Уравнения реакции по неорганической химии

Уравнения реакции по неорганической химии

1. Основные классы неорганических соединений

Оксиды – сложные вещества, состоящие из атомов кислорода в степени окисления -2 и атомов другого элемента.

Номенклатура: Fe2O3 – оксид железа(III), Cl2O – оксид хлора(I).

Несолеобразующие (безразличные) оксиды: CO, SiO, NO, N2O.

основные – оксиды металлов в степени окисления +1, +2,

амфотерные – оксиды металлов в степени окисления +2, +3, +4,

кислотные – оксиды металлов в степени окисления +5, +6, +7 и

оксиды неметаллов в степени окисления +1 – +7.

Горение простых веществ:

Горение (обжиг) сложных веществ:

Разложение сложных веществ:

Химические свойства оксидов

Основным оксидам (Na2O, CaO, CuO, FeO) соответствуют основания.

СаО + Н2O = Са(OH)2 (растворимы оксиды металлов IA– и IIА-групп, кроме Be, Mg)

CuO + Н2O ? (оксиды остальных металлов нерастворимы)

SO2 + Н2O = H2SO3 (кислотные оксиды, кроме SiO2, растворимы в воде)

Амфотерным оксидам (ZnO, Al2O3, Cr2O3, ВеО, РЬО) соответствуют амфотерные гидроксиды.

ZnO + H2O ? (амфотерные оксиды нерастворимы в воде)

ZnO + 2NaOH >t> Na2ZnO2 + Н2O (при нагревании или сплавлении)

ZnO + 2NaOH + H2O = Na2[Zn(OH)4] (в разбавленном растворе)

Основания – сложные вещества, состоящие из атомов металла и гидроксиль-ных групп; основания – электролиты, образующие при диссоциации в качестве анионов только анионы гидроксила.

Номенклатура: Fe(OH)3 – гидроксид железа(III).

– растворимые (щелочи) NaOH, KOH;

– однокислотные NaOH, KOH;

Получение нерастворимых и амфотер-ных оснований:

NaOH > Na + + OH? (? = 1, фенолфталеин – красный)

NaOH + HCl = NaCl + H2O (реакция нейтрализации)

Свойства нерастворимых оснований:

Fe(OH)2 — FeOH + + OH? (? + — Fe 2+ + OH? (? t> FeO + H2O

Свойства амфотерных оснований:

Кислоты – сложные вещества, состоящие из атомов водорода и кислотного остатка; кислоты – электролиты, образующие при диссоциации в качестве катионов только катионы водорода.

Номенклатура кислот и кислотных остатков:

Классификация кислот:

Химические свойства кислот

HCl > H + + CI? (? =1) (лакмус – красный)

HCO3? — H + + CO3 2- (? MgOH + + CI? (? = 1)

MgOH + — Mg 2+ + OH? (? Na + + Н + + SO4? (? = 1)

CuSO4 + Fe = Cu + FeSO4 (Fe до Cu в ряду напряжений)

Pb + ZnCl2 ? (Pb после Zn в ряду напряжений)

Разложение некоторых солей при нагревании

CaCO3 >t> CaO + CO2 (роме устойчивых карбонатов щелочных металлов)

2NaNO3 >t> 2NaNO2 + O2 (металл до Mg в ряду напряжений)

2Pb(NO3)2 >t> 2РbO + 4NO2 + O2 (металл от Mg до Cu в ряду напряжений)

2AgNO3 >t> 2Ag + 2NO2 + O2 (металл после Cu в ряду напряжений)

NH4Cl >t> NH3 + HCl (при охлаждении идет в противоположном направлении)

4KClO3 >400 °C> KCl + 3KClO4

Связь между классами соединений

Металл — основный оксид — основание — соль

Неметалл — кислотный оксид — кислота — соль

Атомы этих элементов имеют электронную формулу ns 1 . Они являются сильными восстановителями. Их активность растет от лития к цезию. Для них характерна степень окисления +1. В природе щелочные металлы находятся в виде хлоридов, сульфатов, карбонатов, силикатов и т. д.

Щелочные металлы мягкие, легко режутся ножом, на свежем срезе имеют серебристую окраску. Все они легкие и легкоплавкие металлы с хорошей электропроводностью. В парообразном состоянии атомы щелочных металлов образуют молекулы Э2, например Na2.

2.1. Получение и химические свойства щелочных металлов

2NaCl >электролиз расплава> 2Na + Cl2

KCl + Na >800?С> К + NaCl

Горение в кислороде

Реакции с другими неметаллами

Реакции с водой и разбавленными кислотами

2Na + 2HCl = 2NaCl + H2^

2.2. Получение и химические свойства соединений щелочных металлов

Оксиды. Оксиды щелочных металлов являются активными основными оксидами.

Гидроксиды. Гидроксиды щелочных металлов – растворимые основания, щелочи. Их степень диссоциации увеличивается от LiOH к CsOH.

NaOH > Na + + OH? (? ? 1)

Гидриды. Гидриды щелочных металлов – восстановители.

NaH + HCl = NaCl + H2

Пероксиды и надпероксиды. Являются окислителями.

Соли. Хорошо растворяются в воде. Соли лития окрашивают пламя горелки в карминово-красный цвет, соли натрия – в желтый цвет, соли калия – в светло-фиолетовый цвет. Соли щелочных металлов со слабыми кислотами гидролизуются, создавая щелочную среду.

Элементы IIА-группы имеют электронную формулу ns 2 . Все они являются металлами, сильными восстановителями, несколько менее активными, чем щелочные металлы. Для них характерна степень окисления +2 и валентность II. Щелочноземельные металлы: Са, Sr, Ba, Ra. В природе элементы IIА-группы находятся в виде солей: сульфатов, карбонатов, фосфатов, силикатов. Элементы IIА-группы представляют собой легкие серебристые металлы, более твердые, чем щелочные металлы.

3.1. Получение и химические свойства простых веществ

Элементы IIА-группы – менее активные восстановители, чем щелочные металлы. Их восстановительные свойства увеличиваются от бериллия к радию. Кислород воздуха окисляет Са, Sr, Ba, Ra при обычной температуре. Mg и Be покрыты оксидными пленками и окисляются кислородом только при нагревании:

3.2. Получение и химические свойства соединений

Оксид бериллия – амфотерный оксид. Оксид магния – нерастворимый основный оксид. Оксид кальция – растворимый основный оксид.

Гидроксид бериллия – амфотерное основание. Гидроксид магния – нерастворимое основание. Гидроксиды щелочноземельных металлов – щелочи.

Имеют восстановительные свойства.

Содержание ионов Са 2+ и Mg 2+ обуславливает жесткость воды: временную, если есть гидрокарбонаты Са и Mg, и постоянную, если в воде есть хлориды или сульфаты Са и Mg.

Элементы IIIА-группы имеют электронную формулу ns 2 np 1 . Они являются значительно менее активными восстановителями, чем щелочноземельные металлы. Для них характерна степень окисления +3 и валентность III. В группе сверху вниз возрастают металлические свойства элементов, увеличиваются восстановительные свойства их атомов. Увеличиваются основные свойства гидроксидов и уменьшаются их кислотные свойства.

Соединения Тl 3+ являются сильными окислителями и восстанавливаются до соединений Тl + .

4.1. Химические свойства бора и его соединений

4.2. Химические свойства алюминия и его соединений

4Al + 3O2 = 2Al2O3 (металл покрыт оксидной пленкой)

2Al + 6Н2O = 2Al(OH)3 + ЗН2 (без оксидной пленки)

Оксид алюминия – амфотерный оксид

Гидроксид алюминия – амфотерный гидроксид.

Соли алюминия гидролизуются. Некоторые из них (Al2S3, Al2(CO3)3) полностью разлагаются водой.

Элементы IVA-группы имеют электронную формулу ns 2 np 2 . Углерод и кремний являются неметаллами, германий, олово, свинец – металлами. Для элементов характерны степени окисления +4, +2, 0, -4 и валентность IV. В возбужденном состоянии атомы имеют конфигурацию ns 1 np s , в этом состоянии для них характерна sp 3 -гибридизация.

5.1. Свойства углерода и его соединений

Характерные степени окисления углерода, электронные формулы соответствующих ионов, химические свойства и примеры соединений приведены в таблице.

С + CuO >t> Cu + CO

Свойства оксида углерода (II) – угарного газа

CO + NaOH >t, p> HCOONa

Свойства оксида углерода(IV) – углекислого газа

Свойства карбонатов и гидрокарбонатов

5.2. Получение и свойства кремния и его соединений

SiH4 + 2O2 = SiO2 + 2Н2O (самовоспламенение на воздухе)

Кремниевая кислота и силикаты. Кремниевая кислота имеет полимерное строение и состав xSiO2 • yH2O. H2SiO3 – условная формула, такого соединения не выделено.

5.3. Получение и свойства соединений олова и свинца

Гидроксиды олова и свинца имеют амфо-терные свойства. При этом в степени окисления элемента +2 в гидроксидах преобладают основные свойства, а в степени окисления +4 – кислотные. Соединения Sn 2+ имеют восстановительные свойства, а соединения РЬ 4+ – окислительные:

Элементы VA-группы имеют электронную формулу ns 2 np s . Азот, фосфор и мышьяк являются неметаллами, висмут и сурьма имеют металлические свойства. Наиболее характерные степени окисления: +5, +3, 0, -3. Оксиды Э2O5 имеют кислотные свойства, свойства оксидов Э2O3: кислотные – для N и Р, амфотерные – для As и Sb, основные – для Bi.

6.1. Получение и свойства азота и его соединений

Характерные степени окисления азота, соответствующие им электронные формулы, химические свойства и примеры соединений приведены в таблице.

HNO3(конц.) пассивирует на холоду Al, Fe, Cr.

2KNO3 >t> 2KNO2 + O2 (металлы до Mg в ряду напряжений)

2AgNO3 >t> 2Ag + 2NO2 + O2 (металлы после Cu в ряду напряжений)

6.2. Получение и свойства фосфора и его соединений

Простое вещество 4 – белый фосфор, Р – красный фосфор)

VIA-группу образуют четыре неметалла: кислород, сера, селен, теллур, называемые халькогенами, и радиоактивный металл полоний. Атомы элементов VIA-группы имеют электронную формулу ns 2 np 4 . Для них характерны степени окисления -2, 0, +4, +6. У атома кислорода отсутствуют 2d-орбитали, поэтому его валентность равна двум. Наличие d-орбиталей у атомов других элементов позволяет им иметь валентности два, четыре или шесть.

7.1. Кислород и его соединения

Кислород – самый распространенный элемент земной коры. Кислород представляет собой газ без цвета, без вкуса, без запаха. Возможные степени окисления кислорода, электронные формулы соответствующих ионов, химические свойства и примеры соединений приведены в таблице.

Получение и свойства кислорода

Кислород может быть получен при сжижении и разделении воздуха.

Получение и свойства озона O3

Свойства пероксида водорода

7.2. Сера и ее соединения

Характерные степени окисления серы, соответствующие им электронные формулы, химические свойства и примеры соединений приведены в таблице.

Чистая сера – хрупкое кристаллическое вещество желтого цвета. Сера имеет несколько модификаций: ромбоэдрическую и призматическую, также пластическую (аморфную). Аллотропия серы обусловлена различной структурой кристаллов, построенных из восьмиатомных молекул S8. В расплаве серы существуют молекулы S8, S6, в парах серы – молекулы S6, S4, S2.

Получение и свойства серы

Получение и свойства соединений серы (-2)

H2S — H + + HS? — 2H + + S 2-

Получение и свойства соединений серы (+4)

Получение и свойства соединений серы (+6)

Концентрированная серная кислота пассивирует на холоду Al, Fe, Cr.

Атомы галогенов, образующих VIIA-группу, имеют электронную конфигурацию ns 2 np 5 . Все галогены являются активными неметаллами, окислителями. Их активность уменьшается в ряду F > Cl > Br > I > At. Характерные степени окисления галогенов: -1, 0, +1, +3, +5, +7. Однако у фтора, наиболее активного неметалла, есть лишь степени окисления -1 и 0. F2 и Cl2 – газы, Br2 – жидкость, I2 – твердое вещество. С увеличением радиуса атомов галогенов растет объем их атомов и молекул, а также их поляризуемость. Это приводит к увеличению сил межмолекулярного взаимодействия (сил Ван дер Ваальса) и повышению температур плавления и кипения простых веществ.

HF, HCl, HBr, HI при растворении в воде образуют кислоты (HF – слабую, HCl, HBr и HI – сильные). В HF имеются сильные водородные связи. В ряду HCl – HBr – HI сила кислот несколько увеличивается в связи с увеличением поляризуемости молекул, пропорциональной их объему.

Электронная формула атома водорода 1s 1 . С галогенами его объединяет способность принимать один электрон и образовывать стабильную электронную оболочку 1s 2 . Поэтому часто водород располагают вместе с галогенами в VIIA-группе.

8.1. Водород и его соединения

Водород – наиболее распространенный элемент во Вселенной. Водород – легкий газ без цвета, без запаха. Возможные степени окисления водорода, электронные формулы соответствующих ионов, химические свойства и примеры соединений приведены в таблице.

Молекулы воды связаны водородными связями: nH2O = (Н2O)n, поэтому вода жидкая в отличии от ее газообразных аналогов H2S, H2Se и Н2Те.

Кислород в молекуле воды находится в состоянии sp 3 -гибридизации, две связи О—Н и две неподеленные пары кислорода располагаются тетраэдрически, угол между связями О—Н равен 104,5°, поэтому молекула воды полярная. Вода является хорошим растворителем для веществ с ионными или полярными связями.

8.3. Фтор и его соединения

Фтор является наиболее активным неметаллом, сильным окислителем.

8.4. Хлор и его соединения

Хлор – тяжелый газ желто-зеленого цвета, с резким запахом.

2NaCl + 2Н2O >электролиз раствора> Н2 + Cl2 + 2NaOH

Cl2 + Н2O = HCl + HClO (реакция диспропорционирования)

HClO = HCl + О (атомарный кислород – окислитель)

Смесь CaCl2 и Са(ClO)2 – хлорная, или белильная, известь.

KClO3 – хлорат калия, или бертолетова соль.

Сила кислот растет в ряду:

8.5. Бром, иод и их соединения

Бром – темно-бурая жидкость с резким запахом, а иод – кристаллическое вещество темного цвета. Изменение фазового состояния галогенов обусловлено увеличением межмолекулярного – дисперсионного взаимодействия, связанного с увеличением размеров и поляризуемости молекул галогенов в ряду хлор > бром > иод.

В атомах d-элементов (переходных элементов) заполняется электронами d-под-уровень предвнешнего уровня. На внешнем уровне атомы d-элеметов имеют, как правило, два s-электрона. Близость строения валентных уровней атомов переходных элементов определяет их общие свойства. Все они являются металлами, имеют высокую прочность, твердость, высокую электро– и теплопроводность. Многие из них электроположительны и растворяются в минеральных кислотах, однако среди них есть металлы, не взаимодействующие обычным способом с кислотами. Большинство переходных металлов имеют переменную валентность. Максимальная валентность, как и максимальная степень окисления, как правило, равно номеру группы, в которой находится данный элемент.

9.1. Хром и его соединения

Хром представляет собой ковкий тягучий металл серо-стального цвета. Электронная формула атома хрома 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1 .

Характерные степени окисления хрома, электронные формулы соответствующих ионов, химические свойства и примеры соединений приведены в таблице.

Получение и свойства хрома

FeO • Cr2O3 + 4CO >t> Fe + 2Cr + 4CO2 (Fe + 2Cr) – феррохром

Хром пассивируется на холоду концентрированными азотной и серной кислотами.

Свойства соединений хрома (+2) и хрома (+3)

Гидроксид хрома(II) сразу окисляется кислородом воздуха.

Свойства соединений хрома (+6)

Желтый раствор хромата калия устойчив в щелочной среде, оранжевый раствор дихромата калия – в кислой среде.

Дихромат калия – окислитель в кислой среде.

9.2. Марганец и его соединения

Марганец – серебристо-белый твердый и хрупкий металл. Характерные степени окисления марганца, электронные формулы соответствующих ионов, химические свойства и примеры соединений приведены в таблице.

Получение и свойства марганца

FeO • Mn2O3 + 4CO >t> Fe + 2Mn + 4CO2 (Fe + 2Mn) – ферромарганец

Свойства соединений марганца (+2)

Свойства соединений марганца (+4)

MnO2 – устойчивый амфотерный оксид, сильный окислитель.

Свойства соединений марганца (+6)

Соединения устойчивы лишь в сильнощелочной среде.

Свойства соединений марганца (+7)

Сильные окислители в кислой среде.

9.3. Железо и его соединения

Железо является вторым после алюминия металлом по распространенности в природе. Характерные степени окисления железа, электронные формулы соответствующих ионов, химические свойства и примеры соединений приведены в таблице.

Соединения железа (+8) малохарактерны.

Получение и свойства железа

4Fe + 3O2 + 2Н2O = 4FeO(OH)v (коррозия на воздухе)

Концентрированные серная и азотная кислоты пассивируют железо на холоду. При нагревании реакция идет.

Свойства соединений железа (+2)

Гидроксид железа(II) сразу окисляется кислородом воздуха.

Свойства соединений железа (+3)

Fe(OH)3v + NaOH ? не идет в разбавленном растворе

Свойства соединений железа (+6)

Феррат калия – окислитель.

9.4. Медь и ее соединения

Медь – мягкий красный металл, хорошо проводит теплоту и электрический ток.

Получение и свойства меди

Свойства соединений меди(I)

Свойства соединений меди(II)

Cu(OH)2v + NaOH ? не идет в растворе

Химия, Биология, подготовка к ГИА и ЕГЭ

Материал для задания 37 ЕГЭ (по-старому С2 ЕГЭ), для олимпиад, да и вообще для тех, кому нужны нормальные знания по химии

Автор статьи — Саид Лутфуллин

В статье приведены многие реакции, которые встречаются в ЕГЭ. Формулировки описания реакций тоже как в ЕГЭ, поэтому не удивляйтесь если встретите что-то вроде «…осадок растворяется в кислотах…», конечно же, он не растворяется, он реагирует с кислотой. Растворение – это немного другой процесс, но господа составители из ФИПИ со мной не согласны и упорно применяют в таких случаях именно этот термин.

Уравнения качественных реакций неорганической химии.

(кликните на название категории, чтобы перейти в соответствующий раздел)

I. Элементы IA-группы (щелочные металлы)

– легкие металлы, настолько пластичные, что их можно разрезать ножом. Из-за чрезвычайной активности, на воздухе легко окисляются (некоторые со взрывом), поэтому их хранят в керосине, кроме лития. Литий хранить в керосине невозможно из-за физических свойств. Этот металл легче керосина, поэтому всплывает в нем. Литий хранят в вазелине или еще в чем-нибудь таком инертном и вязком.

Почти все соли щелочных металлов растворимы в воде.

Поэтому обнаружение их катионов выпадением осадка невозможно. Для определения катионов металлов используют метод пирохимического анализа.

Этот метод основан на способности ионов металлов, входящих в состав летучих солей, окрашивать пламя горелки в определенный цвет.

1) Li +

Окрашивает пламя горелки в карминово-красный цвет

Помимо этого, литий – один единственный щелочной металл, катион которого можно обнаружить с помощью осадка. Катион лития с фосфат-ионом дает белый осадок:

Сокращенное ионное уравнение:

3Li + + PO4 3- → Li3PO4↓

2) Na +

Окрашивает пламя горелки в желтый цвет.

3) K +

Окрашивает пламя горелки в фиолетовый цвет.

4) Rb +

Окрашивает пламя горелки в розово-фиолетовый цвет.

5) Cs +

Окрашивает пламя горелки в голубовато-фиолетовый цвет.

II. Щелочноземельные металлы (подгруппа кальция)

– металлы серого цвета. Твердые, ножом не режутся. На воздухе ведут себя спокойно: покрываются оксидной пленкой.

Определить катионы щелочноземельных металлов можно как с помощью выпадения осадка, так и с помощью пирохимического метода:

1. Ca 2+

Образует белый осадок с карбонат-ионом : CaCl 2 + K 2 CO 3 → CaCO 3 ↓ + 2 KCl

Сокращенное ионное уравнение: Ca 2+ + CO 3 2- → CaCO 3

Образуется карбонат кальция – мел. Так же карбонат кальция – составная часть накипи. Иногда можно встретить формулировку: «…белый осадок, растворимый в кислотах с выделением газа (без цвета, вкуса, запаха)…». Имеется в виду реакция карбонатов с кислотами:

Катион кальция окрашивает пламя горелки в оранжево-красный цвет .

2. Sr 2+

Образует белый нерастворимый в кислотах осадок с сульфат-ионом : SrCl 2 + K 2 SO 4 → SrSO 4 ↓ + 2 KCl

Сокращенное ионное уравнение: Sr 2+ + SO 4 2- → SrSO 4

Окрашивает пламя горелки в темно-красный цвет .

3. Ba 2+

Образует белый нерастворимый в кислотах осадок с сульфат-ионом : BaCl 2 + K 2 SO 4 → BaSO 4 ↓ + 2 KCl

Сокращенное ионное уравнение: Ba 2+ + SO 4 2- → BaSO 4

Катионы бария окрашивают пламя горелки в зеленый цвет

4. Mg 2+

Определяется, как и кальций, карбонат-ионами .

Карбонат магния – белый осадок: Mg ( NO 3 ) 2 + K 2 CO 3 → MgCO 3 ↓ + 2 KNO 3

Сокращенное ионное уравнение: Mg 2+ + CO 3 2- → MgCO 3

III. Be 0 (Be 2+ ), Zn 0 (Zn 2+ ), Al 0 (Al 3+ )

эти три металла объединяют амфотерные свойства. Поэтому если в задании встречается следующая формулировка: «…металл, растворимый в раствор е щелочи…», «…металл, который растворяется и в щелочах, и кислотах…» или «…металл, растворяющийся в щелочи с выделением горючего газа, легче воздуха…» , то имеют в виду один из этих трех металлов.

Ионы этих металлов в растворах тоже определяют добавлением щелочи.

Выпадает белый студенистый осадок (гидроксид металла), который в избытке щелочи растворяется (гидроксиды алюминия, цинка и бериллия реагируют со щелочами, образуя растворимые гидроксоалюминаты, гидроксоцинкаты и гидроксобериллаты соответственно):

BeCl 2 + 2 KOH → Be ( OH ) 2 ↓ + 2 KCl

(образование осадка) сокращенное ионное уравнение:

Be 2+ + 2 OH — → Be ( OH ) 2 ↓ Be ( OH ) 2 + 2 KOH → K 2 [ Be ( OH ) 4 ] (растворение осадка)

ZnCl 2 + 2 KOH → Zn ( OH ) 2 ↓ + 2 KCl (образование осадка)

сокращенное ионное уравнение: Zn 2+ + 2 OH — → Zn ( OH ) 2

Zn ( OH ) 2 + 2 KOH → K 2 [ Zn ( OH ) 4 ] (растворение осадка)

AlCl 3 + 3 KOH → Al ( OH ) 3 ↓ + 3 KOH (образование осадка)

сокращенное ионное уравнение:

Al 3+ + 3 OH — → Al ( OH ) 3

Al ( OH ) 3 + KOH → K [ Al ( OH ) 4 ] (растворение осадка)

Оксиды этих металлов, как и гидроксиды, растворяются в кислотах и щелочах, рассмотрим на примере оксида алюминия:

У гидроксида цинка есть характерная особенность: он растворяется в NH 3 (водн.)

Ион Zn 2+ с S 2+ образует белый осадок . Который растворяется в кислотах с выделением газа с запахом тухлых яиц – сероводорода (про него подробнее ниже, в разделе сера):

ZnSO 4 + K 2 S → ZnS ↓ + K 2 SO 4 (образование осадка)

Сокращенное ионное уравнение:

ZnS + H 2 SO 4 → ZnSO 4 + H 2 S ↑ (растворение осадка с выделением сероводорода)

Медь – пластичный розовато-красный металл.

Хороший проводник электрического тока.

Не вытесняет из кислот водород.

Реагирует только с кислотами-окислителями (азотной и концентрированной серной):

Оксид меди – CuO – черный – основный.

Растворяется в кислотах, окрашивая раствор в голубой цвет: CuO + 2HCl → CuCl 2 + H 2 O

Cu 2+

Летучие соли меди окрашивают пламя горелки в зеленый цвет. Соединения меди имеют голубоватую окраску , это можно использовать как диагностический признак.

В растворе ионы меди можно обнаружить добавлением щелочи выпадает растворимый в кислотах, голубой осадок, который используется в нескольких качественных реакциях органической химии.

Сокращенное ионное уравнение:

Осадок Cu ( OH ) 2 растворяется в избытке NH 3 (водн.) образуя интенсивно синий раствор:

Если нагреть осадок Cu ( OH ) 2 , то он почернеет. Потому что гидроксид меди( II ) – нерастворимое основание и разлагается:

Голубой – это фирменный цвет соединений меди, и если в задании ЕГЭ написано про этот цвет, то 90% вероятности, что говорят про соединение меди.

Серебро – мягкий благородный металл. Цвет серебристый.

Оксид серебра Ag 2 O- черный – основный.

Ag +

Катион серебра с хлорид-ионом дает белый творожистый осадок : AgNO 3 + KCl → AgCl ↓ + KNO 3

сокращенное ионное уравнение: Ag + + Cl — → AgCl ↓

Осадок хлорида серебра (и остальные галогениды) , как и гидроксида меди, растворяется в NH 3 * H 2 O

Еще одна особенность серебра, которая позволяет определить его ионы в растворе, – это его гидроксид, который нестабилен и быстро разлагается в водном растворе.

При добавлении к раствору соли серебра щелочи , выпадает черный осадок оксида серебра :

AgNO 3 + KOH → KNO 3 + AgOH

можно (и грамотнее) записать сразу:

То есть при добавлении к соли серебра щелочи выпадает черный осадок . Осадок оксида серебра , как и галогениды этого металла, растворяются в NH 3 (водн.) :

[ Ag ( NH 3 ) 2 ] OH – гидроксид диамминсеребра( I ) известен как раствор Толленса.

Он используется в качественной реакции на альдегиды (реакция серебряного зеркала).

Оксид серебра как основный гидроксид растворяется в кислотах (само собой, в тех, с которыми серебро может образовать растворимую соль):

Железо – серебристо-белый пластичный металл.

Обладает магнитными свойствами.

Вытесняет из растворов кислот водород (кроме азотной). Обратите внимание, что при взаимодействии с кислотами-неокислителями, и слабыми окислителями железо приобретает степень окисления +2, а при взаимодействии с сильными окислителями оно приобретет степень окисления +3:

2 Fe + 3 Cl 2 ( t )→ 2 FeCl 3

Катион Fe 3+

При добавлении к раствору, содержащему ионы трехвалентного железа , выпадает бурый осадок гидроксида железа ( III ):

Сокращенное ионное уравнение:

Оксид и гидроксид железа( III ) – амфотерные соединения, поэтому они растворяются в щелочах и кислотах:

Катион Fe 2+ с гидроксид ионом тоже образует осадок, только зеленоватого цвета .

Сокращенное ионное уравнение: Fe 2+ + 2 OH — → Fe ( OH ) 2

Оксид и гидроксид железа( II ) – основные.

В щелочах не растворяются. Осадок со временем буреет (меняет степень окисления с 2+ на +3):

На ионы железы есть еще две похожие канонические качественные реакции. Образуется одно и то же вещество: берлинская лазурь, или турнбулева синь.

Раньше считали, что это два разных вещества, в книжках писали: «не путайте», а потом оказалось, что это не так.

Ион Fe 2+ определяется добавлением красной кровяной соли (гексацианоферрат (III) калия):

4Fe 2+ + 3 [Fe III (CN) 6 ] 3− → Fe III 4 [Fe II (CN) 6 ] 3

Ион Fe 3+ определяется добавлением желтой кровяной соли (гексацианоферрат (II) калия):

4Fe 3+ + 3 [Fe II (CN) 6 ] 4− → Fe III 4 [Fe II (CN) 6 ] 3

Не очень активный, так как покрывается оксидной пленкой.

Название элемента переводится с греческого «цвет», потому что соединения хрома, как правило, окрашены. Простое вещество хром ведет себя как типичный металл, со щелочами не реагирует.

Реагирует с кислотами. Кислоты-неокислители ( в том числе разбавленная серная кислота) и вообще слабые окислители переводят хром в степень окисления +2:

Cr + S (t)→ CrS C окислителями приобретает степень окисления +3:

В общем тут все как у железа. Правило простое и вполне логичное.

С азотной и концентрированной серной кислотой не реагирует, так как пассивируется.

Проявляет несколько устойчивых степеней окисления.

Степень окисления +2

В этих соединениях хром проявляет сильные восстановительные свойства.

Оксид хрома ( II ) – CrO (основный) – черный.

Растворы солей Cr 2+ голубые . Если обработать черный оксид хрома( II ) соляной кислотой, образуется голубой раствор :

Если к раствору соли двухвалентного хрома добавить щелочь выпадет желтый осадок гидроксида хрома( II ), (осадок на воздухе зеленеет, об этом чуть позже):

Сокращенное ионное уравнение:

Гидроксид хрома( II ) основный,

поэтому он не растворяется в щелочах, зато прекрасно растворяется в кислотах, образуя все тот же синий раствор:

Степень окисления +3.

Оксид хрома( III ) – Cr 2 O 3 (амфотерный) – зеленый .

Как амфотерный оксид Cr 2 O 3 растворяется в кислотах и щелочах:

Соли трехвалентного хрома могут быть разного цвета (от фиолетового до темно-зеленого). Поэтому визуально опознать соль трехвалентного хрома со 100% уверенностью нельзя. Наличие катионов Cr 3+ в растворе определяется добавлением щелочи .

Cr 3+ с гидроксид-ионами образует зеленый осадок гидроксида хрома( III ) :

Сокращенное ионное уравнение:

Cr 3+ + 3 OH — → Cr ( OH ) 3

Выпавший осадок – гидроксид хрома( III ) амфотерный, поэтому растворяется в кислотах и щелочах, с образованием зеленых солей – гидроксохроматов :

Если оставить на некоторое время на воздухе желтый осадок гидроксида хрома( II ) , то он позеленеет . Cr +2 окисляется до Cr +3 ,

образуется зеленый гидроксид хрома( III ) :

Если подействовать на соединение хрома (+3) сильным окислителем, то произойдет смена окраски. Она станет желтой. Хром окислится до +6

Степень окисления +6.

В этих соединениях хром проявляет сильные окислительные свойства.

Оксид хрома( VI ) – CrO 3 (кислотный) – красный .

Окисляет многие органические соединения. Этот процесс описывают как «растворение [оксида хрома VI ] в спиртах (альдегидах, эфирах)»

Оксид кислотный, поэтому в кислотах не растворяется, растворяется в щелочах, с образованием хроматов:

Хроматы – это соли хромовой кислоты ( H 2 CrO 4 ). Они желтого цвета. Кроме хромовой (хром +6) образует дихромовую кислоту ( H 2 Cr 2 O 7 ), ее соли – бихроматы (дихроматы) оранжевые .

Хроматы и бихроматы переходят друг в друга при изменении кислотности среды (с щелочной на кислую и наоборот):

То есть в кислой среде более устойчивы бихроматы, в щелочной хроматы.

Хроматы и бихроматы так же являются сильнейшими окислителями.

При добавлении к раствору хромата катионов бария выпадает желтый осадок хромата бария BaCrO 4 :

Сокращенное ионное уравнение: Ва 2+ + СrO 4 2- → BaCr O 4

Полученный хромат бария растворяется в сильных неорганических кислотах. Потому что, как уже говорилось ранее, в кислой среде хроматы не устойчивы и переходят в бихроматы:

2 BaCrO 4 + 2 H + → 2 Ba 2+ + Cr 2 O 7 2- + H 2 O

Компактная таблица цветов соединения хрома, приведена у нас в статье “Хром”:

Как и хром малоактивен за счет пассивации.

Реагируя с кислотами (даже с кислотами-окислителями), окисляется до +2:
Mn + HCl → MnCl2 + H2↑
Mn + 2H2SO4(конц.) → MnSO4 + SO2↑ + 2H2O

В более агрессивных средах с кислотами-окислителями процесс окисления идет глубже: до +4 и +7.

Кислородом окисляется до +4 (там конечно есть другие варианты с другими температурами, но мы их рассматривать не будем):

Галогены (кроме фтора) до +2:

Mn + Cl2 (t)→ MnCl2

Проявляет различные степени окисления.

Степень окисления 2+.

Степень окисления 2+. Оксид марганца( II ) – MnO (основный) зеленого цвета .

На воздухе очень быстро окисляется до темно-бурого MnO 2 :

Соли, содержащие катион Mn 2+ как правило имеют бледный светло-розовый цвет .

Катион Mn 2+ обнаруживают гидроксид-ионами, с которыми он образует розовато-белый осадок гидроксида марганца( II ), который окисляется на воздухе и буреет (превращается в бурый оксид марганца( II )):

MnCl 2 + 2 KOH → Mn ( OH ) 2 ↓ + 2 KCl

Сокращенное ионное уравнение:

Mn 2+ + 2 OH — → Mn ( OH ) 2

Степень окисления 4+. Оксид марганца( IV ) – MnO 2 (амфотерный) т емно-бурый – одно из самых устойчивых и встречаемых соединений марганца.

Mn +4 O 2 + 4 HCl → Mn +2 Cl 2 + Cl 2 ↑ + 2 H 2 O

Степень окисления +6. Оксид марганца( VII ) – Mn 2 O 7 (кислотный) зелено-бурая жидкость.

Очень не стабильное и агрессивное вещество, может спонтанно взорваться. Сильный окислитель.

Оксиду марганца( VII ) соответствует марганцевая кислота HMnO 4 .

Она существует только в водном растворе, который как и растворы ее солей (перманганатов) имеет фиолетово-малиновую окраску .

Перманганаты так же являются сильными окислителями.

В ЕГЭ часто встречаются реакции окисления органических веществ перманганатом калия – это классика:

Приведенное выше уравнение – это качественная реакция на кратные связи – обесцвечивание раствора перманганата и выпадение темно-бурого осадка.

Это весьма необычное вещество. Может быть, трудно представить, но среди всех простых веществ есть только два, которые при нормальных условиях находятся в жидком агрегатном состоянии. Это бром и ртуть.

В нормальных условиях ртутьсеребристо-белая жидкость, с высокой плотностью, поэтому она тонет в воде.

Сама по себе металлическая ртуть вреда не представляет, а вот ее пары и соединения (в особенности органические) чрезвычайно ядовиты.

Качественная реакция на Hg 2+ : при добавлении к раствору соли ртути( II ) щелочи выпадает оранжевый осадок ОКСИДА ртути , гидроксид не образуется, его не существует:

NH 4 + – ион аммония

Если добавить к раствору аммония (иногда нужно нагреть) щелочь образуется нестабильный гидроксид аммония, который разлагается. В ыделяется аммиак – газ с реким запахом (запах нашатырного спирта) :

Можно записать сразу: NH 4 NO 3 + KOH → NH 3 ↑ + H 2 O + KNO 3

Сокращенное ионное уравнение: NH 4 + + NO 3 — → NH 3 ↑ + H 2 O

Выделившийся газ (аммиак) может быть поглощен растворами кислот, с образованием солей аммония: NH 3 + HCl → NH 4 Cl

H +

– частица, в которую превращается атом водорода, отдав электрон.

Получается протон, понятное дело, такая частица в воде не существует.

Частица эта прикреплена по донорно-акцепторному механизму к атому кислорода в молекуле воды, получается ион гидроксония: H 3 O + .

О чем свидетельствует наличие в растворе такого иона?

Конечно же о том, что среда раствора кислая.

А для определения кислотности используют индикаторы.

Рассмотрим несколько индикаторов: лакмус фиолетовый , метиловый оранжевый , фенолфталеин .

Лучше учить названия индикаторов именно так, ведь в таких названиях заключена информации о цвете индикатора в нейтральной среде:

метиловый оранжевый – оранжевый,

ИндикаторЦвет в кислой среде pHЦвет в нейтральной среде pH = 7 Цвет в щелочной среде pH > 7
Лакмус фиолетовыйКрасныйФиолетовыйСиний
Метиловый оранжевыйКрасныйОранжевыйЖелтый
ФенолфталеинНет (бесцветный)Нет (бесцветный)Малиновый

Существует несколько мнемонических правил для запоминания цветов индикаторов:

Фенолфталеиновый в щелочах малиновый, но несмотря на это в кислотах он без цвета.

В кислотах лакмус красный – цвет такой прекрасный, а в щелочах он синий как январский иней, а в нейтральной среде фиолетовый, как нигде. (Этот стишок сочинили когда-то мы с товарищем. Хоть он не совсем складный и мы так и не можем объяснить, с чего бы это иней, который обычно белый, в январе вдруг станет синим, стишок как-то по-особенному запал в мою память, всегда им пользуюсь)

Кислота – начинается на букву К, как и слово «кислый» — помогает вспомнить цвет лакмуса и метилоранжа в кислотах.

– элементы VIIA -группы( F , Cl , Br , I ), типичные неметаллы.

Пойдем по порядку:

Фтор – F 2 – желтый газ с легким зеленым отливом. Самый электроотрицательный неметалл, поэтому с кислородом образует не оксид фтора, а фторид кислорода: OF 2 степень окисления кислорода в нем равна +2. Чрезвычайно активное вещество, реагирует со всем, с чем не лень. И большинство реакций протекает бурно, взрывообразно.

Фторид-ионы ( F — ) в растворе определяются добавлением катионов кальция ( Ca 2+ ), наблюдается выпадение белого осадка :

2 KF + CaCl 2 → 2 KCl + CaF 2

Сокращенное ионное уравнение: Ca 2+ + 2 F — → CaF 2

  1. Хлор – Cl 2 – зеленый газ, с характерным резким запахом, сильный яд, тяжелее воздуха (при химической атаке стелется по земле):

Хлорид-ионы ( Cl — ) в растворе определяются добавлением катионов серебра ( Ag + ), наблюдается выпадение белого творожистого осадка (об этой реакции говорилось ранее в разделе серебро):

KCl + AgNO 3 → AgCl ↓ + KNO 3

Сокращенное ионное уравнение: Ag + + Cl — → AgCl ↓

  1. Бром – Br 2 – красно-бурая летучая жидкость, имеющая очень резкий неприятный запах.

Бромд-ионы ( Br — ) в растворе определяются добавлением катионов серебра ( Ag + ), наблюдается выпадение слегка желтоватого осадка :

KBr + AgNO 3 → AgBr ↓ + KNO 3

Сокращенное ионное уравнение: Ag + + Br — → AgBr ↓

  1. Иод – I 2 – летучие черно-серые с фиолетовым отливом кристаллы. Пары фиолетовые, имеют характерный запах.

Иодид-ионы ( I — ) в растворе определяются добавлением катионов серебра ( Ag + ), наблюдается выпадение желтоватого осадка (цвет интенсивнее, чем у бромида серебра) :

Сокращенное ионное уравнение: Ag + + I — → AgI ↓

Осадки-галогениды не растворяются в разбавленных кислотах.

Простое вещество сера – хрупкие желтые кристаллы.

Сера может проявлять различные степени окисления:

Степень окисления -2:

в сульфИД-ионе ( S 2- ) и гидросульфИД-ионе ( HS — ).

СульфИДы (и гидросульфИДы) – это соли сероводородной кислоты, которая является слабым электролитом. Поэтому сильные кислоты вытесняют ее из растворов солей. Выделяется H 2 S – сероводород, газ с неприятным запахом тухлых яиц :

K 2 S + 2HCl → 2KCl + H 2 S↑

Сокращенное ионное уравнение: 2 H + + S 2- → H 2 S ↑

Выделившийся газ ( H 2 S ) на воздухе сгорает синим пламенем (не в смысле, что выделился и сразу сгорел, а если начать сжигать):

Так же сероводород ( H 2 S ) может быть поглощен растворами щелочей: H 2 S + 2 NaOH →

Сероводород является хорошим восстановителем, так как сера в нем в низшей степени окисления.

Еще одна особенность ионов S

2- позволяет легко определить их в растворе. Ионы S 2- образуют осадки со многими тяжелыми металлами:

  • Классическая реакция с ионами Pb2+ . Образуется черный осадок сульфида серы :
  • С ионами Cu 2+ , Fe 2+ , Ni 2+ , Cu 2+ , Pb 2+ , Hg 2+ , Ag + и ионами многих других металлов тоже образуются осадки черного цвета .
  • С ионом Zn 2+ образуется белый осадок (один из немногих нечерных нерастворимых сульфидов):

Так как сера в сульфид-ионе в низшей степени окисления, она может окислиться. При действии сильных окислителей на сульфиды они окисляются до сульфатов (как правило). Классическая ЕГЭ-шная реакция, цитата из С2: «…черный осадок побелел после обработки его пероксидом водорода… ». Речь идет о
черном осадке сульфида свинца ( PbS ). Пероксид водорода H 2 O 2 (сильный окислитель) превращает черный сульфид свинца в белый (тоже нерастворимый) сульфат свинца ( PbSO 4 ):

Степень окисления + 4:

встречается в оксиде серы ( IV ) (сернистом газе – SO 2 ), в соответствующей этому оксиду кислоте – сернистой ( H 2 SO 3 , существующей только в растворе) и в солях сернистой кислоты – сульфИТах и гидросульфИТах.

Сернистый газ ( SO 2 ) – бесцветный газ с резким запахом (по легендам – запахом ада). Его можно почувствовать чиркнув спичку. Образуется при сжигании серы, сероводородов, сульфидов, серосодержащих органических веществ. Классическое школьное уточнение: « обесцвечивает раствор фуксина и фиолетовые чернила », при этом совсем не обязательно знать, что такое фуксин, и какие реакции протекают. Просто хорошо бы запомнить эту формулировку.

Так как является кислотным оксидом, реагирует с растворами щелочей. (формулировка из задания ЕГЭ: «…выделившийся газ с резким запахом был поглощен раствором щелочи…» ). Образуются соли сернистой кислоты – сульфиты:

СульфИТ-ионы и гидросульфИТ-ионы в растворе можно обнаружить добавлением сильной кислоты. При этом из раствора сульфита (гидросульфита) вытесняется сернистая кислота: H 2 SO 3 , которая не стабильная, поэтому быстро разлагается на воду и соответствующий оксид ( SO 2 ). То есть, если совсем коротко: при действии на сульфиты и гидросульфиты кислот выделяется SO 2 – газ с резким запахом (обесцвечивающий раствор фуксина и фиолетовые чернила):

Можно (и грамотнее) записать сразу:

Степень окисления +6

встречается в серном ангидриде (оксиде серы( VI ) – SO 3 ), в соответствующей ему серной кислоте ( H 2 SO 4 ) и в ее солях, сульфАТах.

Серный ангидрид ( SO 3 ) и серная кислота( H 2 SO 4 ) содержат серу в высшей степени окисления, поэтому являются сильными окислителями.

Сульфаты в растворе определяются добавлением катионов бария ( Ba 2+ ). Сульфат-ион с катионом бария образует белый осадок ( нерастворимый в кислотах ):

Сокращенное ионное уравнение: Ва 2+ + S O 4 2- → BaS O 4

CO 3 2-

карбонат-ион и HCO 3 — – гидрокарбонат-ион

являются анионом слабой, нестабильной, существующей только в растворе, угольной кислоты. Поэтому она легко вытесняется сильными кислотами из растворов солей (карбонатов и гидрокарбонатов).

Вытесняется и тут же распадается на воду и углекислый газ.

При действии кислот на карбонаты выделяется бесцветный газ без вкуса и запаха :

Можно (и грамотнее) записать сразу: K 2 CO 3 + 2 HCl → 2 KCl + CO 2 ↑ + H 2 O

Эта качественная реакция вам хорошо известна, вы наверняка проводили ее у себя дома. Добавим уксус к соде, и как раз будет выделяться газ, в чем можно убедиться если поднести спичку, она погаснет, так как CO 2 не поддерживает горения:

Выделившийся углекислый газ может быть поглощен раствором щелочи:

В связи со способностью поглощаться щелочами для описания углекислого газа часто встречается следующая формулировка: «… газ, при пропускании его через известковую воду, вызвал ее помутнение… ». Известковая вода – это профильтрованный раствор гидроксида кальция (гидроксид кальция полностью не растворяется в воде, образуется взвесь, и чтобы получить прозрачный раствор – его фильтруют, для очищения от не растворившихся частиц гидроксида кальция). При взаимодействии гидроксида кальция с углекислым газом образуется нерастворимый карбонат кальция, который и обеспечивает мутность:

PO 4 3-

– анион ортофосфорной кислоты (H 3 PO 4 ). В растворе его можно определить добавлением катионов серебра , при этом выпадает интенсивно-желтый осадок :

Сокращенное ионное уравнение: 3 Ag + + PO 4 3- → Ag 3 PO 4

SiO 3 2-

– анион кремниевой кислоты ( H 2 SiO 3 ) , которая являясь слабым электролитом, вытесняется из растворов ее солей. Кроме того, кремниевая кислота малорастврима в воде, поэтому в момент вытеснения ее из раствора соли, появляется гелеобразный осадок – это и будет H 2 SiO 3 :

Кремниевая кислота настолько слабая, что вытесняется даже угольной:

– оксид азота ( VI ).

Ядовитый газ с неприятным запахом бурого цвета.

В ЕГЭ его обычно именно так и обзывают – бурый газ .

Химически очень активное вещество:

  • при взаимодействии не очень активных металлов с HNO 3 концентрированной;
  • при разложении нитратов этих металлов.

В реакции с водой диспропорционируется, образуя азотную и азотистую кислоты:

Похожая реакция диспропорционирования происходит при растворении NO 2 в щелочах (образуются не кислоты, а соли этих кислот, нитраты и нитриты соответственно):

В присутствии избытка кислорода реакция идет без образования азотистой кислоты (диспропорционирования не происходит):

OH —

Наличие в растворе ионов OH — указывает на щелочную реакцию среды ( pH >7).

Определить pH можно с помощью индикаторов.

Окраски индикаторов в разных средах указаны в пункте про ион H + . Щелочную среду имеют не только щелочи, но и растворы аммиака и аминов, растворы солей, образованных сильными основаниями и слабыми кислотами.

Если нужно определить щелочь, то к раствору надо добавить соль металла, образующего слабое основание. Щелочь с такой солью даст осадок гидроксида металла:

CuCl 2 + 2NaOH → Cu(OH) 2 ↓ + 2NaCl

Как решать химические уравнения — схемы и примеры решения для разных реакций

Основные термины и понятия

Составление уравнений химических реакций невозможно без знания определённых обозначений, показывающих, как проходит реакция. Объединение атомов, имеющих одинаковый ядерный заряд, называют химическим элементом. Ядро атома состоит из протонов и нейтронов. Первые совпадают с числом атомного номера элемента, а значение вторых может варьироваться. Простейшими веществами называют элементы, состоящие из однотипных атомов.

Любой химический элемент описывается с помощью символов, условно обозначающих структуру веществ. Формулы являются неотъемлемой частью языка науки. Именно на их основе составляют уравнения и схемы. По своей сути они отражают количественный и качественный состав элементов. Например, запись HNO3 сообщает, что в соединении содержится одна молекула азотной кислоты, а оно само состоит из водорода, азота и кислорода. При этом в состав одного моля азотной кислоты входит по одному атому водорода и азота и 3 кислорода.

Символика элементов, условное обозначение, представляет собой химический язык. В значке содержится информация о названии, массовом числе и порядковом номере. Международное обозначение принято, согласно периодической таблице Менделеева, разработанной в начале 1870 года.

Взаимодействующие между собой вещества называются реагентами, а образующиеся в процессе реакции — продуктами. Составление и решение химических уравнений фактически сводится к определению результатов реакций, поэтому просто знать формулы веществ мало, нужно ещё уметь подбирать коэффициенты. Располагаются они перед формулой и указывают на количество молекул или атомов, принимающих участие в процессе. С правой стороны от химического вещества ставится индекс, указывающий место элемента в системе.

Записывают уравнения в виде цепочки, в которой указываются все стадии превращения вещества начиная с левой части. Вначале пишут формулы элементов в исходном состоянии, а затем последовательно их преобразование.

Виды химических реакций

Химические явления характеризуются тем, что из двух и более элементов образуются новые вещества. Уравнения описывают эти процессы. Впервые с объяснениями протекания реакций знакомят в восьмом классе средней образовательной школы на уроках неорганической химии. Ученикам демонстрируют опыты, в которых явно наблюдаются различия в протекании реакций.

Всего существует 4 типа химического взаимодействия веществ:

  1. Соединение. В реакцию могут вступать 2 простых вещества: металл и неметалл или неметалл и неметалл. Например, алюминий с серой образуют сульфид алюминия. Кислород, взаимодействуя с водородом, превращается в воду. Объединятся могут 2 оксида с растворимым основанием, как оксид кальция с водой: CaO + H2O = Ca (OH)2 или основной оксид с кислотным: CaO + SO3 = CaSO4.
  2. Разложение. Это процесс обратный реакции соединения: было одно вещество, а стало несколько. Например, при пропускании электрического тока через воду получается водород и кислород, а при нагревании известняка 2 оксида: CaCO3 = CaO + CO2.
  3. Замещение. В реакцию вступают 2 элемента. Один из них простой, а второй сложный. В итоге образуются 2 новых соединения, при котором атом простого вещества заменяет сложный, как бы вытесняя его. Условие протекания процесса: простое вещество должно быть более активным, чем сложное. Например, Zn + 2HCl = ZnCl2 + H2. Величину активности можно узнать из таблицы ряда электрохимических напряжений.
  4. Обмен. В этом случае между собой реагируют 2 сложных элемента, обменивающиеся своими составными частями. Условием осуществления такого типа реакции является обязательное образование воды, газа или осадка. Например, CuO + 2HCl = CuCl2 + H2O. Чтобы узнать, смогут ли вещества прореагировать, используют таблицу растворимости.

Основными признаками химических реакций является изменение цвета, выделение газа или образование осадка. Различают их по числу веществ, вступивших в реакцию и образовавшихся продуктов. Правильное определение типа реакции особо важно при составлении химических уравнений, а также определения свойств и возможностей веществ.

Окислительно-восстановительный процесс

Составление большинства реакций сводится к подбору коэффициентов. Но при этом могут возникнуть трудности с установлением равновесия, согласно закону сохранения массы веществ. Чаще всего такая ситуация возникает при решении заданий, связанных с расстановкой количества атомов в уравнениях окислительно-восстановительных процессов.

Под ними принято понимать превращения, протекающие с изменением степени окисления элементов. При окислении происходит процесс передачи атомом электронов, сопровождающийся приобретением им положительного заряда или ионом, после чего он становится нейтральным. При этом также происходит процесс восстановления, связанный с присоединением элементарных частиц атомом.

Для составления уравнений необходимо определить восстановитель, окислитель и число участвующих в реакции электронов. Коэффициенты же подбирают с помощью метода электронно-ионного баланса (полуреакций). Его суть состоит в установлении равенства путём уравнивания количества электронов, отдаваемых одним элементом и принимаемым другим.

Классический алгоритм

В основе решения задач этим методом — закон сохранения массы. Согласно ему, совокупная масса элементов до реакции и после остаётся неизменной. Другими словами, происходит перегруппировка частиц. Если рассматривать решение химического уравнения поэтапно, оно будет состоять из трёх шагов:

  1. Написания формул элементов, вступающих в реакцию с левой стороны.
  2. Указания справа формулы образующихся веществ.
  3. Уравнивания числа атомов с добавлением коэффициентов.

Перед тем как переходить к сложным соединениям, лучше всего потренироваться на простых. Например, нужно составить уравнение, описывающее взаимодействие двух сложных веществ: гидроксида натрия и серной кислоты. При таком соединении образуется сульфат натрия и вода.

Согласно алгоритму, в левой части уравнения необходимо записать реагенты, а в правой продукты реакции: NaOH + H2SO 4 → Na 2SO4 + H2O. Теперь следует уравнять коэффициенты. Начинают с первого элемента. В примере это натрий. В правой части содержится 2 его атома, а в левой один, поэтому необходимо возле реагента поставить цифру 2. Затем нужно уровнять водород. В результате получится выражение: 2 NaOH + H2SO 4 → Na2 SO4 +2H2O.

Ещё одним наглядным примером является процесс реакции тринитротолуола с кислородом. При их взаимодействии образуется: C7H5N3O6 + O2 → CO2 + H2O + N2. Исходя из того, что слева находится нечётное число атомов H и N, а справа чётное, нужно их уравнять: 2C7H5N3O6 + O2 → CO2 + H2O + N2.

Теперь становится понятным, что 14 и 10 атомов углерода и водорода должны образовать 14 долей диоксида и 5 молекул воды. При этом 6 атомов азота превратятся в 3. Итоговое уравнение будет выглядеть как 2C7H5N3O6 + 10,5O2 → 14CO2 + 5H2O + 3N2.

Перед тем как начинать тренировку по составлению уравнений, следует научиться расставлять валентность. Это параметр, равный числу соединившихся атомов каждого элемента. Фактически это способность к соединению. Например, в формуле NH3 валентность атома азота равна 3, а водорода 1.

Решение методом полуреакций

Алгоритм для решения примеров химических уравнений проще рассмотреть на конкретном задании. Пускай необходимо описать процесс окисления пирита азотной кислоты с малой концентрацией: FeS2 + HNO3. Решать этот пример необходимо в следующей последовательности:

  1. Определить продукты реакции. Так как кислота является сильным окислителем, сера получит максимальную степень оксидации S6+, а железо Fe3+. HNO3 может восстановиться до одного из двух состояний NO2 или NO.
  2. Исходя из состава ионов и правила, что вещества, переходящие в газовую форму или плохо растворимые, записываются в молекулярном виде, верным будет записать: FeS2 — Fe3+ + 2SO2−4. Гидролизом можно пренебречь.
  3. В записи уравнивают кислород. Для этого в левую часть добавляют 8 молекул воды, а в правую 16 ионов водорода: FeS2 + 8H20 — Fe3+ + 2SO2−4 + 16H+. Так как заряда в левой части нет, а в правой он равный +15, то серное железо должно будет отдать 15 электронов. Значит, уравнение примет вид: FeS2 + 8H20 — 15e → Fe3+ + 2SO2−4 + 16H+.
  4. Теперь переходят к реакции восстановления нитрата иона: NO-3 →NO. Для её составления нужно отнять у оксида азота 2 атома кислорода. Делают это путём прибавления к левой части 4 ионов водорода, а правой — 2 молекул воды. В итоге получится: NO-3 + 4H+ → NO + 2H2O.
  5. Полученную формулу уравнивают добавлением к левой части 3 электронов: NO-3 + 4H+ 3e → NO + 2H2O.
  6. Объединяют найденные выражения и записывают результат: FeS2 + 8H20 + 5NO-3 + 20H+ → Fe3+ + 2SO2−4 + 16H+ + 5NO + 10H2O.

Уравнение можно сократить на 16H + и 8H2O. В итоге получится сокращённое выражение окислительно-восстановительной реакции: FeS2 + 5NO — 3 + 4 H + = Fe3 + + 2SO 2- 4 + 5NO + 2H2O.

  • Добавив в обе части нужное количество ионов, записывают молекулярное уравнение: FeS2 + 8HNO3 = Fe (NO 3) 3 + 2H2SO4 + 5NO + 2H2O.
  • Такой алгоритм считается классическим, но для упрощения понимания лучше использовать способ электронного баланса. Процесс восстановления переписывают как N5+ + 3e → N2+. Степень же окисления составить сложнее. Сере нужно приписать степень 2+ и учесть, что на 1 атом железа приходится 2 атома серы: FeS2 → Fe3++ 2S6+. Запись общего баланса будет выглядеть: FeS2 + 5N5+ = Fe3+ + 2S6+ + 5N2+.

    Пять молекул потратятся на окисление серного железа, а ещё 3 на образование Fe (NO3)3. После уравнения двух сторон запись реакции примет вид, аналогичный полученному с использованием предыдущего метода.

    Использование онлайн-расчёта

    Простые уравнения решать самостоятельно довольно просто. Но состоящие из сложных веществ могут вызвать трудности даже у опытных химиков. Чтобы получить точную формулу и не подбирать вручную коэффициенты, можно воспользоваться онлайн-калькуляторами. При этом их использовать сможет даже пользователь, не особо разбирающийся в науке.

    Чтобы расстановка коэффициентов в химических уравнениях онлайн происходила автоматически, нужно лишь подключение к интернету и исходные данные. Система самостоятельно вычислит продукты реакции и уравняет обе стороны формулы. Интересной особенностью таких сайтов является не только быстрый и правильный расчёт, но и описание правил с алгоритмами, по которому выполняются действия.

    После загрузки калькулятора в веб-обозревателе единственное, что требуется от пользователя — правильно ввести реагенты в специальные формы латинскими буквами и нажать кнопку «Уравнять». Иногда возникает ситуация, когда запись сделана верно, но коэффициенты не расставляются. Это происходит, если суммы в уравнении могут быть подсчитаны разными способами. Характерно это для реакций окисления. В таком случае нужно заменить фрагменты молекул на любой произвольный символ. Таким способом можно не только рассчитать непонятное уравнение, но и выполнить проверку своих вычислений.


    источники:

    http://distant-lessons.ru/uravneniya-kachestvennyx-reakcij.html

    http://nauka.club/khimiya/khimicheskie-uravneniya.html