.

Составим таблицу перемещений за первые 4 секунды:

t, c01234
x, м2030405060

Стартуя с точки x0=20, машина каждую секунду удаляется от дома еще на 10 м.
Пройденный путь за 2 секунды – 10·2=20 м, за 3 секунды – 10·3=30 м, за t секунд s=vt метров. Значит, для произвольного времени t можем записать координату x в виде: \begin x=x_0+s=x_0+vt\\ x=20+10t \end

Если при тех же начальных условиях и направлении координатной прямой машина будет двигаться влево, получим таблицу:

t, c01234
x, м20100-10-20

В этом случае координата x в любой момент времени t имеет вид: \begin x=x_0-st=x_0-vt\\ x=20-10t \end Если же машина никуда не едет, её скорость v=0, и координата x=x0 в любой момент времени t.

п.2. Уравнение прямолинейного равномерного движения

Зависимость координаты тела от времени в механике называют уравнением движения.
Если уравнение движения известно, то мы можем решить основную задачу механики.

п.3. Удобная система отсчета для решения задачи о прямолинейном движении

При решении задачи можно выбрать различные тела отсчета и связать с ними различные системы координат. Как правило, некоторая система отсчета является наиболее удобной для решения данной задачи в том смысле, что в ней уравнение движения выглядит и решается проще, чем в других системах.

При решении задач на прямолинейное движение телом отсчета может быть неподвижная поверхность (земля, пол, стол и т.п.), само движущееся тело или другое тело.
При этом системой координат является координатная прямая, параллельная направлению движения (вектору перемещения) тела, уравнение движения которого мы хотим получить.

Проекции скорости и перемещения на координатную прямую могут быть положительными, равными нулю или отрицательными. Величины скорости и перемещения будут равны длинам соответствующих проекций.

п.4. График движения x=x(t)

Сравним полученное уравнение движения \(x(t)=x_0+v_x t\) с уравнением прямой \(y(x)=kx+b\) (см. §38 справочника по алгебре для 7 класса).

В уравнении движения роль углового коэффициента \(k\) играет проекция скорости \(v_x\), а роль свободного члена \(b\) – начальная координата \(x_0\).

Построим графики зависимости координаты от времени для нашего примера:

x=20+10t — машина движется вправо (в направлении оси OX)
x=20-10t — машина движется влево (в направлении, противоположном оси OX)
x=20 — машина стоит

п.5. Как найти уравнение движения по графику движения?

п.6. График скорости vx=vx(t)

Для рассмотренного примера:

п.7. Как найти путь и перемещение по графику скорости?

Пусть тело движется прямолинейно равномерно, зависимость его координаты от времени описывается уравнением: $$ x(t)=x_0+v_x t $$ Тогда в некоторый момент времени \(t_1\) координата равна \(x_1=x_0+v_x t_1\).
Несколько позже, в момент времени \(t_2\gt t_1\) координата равна \(x_2=x_0+v_x t_2\).
Если \(v_x\gt 0\), то пройденный за промежуток времени \(\triangle t=t_2-t_1\) путь равен разности координат: $$ s=x_2-x_1=(x_0+v_x t_2)-(x_0+v_x t_1)=x_0-x_0+v_x (t_2-t_1)=v_x \triangle t $$ В общем случае, т.к. \(v_x\) может быть и отрицательным, а путь всегда положительный, в формуле нужно поставить модуль: $$ s=|v_x|\triangle t $$
Изобразим полученное соотношение на графике скорости:

Проекция скорости \(v_x\) может быть не только положительной, но и отрицательной.
Если учитывать знак, то произведение: $$ \triangle x=v_x \triangle t $$ дает проекцию перемещения на ось OX. Знак этого произведения указывает на направление перемещения.

Проекция перемещения может быть как положительной, так и отрицательной или равной 0.

п.8. Задачи

Задача 1. Спортсмен бежит по прямолинейному участку дистанции с постоянной скоростью 8 м/с. Примите \(x_0=0\) и запишите уравнение движения.
а) Постройте график движения \(x=x(t)\) и найдите с его помощью, сколько пробежит спортсмен за \(t_1=5\ с\), за \(t_2=10\ с\);
б) постройте график скорости \(v=v(t)\) и найдите с его помощью, какой путь преодолеет спортсмен за промежуток времени \(\triangle t=t_2-t_1\)?

По условию \(x_0=0,\ v_x=8\).
Уравнение движения: \(x=x_0+v_x t=0+8t=8t\)
а) Строим график прямой \(x=8t\) по двум точкам:

t05
x040


По графику находим: \begin x_1=x(5)=8\cdot 5=40\ \text<(м)>\\ x_2=x(10)=8\cdot 10=80\ \text <(м)>\end
б) Скорость \(v_x=8\) м/с — постоянная величина, её график:

$$ t_1=5\ с,\ \ t_2=10\ с $$ Пройденный путь за промежуток времени \(\triangle t=t_2-t_1\) равен площади заштрихованного прямоугольника: $$ s=v_x \triangle t=8\cdot (10-5)=40\ \text <(м)>$$ Ответ: а) 40 м и 80 м; б) 40 м

Задача 2. Космический корабль движется прямолинейно с постоянной скоростью.
Известно, что через 1 час после старта корабль находился на расстоянии 38 тыс.км от астероида Веста, а через 2 часа после старта – на расстоянии 56 тыс.км.
а) постройте график движения корабля, найдите по графику уравнение движения.
б) на каком расстоянии от астероида находился корабль в начальный момент времени?
в) на каком расстоянии от астероида будет находиться корабль через 4 часа после старта?
г) чему равна скорость корабля в километрах в секунду?

а) Будем откладывать время в часах, а расстояние в тыс.км
Отмечаем точки A(1;38) и B(2;56), проводим через них прямую.
Полученная прямая и есть график движения \(x=x(t)\).

Найдем скорость корабля \(v_x\): $$ v_x=\frac=\frac<56-38><2-1>=18\ (\text<тыс.км/ч>) $$ Найдем начальную координату \(x_0\): $$ x_0=x_1-v_x t_1=38-18\cdot v_1=20\ (\text<тыс.км/ч>) $$ Получаем уравнение движения: $$ x(t)=x_0+v_x t,\ \ x(t)=20+18t $$ где \(x\) – в тыс.км, а \(t\) – в часах.

б) В начальный момент времени корабль находился на расстоянии \(x_0=20\) тыс.км от астероида.

в) Через 4 часа после старта корабль будет находиться на расстоянии $$ x(4)=20+18\cdot 4=92\ (\text<тыс.км>) $$
г) Переведем скорость в км/с: $$ 18000\frac<\text<км>><\text<ч>>=\frac<18000\ \text<км>><1\ \text<ч>>=\frac<18000\ \text<км>><3600\ \text>=5\ \text <км/c>$$ Ответ:
а) \(x(t)=20+18t\) (\(x\) в тыс.км, \(t\) в часах); б) 20 тыс.км; в) 92 тыс.км; г) 5 км/с

Уравнения равномерного движения по графику

1 мин = 60 с; 1 ч = 3600 с; 1 км = 1000 м; 1 м/с = 3,6 км/ч.

ПРИМЕРЫ РЕШЕНИЯ ТИПОВЫХ ЗАДАЧ

Типовая задача «Уравнение координаты (нахождение неизвестной величины)»

Задача № 1. В начальный момент времени тело находилось в точке с координатой 5 м, а через 2 мин от начала движения — в точке с координатой 95 м. Определите скорость тела и его перемещение.

Типовая задача «Уравнение координаты. Движение двух тел»

Задача № 2. Движение двух тел задано уравнениями x1 = 20 – 8t и х2 = –16 + 10t (время измеряется в секундах, координата — в метрах). Определите для каждого тела начальную координату, проекцию скорости, направление скорости. Вычислите время и место встречи тел.

Типовая задача «График координаты»

Задача № 3. Движение тела задано графиком координаты (зависимости координаты от времени). По графику определите: а) начальную координату тела; б) проекцию скорости тела; в) направление движения тела (по оси х или против оси х); г) запишите уравнение координаты.

Типовая задача «График координаты. Движение нескольких тел»

Задача № 4. На рисунке изображены графики движения трех тел. Изучив рисунок, для каждого тела определите: а) начальную координату; б) скорость; в) направление движения; г) запишите уравнение координаты.

ЗАДАЧИ ПОСЛОЖНЕЕ

Задача № 5. На рисунке представлены графики зависимости координаты х от времени t для пяти тел. Определите скорости этих тел. Проанализируйте точки пересечения графиков. Постройте графики зависимости скорости от времени.

РЕШЕНИЕ:

Задача № 6. По графикам на рисунке напишите уравнения движения x = x(t) . Из уравнений и графиков найдите координаты тел через 5 с , скорости движения тел, время и место встречи второго и третьего тел.

РЕШЕНИЕ:

Задача № 7. ОГЭ Расстояние ( S ) между городами М и К = 250 км . Одновременно из обоих городов навстречу друг другу выезжают автомашины. Машина из города М движется со скоростью = 60 км/ч , из города К — со скоростью ν2 = 40 км/ч . Построить график зависимости пути от времени для каждой из машин и по ним определить место встречи и время их движения до встречи.

Задача № 8. ЕГЭ Скорость течения реки vp = 1 м/с , скорость лодки относительно воды v0 = 2 м/с . Под каким углом к берегу следует держать курс, чтобы лодка двигалась перпендикулярно берегу? За какое время t она переправится через реку, ширина которой d = 200 м ?

Алгоритм решения ЗАДАЧИ на Прямолинейное равномерное движение.

Задачи, описывающие движение, содержат два типа величин: векторные (имеющие направление) и скалярные (выражающиеся только числом). К векторным величинам при описании равномерного прямолинейного движения относятся скорость и перемещение.

Для перехода от векторов к скалярам выбирают координатную ось и находят проекции векторов на эту ось, руководствуясь следующим правилом: если вектор сонаправлен с осью, то его проекция положительна, если противоположно направлен — отрицательна. (Могут быть и более сложные случаи, когда вектор не параллелен координатной оси, а направлен к ней под некоторым углом.) Поэтому при решении задачи обязательно нужно сделать чертеж, на котором изобразить направления всех векторов и координатную ось. При записи «дано» следует учитывать знаки проекций.

При решении задач все величины должны выражаться в международной системе единиц (СИ), если нет специальных оговорок.

В решении задачи единицы величин не пишутся, а записываются только после найденного значения величины.

Это конспект по теме «ЗАДАЧИ на Прямолинейное равномерное движение с решениями». Выберите дальнейшие действия:

Равномерное прямолинейное движение в физике — формулы и определения с примерами

Содержание:

Равномерное прямолинейное движение:

Вы изучали равномерное прямолинейное движение, познакомились с понятием «скорость». Скалярной или векторной величиной является скорость? Каковы закономерности равномерного прямолинейного движения?

Вы знаете, что движение, при котором за любые равные промежутки времени тело проходит одинаковые пути, называется равномерным. В каком случае одинаковыми будут не только пути, но и перемещения?

Проделаем опыт. Проследим за падением металлического шарика в вертикальной трубке, заполненной вязкой жидкостью (например, густым сахарным сиропом) (рис. 43). Будем отмечать положение шарика через равные промежутки времени. Опыт показывает, что за равные промежутки времени, например за

Сделаем вывод. При равномерном прямолинейном движении тело за любые равные промежутки времени совершает одинаковые перемещения и проходит одинаковые пути.

В 7-м классе вы находили скорость равномерного движения тела как отношение пути к промежутку времени, за который путь пройден: Это отношение показывает, как быстро движется тело, но ничего не говорит о направлении движения. Чтобы скорость характеризовала и быстроту движения, и его направление, ее определяют через перемещение.

Скорость равномерного прямолинейного движения — это величина, равная отношению перемещения к промежутку времени, за который оно совершено:

Из равенства (1) следует, что скорость векторная физическая величина. Ее модуль численно равен модулю перемещения за единицу времени, а направление совпадает с направлением перемещения (т. к. ).

Отношение для всех участков движения на рисунке 43 одинаково: Значит, скорость равномерного прямолинейного движения постоянна: с течением времени не изменяется ни ее модуль, ни ее направление.

Из формулы (1) легко найти перемещение:

и путь (равный модулю перемещения ):

А как определить положение равномерно и прямолинейно движущегося тела в любой момент времени Рассмотрим пример. Автомобиль движется с постоянной скоростью по прямолинейному участку шоссе (рис. 44).

Автомобиль рассматриваем как материальную точку. Из формулы (2) находим проекцию перемещения автомобиля на ось Ох:


Согласно рисунку 44 за время автомобиль совершил перемещение Подставляя в равенство (4), получим:

Приняв запишем формулу для координаты автомобиля:

Координата равномерно и прямолинейно движущегося тела линейно зависит от времени.

Зависимость координаты движущегося тела от времени называется кинематическим законом движения. Формула (5) выражает кинематический закон равномерного прямолинейного движения.

Для измерения скорости используются специальные приборы. В автомобилях имеется спидометр (рис. 45), на самолетах — указатель скорости. Эхолокаторы измеряют скорость тел, движущихся под водой, а радиолокаторы (радары) — в воздухе и по земле. Сотрудники службы дорожного движения с помощью портативного радара с видеокамерой (рис. 46) регистрируют скорость транспортных средств.

Для любознательных:

Скорости движения могут сильно отличаться. За одну секунду черепаха может преодолеть несколько сантиметров, человек — до 10 м, гепард — до 30 м, гоночный автомобиль — около 100 м.

Около 8 км за секунду пролетает по орбите спутник Земли (рис. 47). Но даже скорости космических кораблей «черепашьи» по сравнению со скоростью микрочастиц в ускорителях. В современном ускорителе (рис. 48) электрон за одну секунду пролетает почти 300 000 км!

Главные выводы:

  1. При равномерном прямолинейном движении за любые равные промежутки времени тело совершает одинаковые перемещения.
  2. Скорость равномерного прямолинейного движения постоянна: с течением времени не изменяется ни ее модуль, ни ее направление.
  3. При равномерном прямолинейном движении тела модуль перемещения равен пути, пройденному за тот же промежуток времени.
  4. Координата равномерно и прямолинейно движущегося тела линейно зависит от времени.

Пример решения задачи:

Кинематический закон прямолинейного движения лодки но озеру вдоль оси Ох задан уравнением где

Определите: 1) проекцию скорости лодки 2) координату лодки в момент времени 3) проекцию перемещения лодки на ось Ох и путь, пройденный лодкой за время от момента до момента

Решение

Сделаем рисунок к задаче.

По условию задачи координата лодки линейно зависит от времени. Значит, лодка движется равномерно. Сравнив получим

Найдем

Из рисунка 49: проекция перемещения

Ответ:

Графическое представление равномерного прямолинейного движения

Зависимости между различными величинами можно наглядно изобразить с помощью графиков. Использование графиков облегчает решение научных, практических задач и даже бытовых проблем.

Например, по графику зависимости температуры пациента от времени (рис. 50) видно, что на 5-е сутки температура достигла своего максимума, затем резко упала, а еще через сутки стала приближаться к норме. График дал наглядное представление о течении болезни.

В физике роль графиков чрезвычайно велика. Умение строить и читать графики помогает быстрее и глубже понять физические явления.

Рассмотрим простой пример из кинематики. Леша и Таня идут навстречу друг другу (рис. 51). Они движутся равномерно и прямолинейно. Модуль скорости Леши Тани Как представить графически характеристики их движения?

Выберем координатную ось Ох и зададим начальные положения участников движения (см. рис. 51). Пусть при координата Леши Тани

Построим графики зависимости проекции скорости проекции перемещения пути S и координаты X от времени t.

График проекции скорости

Согласно условию и рисунку 52 для проекций скорости движения Тани и Леши на ось Ох получим: Так как проекции постоянны, то графики их зависимости от времени t — прямые, параллельные оси времени (прямые I и II на рисунке 52).

Графики показывают: проекция скорости при равномерном прямолинейном движении с течением времени не изменяется.

График проекции перемещения

Проекция перемещения совершенного за время t, определяется формулой (см. § 6).

Зависимость проекции перемещения от времени для Леши или График — наклонная прямая I (рис. 53).

Для Тани или График — наклонная прямая II, изображенная на рисунке 53.

Из графиков и формул следует, что при равномерном прямолинейном движении проекция перемещения прямо пропорциональна времени.

График пути

Путь — величина положительная при любом движении тела. При равномерном прямолинейном движении путь равен модулю перемещения: Поэтому при график пути совпадает с графиком проекции перемещения (прямая I), а при график пути (прямая III) является «зеркальным отражением» графика II (проекции перемещения) от оси времени.

Графики пути показывают: при равномерном прямолинейном движении пройденный путь прямо пропорционален времени.

График координаты

Его называют также графиком движения.

По формуле , используя данные из условия задачи и рисунок 51, находим зависимости координаты Леши и Тани от времени Графики этих зависимостей — прямые I и II на рисунке 54. Они параллельны соответствующим графикам проекций перемещения на рисунке 53.

Графики движения показывают: при равномерном прямолинейном движении координата тела линейно зависит от времени.

По точке пересечения графиков I и II (точке А) (рис. 54) легко найти момент и координату места встречи Леши и Тани. Определите их самостоятельно.

Что еще можно определить по графикам?

По графику проекции скорости можно найти проекцию перемещения и пройденный путь

Рассмотрим прямоугольник ABCD на рисунке 52. Его высота численно равна а основание — времени t. Значит, площадь прямоугольника равна Таким образом, проекция перемещения численно равна площади прямоугольника между графиком проекции скорости и осью времени. При проекция перемещения отрицательна, и площадь надо брать со знаком «минус».

Докажите самостоятельно, что площадь между графиком проекции скорости и осью времени численно равна пройденному пути.

По углу наклона графика проекции перемещения можно оценить скорость движения

Рассмотрим треугольник АВС на рисунке 53. Чем больше угол наклона а графика проекции перемещения, тем больше скорость тела. Объясните это самостоятельно.

Главные выводы:

Для равномерного прямолинейного движения:

  1. График проекции скорости — прямая, параллельная оси времени.
  2. Графики проекции перемещения и координаты — прямые, наклон которых к оси времени определяется скоростью движения.
  3. Площадь фигуры между графиком проекции скорости и осью времени определяет проекцию перемещения.

Пример №1

Мотоциклист едет из города по прямолинейному участку шоссе с постоянной скоростью Через время после проезда перекрестка он встречает едущего в город велосипедиста, движущегося равномерно со скоростью Определите расстояние между участниками движения через время после их встречи, если Запишите кинематические законы движения мотоциклиста и велосипедиста, постройте графики проекции и модуля скорости, проекции перемещения, координаты и пути для обоих участников движения.

Решение

Изобразим координатную ось Ох, вдоль которой идет движение (рис. 55). Начало системы координат О свяжем с перекрестком.

В начальный момент времени мотоциклист находился на перекрестке, а велосипедист в точке В. Значит, кинематический закон движения мотоциклиста имеет вид:

Найдем координату велосипедиста в начальный момент времени. Пусть точка С на оси Ох — место встречи участников движения (рис. 56).

Кинематический закон движения велосипедиста имеет вид:

Расстояние между мотоциклистом и велосипедистом через время после их встречи равно сумме путей, которые они проделают за это время. Значит,

Пример №2

Построим графики проекций и модулей скорости. Для мотоциклиста графики проекции скорости 1 и модуля скорости совпадают (рис. 56). Для велосипедиста график проекции скорости — прямая 2, а модуля скорости — прямая Объясните причину несовпадения.

Графиками пути s, проекции и модуля перемещения (рис. 57) будут прямые, выражающие прямую пропорциональную зависимость от времени t.

Графики пути, модуля и проекции перемещения мотоциклиста совпадают (прямая 1).

Прямая 2 является графиком пути и модуля перемещения велосипедиста. Прямая — графиком проекции его перемещения.

Графики координат представлены на рисунке 58. Они выражают зависимости (прямая 1) и (прямая 2). Точка А определяет время встречи и координату места встречи.

Ответ:

Прямолинейное равномерное движение и скорость

Из курса Физики VII класса вам известно, что равномерное прямолинейное движение является самым простым видом механического движения.

Прямолинейное равномерное движение — это движение по прямой линии, при котором материальная точка за равные промежутки времени совершает одинаковые перемещения.

При прямолинейном равномерном движении модуль и направление скорости с течением времени не изменяются:

Скорость при прямолинейном равномерном движении является постоянной физической величиной, равной отношению перемещения материальной точки ко времени, за которое это перемещение было совершено:

Так как отношение в формуле является положительной скалярной величиной, то направление вектора скорости совпадает с направлением вектора перемещения Единица измерения скорости в СИ — метр в секунду:

Если скорость известна, то можно определить перемещение s материальной точки за промежуток времени при прямолинейном равномерном движении:

При прямолинейном равномерном движении пройденный телом путь равен модулю перемещения:

Так как уравнение в векторном виде можно заменить алгебраическими уравнениями в проекциях векторов, то для вычисления перемещения используют не формулу, выраженную через векторы, а формулу, содержащую в себе проекции векторов на координатные оси. При прямолинейном движении положение материальной точки определяется одной координатой X, определяются проекции векторов скорости и перемещения материальной точки на эту ось и уравнение решается в этих проекциях. Поэтому выражение (1.2) можно записать в проекциях перемещения и скорости на ось ОХ:

Можно получить формулу для вычисления координаты точки в произвольный момент времени (см.: тема 1.2):

Выражение (1.5) является уравнением прямолинейного равномерного движения тела. Если материальная точка движется по направлению выбранной координатной оси ОХ, то проекция скорости считается положительной (b), если же движется против направления координатной оси, то проекция скорости считается отрицательной (с).

Из формулы (1.5) определяется выражение для проекции скорости:

Из формулы (1.6) становится ясным физический смысл скорости: проекция скорости на ось равна изменению проекции соответствующей координаты за единицу времени.

Пройденный путь и координата материальной точки при прямолинейном равномерном движении являются линейной функцией от времени (d). Скорость же является постоянной величиной, поэтому график скорость — время будет представлять собой линию, параллельную оси времени — скорость такого движения не зависит от времени (е):

График координата-время при равномерном движении образует определенный угол с осью времени. Тангенс этого угла равен проекции (модулю) скорости по оси ох (f):

Пример №3

Два велосипедиста одновременно начали движение навстречу друг другу вдоль прямой линии из пунктов А и В, расстояние между которыми 90 км. Скорость первого велосипедиста скорость второго велосипедиста (g)?

Определите: а) координату и время встречи велосипедистов; b) пройденные велосипедистами пути и совершенные ими перемещения к моменту встречи; с) время прошедшее с начала движения до момента, когда расстояние между ними стало 10 км.

a) При решении задачи соблюдается следующая последовательность действий:

I действие. Выбирается система координат ОХ с началом координат в точке А и рисуется схема (h).

II действие. Уравнение движения записывается в общем виде:

III действие. На основании условия задачи уравнения движения велосипедистов записываются в общем виде:

IV действие. Координаты велосипедистов при встрече равны: Это равенство решается для

V действие. Для определения координат и встречи велосипедистов необходимо решить уравнения их движения для времени

Так как то

b) Так как по условию задачи велосипедисты движутся прямолинейно и без изменения направления движения, то пройденный путь равен проекции (модулю) перемещения:

c) Время прошедшее с начала движения до момента, когда между ними осталось 10 км, вычисляется по нижеприведенному равенству:

или

Скорость при равнопеременном прямолинейном движении

Из формулы (1.14) видно, что если известны ускорение и начальная скорость тела то можно определить его скорость в любой момент времени:

или ее проекцию на ось

Если начальная скорость равна нулю то:

Из этих выражений видно, что скорость при равнопеременном движении является линейной функцией от времени. График зависимости скорости от времени — прямая линия, проходящая через начало координат (или через Эта линия, в соответствии с увеличением или уменьшением скорости, направлена вверх или вниз (с).

Перемещение при равнопеременном прямолинейном движении

Формулу для определения перемещения при равнопеременном движении можно вывести на основе графика скорость-время. Проекция перемещения равна площади фигуры между графиком и осью времени.

На приведенных графиках — это заштрихованная фигура трапеции (см: с):

или в векторной форме:

Если в последнюю формулу вместо подставить выражение (1.18), то получим

обобщенную формулу перемещения для равнопеременного движения:

Таким образом, формула проекции перемещения (например, на ось при равнопеременном прямолинейном движении будет:

а формула координаты:

(1.23) является формулой перемещения при равнопеременном движении в векторной форме, а (1.24) и (1.25) обобщенными формулами координаты и проекции перемещения, соответственно. Если материальная точка начинает движение из состояния покоя то:

Как видно из формулы, проекция перемещения при прямолинейном равнопеременном движении пропорциональна квадрату времени и его график представляет собой параболу, проходящую через начало координат (d).

В некоторых случаях возникает необходимость определить перемещение материальной точки, не зная время прошедшее от начала движения. Такую задачу можно решить тогда, когда известны ускорение, начальное и конечное значения скорости. Для получения этой формулы из выражения (1.19) получаем


Это выражение подставляется в формулу (1.21):

После простых преобразований получаем:

Для проекции конечной скорости получаем: Если движение начинается из состояния покоя то проекции перемещения и скорости будут равны:

Равноускоренное и равнозамедленное движения

Равнопеременное движение по характеру может быть или равноускоренным, или же равнозамедленным.

При равноускоренном движении векторы и имеют одинаковые направления. В этом случае знаки у обеих проекций и или положительные, или же отрицательные. Если материальная точка начнет движение из состояния покоя то независимо от направления движения, оно во всех случаях будет равноускоренным.

При равнозамедленном движении векторы и имеют противоположные направления. В этом случае проекции и имеют противоположные знаки, если один из них отрицательный, то другой — положительный.

В таблице 1.3 даны формулы и соответствующие графики равноускоренного и равнозамедленного прямолинейного движения.

Примечание: так как то отношение проекций перемещения равно отношению квадратов соответствующих промежутков времени:

Это соотношение иногда называется «правило путей».

Кинематика прямолинейного движения

Физические величины бывают скалярные и векторные. Скалярные физические величины характеризуются только численным значением, тогда как векторные определяются и числом (модулем), и направлением. Скалярными физическими величинами являются время, температура, масса, векторными — скорость, ускорение, сила.
Мир вокруг нас непрерывно изменяется, или движется, т. е. можно сказать, что движение (изменение) есть способ существования материи.

Простейшая форма движения материи — механическое движение — заключается в изменении взаимного расположения тел или их частей в пространстве с течением времени. Наука, изучающая механическое движение, называется механикой (от греческого слова подъемная машина).

Даже самое простое движение тела оказывается достаточно сложным для изучения и исследования. Соответственно, для того чтобы в сложном явлении «увидеть» главное, в физике строится его адекватная упрощенная модель.

В механике широко используется простейшая модель реального тела, называемая материальной точкой (МТ). Под материальной точкой понимают тело, размерами и формой которого можно пренебречь при описании данного движения. Хотя МТ представляет собой абстрактное понятие, упрощающее изучение многих физических явлений, она, подобно реальному телу, «имеет» массу, энергию и т. д.

Кроме материальной точки, в механике используется модель абсолютно твердого тела. Под абсолютно твердым телом понимают модель реального тела, в которой расстояние между его любыми двумя точками остается постоянным. Это означает, что размеры и форма абсолютно твердого тела не изменяются в процессе его движения. В противном случае говорят о модели деформируемого тела.

В классической (ньютоновской) механике рассматривается движение тел со скоростями, намного меньшими скорости света в вакууме
Классическая механика состоит из трех основных разделов: кинематики, динамики и статики. В кинематике (от греческого слова движение) изучается механическое движение тел без учета их масс и действующих на них сил. В динамике (от греческого слова сила) рассматривается влияние взаимодействия между телами на их движение. В статике (от греческого слова искусство взвешивать) исследуются законы сложения сил и условия равновесия твердых, жидких и газообразных тел.

Всякое движение тела можно представить в виде двух основных видов движения — поступательного и вращательного.

Поступательным называется движение тела, при котором прямая, соединяющая в этом теле любые две точки, при перемещении остается параллельной самой себе (рис. 1).

Вращательным называется движение абсолютно твердого тела вокруг неподвижной прямой, называемой осью вращения, при котором все точки тела движутся по окружностям, центры которых лежат на этой оси (рис. 2).

Основными задачами кинематики являются:

описание совершаемого телом движения с помощью математических формул, графиков или таблиц;

определение кинематических характеристик движения (перемещения, скорости, ускорения).

Движение тела можно описать только относительно какого-либо другого тела. Тело, относительно которого рассматривается исследуемое движение, называют телом отсчета (ТО). Для описания движения используются формулы, графики и таблицы, выражающие зависимость координат, скоростей и ускорений от времени.

Основным свойством механического движения является его относительность: характер движения тела зависит от выбора системы отсчета (СО).

Систему отсчета, выбираемую для описания того или иного движения, образуют: тело отсчета, связанные с ним система координат (СК) и прибор для измерения времени (часы) (рис. 3).

Система координат и часы необходимы для того, чтобы знать, как с течением времени изменяется положение тела относительно выбранного тела отсчета.

Для описания движения материальной точки в пространстве вводятся такие понятия, как траектория, перемещение, путь.

Линию, которую описывает материальная точка в процессе движения по отношению к выбранной СО, называют траекторией (от латинского слова trajectorusотносящийся к перемещению). Если траектория является прямой линией, то движение называется прямолинейным, в противном случае — криволинейным.

Длина участка траектории, пройденного МТ в процессе движения, называется путем (s).

Термин «скаляр», происходящий от латинского слова scalarus — ступенчатый, введен У. Гамильтоном в 1843 г.

Термин «вектор» произошел от латинского слова vector — несущий и введен У. Гамильтоном в 1845 г.
Перемещением называют вектор направленный из точки, заданной радиус-вектором где МТ находилась в начальный момент времени, в точку, заданную радиус-вектором где МТ находится в рассматриваемый момент времени (рис. 4):

Для количественного описания механического движения тел (МТ) вводятся физические величины, характеризующие пространство и время: длина l, время t.

Длина l определяется как расстояние между двумя точками в пространстве. Основной единицей длины в Международной системе единиц (СИ) является метр (1м).

Время t между двумя событиями в данной точке пространства определяется как разность показаний прибора для измерения времени, например часов. В основе работы прибора для измерения времени лежит строго периодический физический процесс. В СИ за основную единицу времени принята секунда (1с).
В зависимости от вида движения могут выбираться следующие системы координат: одномерная (на прямой линии) (рис. 5), двухмерная (на плоскости) (рис. 6), трехмерная (в пространстве) (рис. 7).

Произвольное движение материальной точки может быть задано одним из трех способов: векторным, координатным, траекторным (естественным).

При векторном способе описания положение движущейся МТ по отношению к выбранной системе отсчета определяется ее радиус-вектором

Радиус-вектор всегда проводится из начала координат О в текущее положение материальной точки (рис. 8). При движении положение МТ изменяется. Закон движения в этом случае задается векторным уравнением

При координатном способе описания положение точки относительно СО определяется координатами х, у, z, а закон движения — уравнениями х = х(t), у = y(t), z = z(t) (см. рис. 8). Исключив из этих уравнений время /, можно найти уравнение траектории движения точки.

Траекторный (естественный) способ описания движения применяется, когда известна траектория движения материальной точки по отношению к выбранной СО (рис. 9).

Текущее положение материальной точки в данном случае определяется расстоянием s, измеренным вдоль траектории от выбранного на ней начала отсчета (точка О на рисунке 9). Кинематический закон движения МТ при этом задается уравнением s = s(t).

Если положить в основу классификации движений характер изменения скорости, то получим равномерные и неравномерные движения, а если вид траектории, то — прямолинейные и криволинейные.

Для того чтобы описать быстроту изменения положения тела (МТ) и направление движения относительно данной СО, используют векторную физическую величину, называемую скоростью

Чтобы охарактеризовать неравномерное движение тела (МТ), вводят понятие средней скорости движения как отношение перемещения тела к промежутку времени за который это перемещение произошло (рис. 10):

Средней путевой скоростью называется отношение длины отрезка пути As (см. рис. 9) к промежутку времени его прохождения:

Средняя путевая скорость в отличие от средней скорости является скалярной величиной.

Однако средняя скорость характеризует движение тела (МТ) на определенном участке траектории, но не дает информации о его движении в определенной точке траектории или в определенный момент времени. Кроме того, средняя скорость дает лишь приближенное понятие о характере движения, так как движение в течение каждого малого промежутка времени заменяется равномерным движением. В рамках этой модели скорость тела (МТ) меняется скачком при переходе от одного промежутка времени к другому.

Для того чтобы отразить характер движения в данной точке траектории или в данный момент времени, вводится понятие мгновенной скорости — это скорость тела (МТ), равная производной перемещения по времени:

Вектор мгновенной скорости в любой точке траектории направлен по касательной к ней (см. рис. 10).

В СИ основной единицей скорости является метр в секунду

Простейший вид движения — равномерное. Равномерным называется движение МТ, при котором она за любые равные промежутки времени совершает одинаковые перемещения.

При прямолинейном движении в одном направлении модуль перемещения равен пройденному пути s. Скорость равномерного движения равна отношению перемещения тела ко времени за которое это перемещение произошло:

При равномерном движении скорость постоянна и равна средней скорости определяемой выражением (2).

Зависимость перемещения от времени имеет вид Вследствие того, что — радиус-вектор, задающий положение МТ в начальный

момент времени получаем кинематическое уравнение движения в векторном виде

При проецировании радиус-вектора, например, на ось Ох получаем кинематическое уравнение для координаты при равномерном движении:

Здесь — координата тела (МТ) в начальный момент времени Если начальный момент времени уравнение принимает вид

Для наглядности описания механического движения удобно представлять зависимости между различными кинематическими величинами графически.

Скорость МТ при равномерном движении постоянна, поэтому график зависимости проекции скорости от времени представляет собой отрезок прямой линии, параллельной оси времени Ot (рис. 11). Отрезок прямой l на рисунке 11 соответствует движению материальной точки в положительном направлении оси а 2 — в отрицательном Площади закрашенных прямоугольников численно равны модулям перемещений МТ с проекциями скоростей за промежуток времени

График зависимости координаты материальной точки, движущейся равномерно прямолинейно, от времени x(t) — линейная функция (рис. 12).
На рисунке отрезок / прямой соответствует равномерному движению в положительном направлении оси Ох; отрезок 2 прямой — покою материальной точки; отрезок 3 прямой — равномерному движению в отрицательном направлении оси Ох.

Проекция скорости движения численно равна угловому коэффициенту этой прямой линии:

т. е. тангенсу угла наклона (tga) этой прямой к оси времени.

График зависимости пути (модуля перемещения| от времени s(t) при равномерном движении представляет собой прямую линию, проходящую через начало координат (рис. 13).

Угловой коэффициент (tga) этой прямой численно равен модулю скорости движения v. Поэтому на рисунке большей скорости у, соответствует больший угловой коэффициент (tg).


Для тел (МТ), участвующих в нескольких движениях одновременно, справедлив принцип независимости движений:

если тело (МТ) участвует в нескольких движениях одновременно, то его результирующее перемещение равно векторной сумме перемещений за то же время в отдельных движениях:

Как следует из принципа независимости движений, конечное перемещение тела не зависит от порядка (последовательности) суммирования перемещений при отдельных движениях.

Пусть, например, при переправе через реку, скорость течения которой мы движемся на лодке со скоростью относительно воды. В этом случае результирующее перемещение (рис. 14) лодки относительно берега будет складываться из собственного перемещения относительно воды и перемещения вместе с водой вследствие течения реки:

На основе принципа независимости движений формулируется классический закон сложения скоростей:

результирующая скорость тела (МТ), участвующего в нескольких движениях одновременно, равна векторной сумме скоростей отдельных движений (рис. 15):

Этот закон справедлив только при условии, что скорость каждого отдельного движения мала по сравнению со скоростью света

Так, для рассмотренного примера (см. рис. 14) результирующая скорость лодки

Равномерное движение по прямой линии в повседневной жизни встречается сравнительно редко. Например, различные транспортные средства (автомобиль, автобус, троллейбус и т. д.) равномерно и прямолинейно движутся лишь на небольших участках своего пути, в то время как на остальных участках их скорость изменяется как по величине, так и по направлению.

Для измерения мгновенной скорости движения на транспортных средствах устанавливается прибор — спидометр.

Прямолинейное равноускоренное движение
Прямолинейное равнозамедленное движение
Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Прямолинейное неравномерное движение
  • Прямолинейное равноускоренное движение
  • Сложение скоростей
  • Ускорение в физике
  • Пружинные и математические маятники
  • Скалярные и векторные величины и действия над ними
  • Проекция вектора на ось
  • Путь и перемещение

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.


источники:

http://uchitel.pro/%D0%B7%D0%B0%D0%B4%D0%B0%D1%87%D0%B8-%D0%BD%D0%B0-%D0%BF%D1%80%D1%8F%D0%BC%D0%BE%D0%BB%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%BE%D0%B5-%D1%80%D0%B0%D0%B2%D0%BD%D0%BE%D0%BC%D0%B5%D1%80%D0%BD%D0%BE%D0%B5/

http://www.evkova.org/ravnomernoe-pryamolinejnoe-dvizhenie-v-fizike