Уравнения реакций катионов молекулярные и ионные уравнения

Частные реакции катионов первой аналитической группы

При выполнении частных реакций или проведении анализа раствора записи удобнее вести на развернутых ли­стах тетради в следующем виде:

Читайте также:
  1. III РАСШИРЕНИЕ ГРУППЫ И РАЗВИТИЕ ИНДИВИДУАЛЬНОСТИ
  2. III.2.2) Основные группы и виды преступлений.
  3. IV. По характеру ответной реакции, в зависимости от того, какие органы в ней участвуют
  4. Nbsp; 7 Определение реакций опор для группы Ассура
  5. Quot;Крестьянский вопрос» в первой половине XIX века.
  6. А) для определения уровня принятия решения в случае, когда другие компании группы не кредитуются в Сбербанке
  7. А. Образование в первой половине XIX в.
  8. Абсолютная монархия в первой четверти XVIII в.
  9. Агония группы
  10. Анализ смеси катионов второй аналитической группы
ИонРеагентУсловия проведения реакцииУравнение реакции в молекулярном и ионном видеВнешний эффект реакцииВывод

Реакции обнаружения катиона калия К +

1. Гидротартрат натрия NaHC4H4O6,или винная кис­лота,в присутствии ацетата натрия при достаточной кон­центрации ионов калия К + в растворе дает белый кристал­лический осадок гидротартрата калия:

Осадок растворяется в сильных кислотах и щелочах, поэтому реакцию проводят в нейтральной или слабокис­лой средах:

Реакцию следует проводить при охлаждении под стру­ей водопроводной воды, так как растворимость осадка гидротартрата калия КНС4Н4О6 повышается при увеличе­нии температуры.

Для ускорения выпадения осадка стенки пробирки по­тирают стеклянной палочкой для образования центров кристаллизации.

Реакция протекает при больших концентрациях ионов калия К + и является малочувствительной. Ионы аммония NH + 4 мешают определению ионов калия К + из-за того, что тоже дают белый кристаллический осадок с этими реаген­тами и поэтому соли аммония предварительно разлагают при нагревании.

Реакция является фармакопейной.

2. Гексанитрокобальтат (III) натрия Na3[Co(NO2)6] в нейтральном или слабокислом растворе с ионом калия К + дает желтый кристаллический осадок гексанитрокобальтата (III) калия-натрия:

В щелочной среде реакцию обнаружения К + проводить нельзя, так как в этой среде гексанитрокобальтат (III) на­трия разлагается с образованием гидроксида кобальта (III) бурого цвета:

В сильных кислотах осадок K2Na[Co(NO2)6] растворя­ется с образованием нестойкой кислоты гексанитрокобальтата (III) водорода H3[Co(NO2)6].

Реакцию обнаружения ионов калия следует проводить в отсутствии ионов NH4 , так как последние дают аналогич­ный осадок с Na3[Co(NO2)6]. Рассматриваемая реакция об­наружения иона калия более чувствительна, чем реакция с гидротартратом натрия и является также фармакопейной.

3. Окрашивание пламени. При выполнении этой реак­ции платиновую проволочку, впаянную в стеклянную па­лочку, смачивают хлороводородной кислотой и вносят в бесцветное пламя горелки. Прокаливают до тех пор, пока окрашивание пламени не прекратится. Затем раскален­ной проволокой касаются мелкого порошка или опускают ее в раствор соли калия и снова вносят в бесцветное пламя горелки. Если в образце или растворе присутствуют ионы калия, то пламя горелки окрашивается в фиолетовый цвет. Присутствие ничтожных следов натрия, окрашива­ющего пламя в желтый цвет, маскирует окраску.

Эта реакция используется при анализе фармацевтиче­ских препаратов.

Реакции обнаружения катиона натрия Na +

1. Гексагидроксостибиат калия K[Sb(OH)6] образует с ионом натрия белый кристаллический осадок гексагид­роксостибиат (V) натрия:

Обнаружение иона Na + с помощью гексагидроксостибиата (V) калия проводят в нейтральном или слабощелоч­ном растворе, так как кислоты разлагают реагент:

образуя белый аморфный осадок метасурьмяной кислоты. Щелочи растворяют осадок Na[Sb(OH)6] с образованием хорошо растворимой средней соли:

Соли аммония, дающие в результате гидролиза кислую реакцию среды, также разлагают исходный реактив с об­разованием метасурьмяной кислоты. Поэтому добиваются отсутствия в растворе ионов NH + 4 до определения в нем ионов К + .

Для образования центров кристаллизации и скорейше­го выпадения осадка гексагидроксостибиата (V) натрия реакцию проводят при охлаждении и потирают стенки пробирки стеклянной палочкой.

2. Микрокристаллоскопическая реакция. Ацетат уранила UO2(CH3COO)2 образует в уксуснокислой среде с солями натрия желтоватые кристаллы уранилацетата на­трия Na[(UO2)(CH3COO)3]:

При выполнении реакции раствор соли натрия выпари­вают досуха и обрабатывают ацетатом уранила. Выпав­шие кристаллы имеют форму желтоватых тетраэдров (или октаэдров) под микроскопом ( рис. 8.1).

Рис. 8.1. Кристаллы уранилацетата натрия

Реакция используется в фармакопее.

3. Окрашивание пламени. Соли натрия окрашивают бесцветное пламя горелки в желтый цвет. Реакция очень характерна и является фармакопейной.

Установить присутствие натрия в исследуемом вещест­ве по окрашиванию бесцветного пламени можно только тогда, когда желтая окраска пламени сохраняется 25-30 с.

Реакции обнаружения катиона аммония NH + 4

1. Щелочи NaOH и КОН разрушают аммонийные соли с выделением аммиака:

Выделяющийся аммиак можно обнаружить с помощью влажной красной или фиолетовой лакмусовой бумажки. Образующиеся по реакции

гидроксид-ионы ОН — изменяют окраску лакмуса в синий цвет. Подобную реакцию можно провести в газовой каме­ре (см. рис. 7.8). При большой концентрации выделяюще­гося аммиака его можно обнаружить и по запаху. Реакция фармакопейная.

2. Реактив Несслера (смесь K2[HgI4] и КОН). Этот реак­тив дает с аммонийными солями красно-бурый осадок:

При очень малых количествах солей аммония вместо осадка образуется желтый раствор; при большом их коли­честве — осадок растворяется. Реакция очень чувствитель­на. Ионы калия и натрия не мешают определению ионов аммония.

Дата добавления: 2014-11-13 ; просмотров: 58 ; Нарушение авторских прав

Работа 1. Реакции катионов первой аналитической группы

Цель: изучить характерные качественные реакции наиболее распространенных катионов I группы, схему анализа катионов I группы.

Задачи: провести реакции обнаружения катионов калия, натрия, лития и катиона аммония, отметить их особенности, оформить лабораторную работу, ответить на теоретические вопросы, сделать выводы.

Оборудование: штатив с пробирками, водяная баня, пипетки на 1 мл, спиртовка, держатели для пробирок, спички, кобальтовое стекло, предметные стекла, микроскоп, платиновая, нихромовая или алюминиевая проволока, стеклянная палочка, индикаторная бумага или фильтровальная бумага, тигель (фарфоровая чашка).

Реактивы:

1.соли калия, натрия, аммония и лития2.гексанитрокобальтат (III) натрия — Na3[Co(NO2)6]
3.гидротартрат натрия – NaHC4H4O64.нитрат ртути (II) или фенолфталеин (при необходимости)
5.гидроксид натрия – NaOH6.соляная кислота – HCl
7.гексагидроксиантимонат калия (V) – K[Sb(OH)6]8.гексанитрокупрат натрия и свинца – Na2Pb[Cu(NO2)6]
9.сульфат аммония – (NH4)SO410.хлорид аммония – NH4Cl
11.гидроксид аммония – NH4ОН12.гидроксид калия – KOH
13.уранилацетат – UO2(CH3COO)2, уранилацетат магния14.реактив Несслера – K2[HgJ4] – щелочной р-р комплексной соли ртути
15.фторид аммония – NH4F16.уксусная кислота – CH3COOH

1.1. Реакции катиона калия К +

Опыт 1.1.1 Действие гексанитрокобальтата (III) натрия Na3[Co(NO2)6]

Данный реактив осаждает из нейтрального или слабощелочного раствора желтый кристаллический осадок гексанитрокобальтата (III) калия – натрия:

Этой реакции мешает:

а) сильнокислая среда, в которой образуется нестойкая кислота H3[Co(NO2)6], разлагающаяся с выделением оксида азота, однако, в уксусной кислоте ни сам реактив, ни осадок не разрушаются;

б) присутствие щелочей, которые разлагают реактив:

в) присутствие иона аммония, который образует с этим реактивом аналогичный осадок.

Таким образом, реакцию следует проводить в слабокислой среде при рН 3…5, в отсутствие ионов аммония, сильных окислителей и восстановителей.

Для выполнения реакции необходим свежеприготовленный раствор гексанитрокобальтата (III) натрия. Так как при хранении реактив разлагается с выделением ионов Со 2+ , имеющих розовую окраску. Порозовевший раствор реактива не пригоден к использованию.

Эта реакция очень чувствительна. Реакцию используют для осаждения иона K + из сыворотки при перманганатометрическом определении калия в крови.

Реакция является фармакопейной.

Выполнение опыта:

К небольшому количеству 1-2 мл раствора соли калия прилить немного раствора гексанитрокобальтата (III) натрия Na3[Co(NO2)6], встряхнуть и оставить на некоторое время. Наблюдать образование осадка. Рассмотреть каплю осадка в микроскоп, зарисовать форму кристаллов в тетрадь.

Изучить отношение осадка к кислотам, щелочам (Внимание! Концентрированные растворы кислот и щелочей находятся под тягой в вытяжном шкафу). Для этого разделить содержимое пробирки с осадком на две части. В первую пробирку прилить избыток раствора соляной кислоты, перемешать и наблюдать растворение значительной части раствора. Во вторую – добавить 2-3 капли раствора гидроксида натрия, наблюдать образование аморфного осадка гидроксида кобальта (III) желто-зеленоватого цвета.

Записать в тетрадь приведенное выше уравнение реакции и составить полное и сокращенное молекулярно-ионные уравнения.

Опыт 1.1.2. Действие гидротартрата натрия NaHC4H4O6

Гидротартрат натрия NaHC4H4O6, или винная кис­лота, в присутствии ацетата натрия при достаточной кон­центрации ионов калия К + в растворе дает белый кристал­лический осадок гидротартрата калия:

Осадок растворяется в сильных кислотах и щелочах, поэтому реакцию проводят в нейтральной или слабокис­лой средах:

Реакцию следует проводить при охлаждении под стру­ей водопроводной воды, так как растворимость осадка гидротартрата калия КНС4Н4О6 повышается при увеличе­нии температуры. Для ускорения выпадения осадка стенки пробирки по­тирают стеклянной палочкой для образования центров кристаллизации.

Реакция протекает при больших концентрациях ионов калия К + и является малочувствительной. Реакцию проводят при рН 5…7 и, как уже упоминалось выше, в холодном растворе. Ионы аммония NH + 4 мешают определению ионов калия К + из-за того, что также дают белый кристаллический осадок с этими реаген­тами и поэтому соли аммония предварительно разлагают при нагревании.

Реакция является фармакопейной.

Выполнение опыта:

К небольшому количеству раствора соли калия прилить такое же количество раствора гидротартрата натрия NaHC4H4O6 , затем потереть стеклянной палочкой о стенки пробирки, охладив пробирку, при необходимости, под струей холодной воды из под крана. Наблюдать образование объёмистого мелкокристаллического осадка белого цвета. Каплю осадка перенести на предметное стекло и рассмотреть под микроскопом.

Изучить отношение осадка к сильным кислотам и щелочам, температуре. Для этого необходимо разделить содержимое пробирки на три части. В первую пробирку добавить несколько капель соляной кислоты, во вторую – гидроксид натрия. Наблюдать растворение осадков. Третью пробирку поместить в стакан с горячей водой, перемешать содержимое пробирки стеклянной палочкой. После охладить при комнатной температуре. Наблюдать исчезновение и появление осадка вновь.

Записать в тетрадь уравнения реакций, составить полное и сокращенное молекулярно-ионные уравнения.

Опыт 1.1.3. Микрокристаллоскопическая реакция с гексанитрокупратом натрия и свинца Na2Pb[Cu(NO2)6]

При взаимодействии солей калия с гексанитрокупратом натрия и свинца Na2Pb[Cu(NO2)6] образуется микрокристаллический осадок комплексной соли гексанитрокупрата калия и свинца:

Выполнение опыта:

Выпарить до суха на предметном стекле каплю раствора соли калия (на водяной бане), смочить сухой остаток каплей реактива Na2Pb[Cu(NO2)6] (тройным нитритом натрия, свинца и меди).

Наблюдать под микроскопом образующиеся характерные чёрные кубические кристаллы K2Pb[Cu(NO2)6].

Зарисовать в тетрадь кристаллы, записать уравнение реакции в молекулярном и молекулярно-ионном виде.

Опыт 1.1.4. Реакция окрашивания пламени солями калия (фармакопейный тест)

Соли калия или их растворы, внесенные на платиновой, нихромовой или алюминевой проволоке в бесцветное пламя горелки, окрашивают его в фиолетовый цвет. Присутствие даже ничтожных следов натрия, окрашивающего пламя в желтый цвет, что мешает увидеть окраску. Поэтому пламя рассматривают через синее кобальтовое стекло.

Выполнение опыта:

Взять проволоку, убедиться, что она чистая, для чего внести ее в пламя спиртовки. Если пламя не окрашивается, можно проводить реакцию на обнаружение иона калия. Если окрашивается, то проволоку следует очистить, обработав концентрированной соляной кислотой и прокалив в пламени спиртовки до исчезновения окрашивания пламени.

Обмакнуть очищенную проволоку в пробирку с раствором соли калия и внести ее в пламя спиртовки. Пламя окрасится в характерный бледно-фиолетовый цвет. Рассмотреть пламя через синее кобальтовое стекло, поглощающее желтое окрашивание солей натрия.

Записать наблюдения в тетрадь.

1.2. Реакции катиона натрия Na +

Опыт 1.2.1. Реакция с гексагидроксиантимонатом (V) калия K[Sb(OH)6]

Соли натрия образуют с гексагидроксиантимонатом (V) калия K[Sb(OH)6] кристаллический осадок натриевой соли. Его следует отличать от аморфного осадка метасурьмяной кислоты HSbO3 , которая может выпасть в осадок при pH 2+ и Mg 2+ ), то она идет быстро с образованием желтых осадков тройных солей NaZn(UO2)3(CH3COO)9x9H2O или NaMg(UO2)3(CH3COO)9x9H2O. При наблюдении в микроскоп видны тетраэдры и октаэдры правильной формы. Полученные осадки обладают сильной люминесценцией в ультрафиолетовом свете.

Выполнение опыта:

Добавить 1 мл раствора реактива уранилацетата к исследуемому раствору соли натрия. Через некоторое время наблюдать образование желтого осадка.

Реакцию можно провести и другим способом: в чистой центрифужной пробирке к 1 капле прозрачного р-ра прибавляют 3 капли уранилацетата магния. Хорошо взболтать и оставить на 10 минут. Провести наблюдение. Записать уравнение реакции.

Опыт 1.2.3. Реакция окрашивания пламени солями натрия (фармакопейный тест)

Летучие соли натрия окрашивают пламя в ярко-желтый цвет. Реакция очень чувствительна и характерна для натрия.

Выполнение опыта:

Взять проволоку, убедиться, что она чистая, для чего внести ее в пламя спиртовки. Если пламя не окрашивается, можно проводить реакцию на обнаружение иона натрия. Если окрашивается, то проволоку следует очистить, обработав концентрированной соляной кислотой и прокалив в пламени спиртовки до исчезновения окрашивания пламени.

Обмакнуть очищенную проволоку в пробирку с раствором соли натрия и внести ее в пламя спиртовки. Пламя окрасится в характерный желтый цвет. Записать наблюдения в тетрадь.

1.3. Рекция катиона аммония NH 4 +

Опыт 1.3.1. Действие щелочей

При взаимодействии хлорида аммония и гидрооксида натрия выделяется аммиак. Аммиак, растворяясь в воде, образует основание гидроксид аммония NH4OH:

Выполнение опыта:

К небольшому количеству раствора соли аммония, например NH4Cl, прилить немного щелочи (NaОН или КОН) и нагреть. Реакция специфична.

Выделение аммиака NH3 можно обнаружить по запаху. Но лучше воспользоваться индикаторной бумагой. Для этого необходимо подержать в парах над нагреваемой пробиркой влажную лакмусовую или фенолфталеиновую бумажку, не касаясь внутренней поверхности ее стенок, — бумажка посинеет, а в случае с фенолфталеином станет малиновой. Вместо индикаторной бумаги можно применить фильтровальную бумагу, смоченную раствором нитрата ртути (II) Hg(NO3)2. Под действием аммиака бумага почернеет из-за выделившейся на ее поверхности металлической ртути.

Составить молекулярное и сокращенное молекулярно-ионное уравнения реакции получения NH4OH и уравнение реакции его разложения при нагревании.

Опыт 1.3.2. Действие реактива Несслера (К2 [HgJ4]+KOH)

При действии реактива Несслера на соль аммония образуется красно-бурый осадок комплексной соли иодида оксодимеркураммония. Реакция очень чувствительна и показывает присутствие даже случайных примесей NH4 + . Кроме того, это специфическая реакция:

Выполнение опыта:

К 1-2 мл раствора соли аммония прилить 2-3мл реактива Несслера и наблюдать образование красно-бурого осадка.

Записать уравнение в тетрадь, составить молекулярно-ионные уравнения реакции.

1.4. Реакции катиона лития Li +

Опыт 1.4.1. Реакция окрашивания пламени солями лития

Летучие соединения лития окрашивают бесцветное пламя горелки (спиртовки) в карминово-красный цвет. Реакция весьма чувствительна. Определению мешают ионы натрия. Желтую окраску ионов Na + маскируют, используя индиговую призму или кобальтовое стекло, не пропускающее желтых лучей.

Выполнение опыта:

Взять проволоку, убедиться, что она чистая, для чего внести ее в пламя спиртовки. Если пламя не окрашивается, можно проводить реакцию на обнаружение иона лития. Если окрашивается, то проволоку следует очистить, обработав концентрированной соляной кислотой и прокалив в пламени спиртовки до исчезновения окрашивания пламени.

Обмакнуть очищенную проволоку в пробирку с раствором соли лития и внести ее в пламя спиртовки. Пламя окрасится в характерный карминово-красный цвет. Рассмотреть пламя через синее кобальтовое стекло, поглощающее желтое окрашивание солей натрия.

Записать наблюдения в тетрадь.

Опыт 1.4.2. Реакция с фторидом аммония или калия

При нагревании смеси солей лития с фторидом калия или аммония выделяется белый аморфный осадок фторида лития, растворимый в уксусной кислоте:

Определению мешают ионы Mg 2+ , которые можно замаскировать, проводя реакцию в присутствии аммиака при рН 9-10.

Выполнение опыта:

В пробирку внести 3-4 капли раствора соли лития, 1- 2 капли концентрированного аммиака и 4-5 капель раствора фторида аммония NH4F. Смесь нагреть. Наблюдать медленно выпадающий аморфный осадок фторида лития.

Изучить растворимость осадка в уксусной кислоте. Для этого добавить в пробирку с осадком раствор уксусной кислоты.

Записать наблюдения и уравнения реакций в тетрадь.

Контрольные вопросы

1. По каким признакам классифицируют методы качественного анализа?

2. Назовите требования, предъявляемые к аналитическим реакциям?

3. Перечислите виды аналитических реакций?

4. С помощью каких методов проводят анализ смеси ионов?

5. На чем основана кислотно-основная классификация катионов?

6. На какие группы делит катионы кислотно-основная классификация?

7. На чем основана сульфидная классификация катионов?

8. На какие группы делит катионы сульфидная классификация?

9. Дайте характеристику первой группы катионов.

10. Есть ли групповой реагент у катионов данной группы?

11. Используя какой реактив(ы) можно обнаружить катион калия К + ?

12. В какой цвет окрашивают пламя соли натрия?

13. С помощью каких реакций обнаруживают ион аммония NH4 + ?

14. В какой цвет окрашивают пламя соли лития?

15. С помощью каких реакций обнаруживают ион аммония Li + ?

16. Что означает выражение «реакция является фармакопейной»?

Глава 2

Последнее изменение этой страницы: 2019-10-04; Просмотров: 1597; Нарушение авторского права страницы

Как составлять ионные уравнения. Задача 31 на ЕГЭ по химии

Достаточно часто школьникам и студентам приходится составлять т. н. ионные уравнения реакций. В частности, именно этой теме посвящена задача 31, предлагаемая на ЕГЭ по химии. В данной статье мы подробно обсудим алгоритм написания кратких и полных ионных уравнений, разберем много примеров разного уровня сложности.

Зачем нужны ионные уравнения

Напомню, что при растворении многих веществ в воде (и не только в воде!) происходит процесс диссоциации — вещества распадаются на ионы. Например, молекулы HCl в водной среде диссоциируют на катионы водорода (H + , точнее, H 3 O + ) и анионы хлора (Cl — ). Бромид натрия (NaBr) находится в водном растворе не в виде молекул, а в виде гидратированных ионов Na + и Br — (кстати, в твердом бромиде натрия тоже присутствуют ионы).

Записывая «обычные» (молекулярные) уравнения, мы не учитываем, что в реакцию вступают не молекулы, а ионы. Вот, например, как выглядит уравнение реакции между соляной кислотой и гидроксидом натрия:

HCl + NaOH = NaCl + H 2 O. (1)

Разумеется, эта схема не совсем верно описывает процесс. Как мы уже сказали, в водном растворе практически нет молекул HCl, а есть ионы H + и Cl — . Так же обстоят дела и с NaOH. Правильнее было бы записать следующее:

H + + Cl — + Na + + OH — = Na + + Cl — + H 2 O. (2)

Это и есть полное ионное уравнение . Вместо «виртуальных» молекул мы видим частицы, которые реально присутствуют в растворе (катионы и анионы). Не будем пока останавливаться на вопросе, почему H 2 O мы записали в молекулярной форме. Чуть позже это будет объяснено. Как видите, нет ничего сложного: мы заменили молекулы ионами, которые образуются при их диссоциации.

Впрочем, даже полное ионное уравнение не является безупречным. Действительно, присмотритесь повнимательнее: и в левой, и в правой частях уравнения (2) присутствуют одинаковые частицы — катионы Na + и анионы Cl — . В процессе реакции эти ионы не изменяются. Зачем тогда они вообще нужны? Уберем их и получим краткое ионное уравнение:

H + + OH — = H 2 O. (3)

Как видите, все сводится к взаимодействию ионов H + и OH — c образованием воды (реакция нейтрализации).

Все, полное и краткое ионные уравнения записаны. Если бы мы решали задачу 31 на ЕГЭ по химии, то получили бы за нее максимальную оценку — 2 балла.

Итак, еще раз о терминологии:

  • HCl + NaOH = NaCl + H 2 O — молекулярное уравнение («обычное» уравнения, схематично отражающее суть реакции);
  • H + + Cl — + Na + + OH — = Na + + Cl — + H 2 O — полное ионное уравнение (видны реальные частицы, находящиеся в растворе);
  • H + + OH — = H 2 O — краткое ионное уравнение (мы убрали весь «мусор» — частицы, которые не участвуют в процессе).

Алгоритм написания ионных уравнений


  1. Составляем молекулярное уравнение реакции.
  2. Все частицы, диссоциирующие в растворе в ощутимой степени, записываем в виде ионов; вещества, не склонные к диссоциации, оставляем «в виде молекул».
  3. Убираем из двух частей уравнения т. н. ионы-наблюдатели, т. е. частицы, которые не участвуют в процессе.
  4. Проверяем коэффициенты и получаем окончательный ответ — краткое ионное уравнение.

Пример 1 . Составьте полное и краткое ионные уравнения, описывающие взаимодействие водных растворов хлорида бария и сульфата натрия.

Решение . Будем действовать в соответствии с предложенным алгоритмом. Составим сначала молекулярное уравнение. Хлорид бария и сульфат натрия — это две соли. Заглянем в раздел справочника «Свойства неорганических соединений». Видим, что соли могут взаимодействовать друг с другом, если в ходе реакции образуется осадок. Проверим:

BaCl 2 + Na 2 SO 4 = BaSO 4 &#x2193 + 2NaCl.

Таблица растворимости подсказывает нам, что BaSO 4 действительно не растворяется в воде (направленная вниз стрелка, напомню, символизирует, что данное вещество выпадает в осадок). Молекулярное уравнение готово, переходим к составлению полного ионного уравнения. Обе соли, присутствующие в левой части, записываем в ионной форме, а вот в правой части оставляем BaSO 4 в «молекулярной форме» (о причинах этого — чуть позже!) Получаем следующее:

Ba 2+ + 2Cl — + 2Na + + SO 4 2- = BaSO 4 &#x2193 + 2Cl — + 2Na + .

Осталось избавиться от балласта: убираем ионы-наблюдатели. В данном случае в процессе не участвуют катионы Na + и анионы Cl — . Стираем их и получаем краткое ионное уравнение:

Ba 2+ + SO 4 2- = BaSO 4 &#x2193.

А теперь поговорим подробнее о каждом шаге нашего алгоритма и разберем еще несколько примеров.

Как составить молекулярное уравнение реакции

Должен сразу вас разочаровать. В этом пункте не будет однозначных рецептов. Действительно, вряд ли можно рассчитывать, что я смогу разобрать здесь ВСЕ возможные уравнения реакций, которые могут встретиться вам на ЕГЭ или ОГЭ по химии.

Ваш помощник — раздел «Свойства неорганических соединений». Если вы хорошо знакомы с четырьмя базовыми классами неорганических веществ (оксиды, основания, кислоты, соли), если вам известны химические свойства этих классов и методы их получения, можете на 95% быть уверены в том, что у вас не будет проблем на экзамене с написанием молекулярных уравнений.

Оставшиеся 5% — это некоторые «специфические» реакции, которые мы не сможем перечислить. Не будем лить слез по поводу этих 5%, а вспомним лучше номенклатуру и химические свойства базовых классов неорганических веществ. Три задания для самостоятельной работы:

Упражнение 1 . Напишите молекулярные формулы следующих веществ: оксид фосфора (V), нитрат цезия, сульфат хрома (III), бромоводородная кислота, карбонат аммония, гидроксид свинца (II), фосфат стронция, кремниевая кислота. Если при выполнении задания у вас возникнут проблемы, обратитесь к разделу справочника «Названия кислот и солей».

Упражнение 2 . Дополните уравнения следующих реакций:

  1. KOH + H 2 SO 4 =
  2. H 3 PO 4 + Na 2 O=
  3. Ba(OH) 2 + CO 2 =
  4. NaOH + CuBr 2 =
  5. K 2 S + Hg(NO 3 ) 2 =
  6. Zn + FeCl 2 =

Упражнение 3 . Напишите молекулярные уравнения реакций (в водном растворе) между: а) карбонатом натрия и азотной кислотой, б) хлоридом никеля (II) и гидроксидом натрия, в) ортофосфорной кислотой и гидроксидом кальция, г) нитратом серебра и хлоридом калия, д) оксидом фосфора (V) и гидроксидом калия.

Искренне надеюсь, что у вас не возникло проблем с выполнением этих трех заданий. Если это не так, необходимо вернуться к теме «Химические свойства основных классов неорганических соединений».

Как превратить молекулярное уравнение в полное ионное уравнение

Начинается самое интересное. Мы должны понять, какие вещества следует записывать в виде ионов, а какие — оставить в «молекулярной форме». Придется запомнить следующее.

В виде ионов записывают:


  • растворимые соли (подчеркиваю, только соли хорошо растворимые в воде);
  • щелочи (напомню, что щелочами называют растворимые в воде основания, но не NH 4 OH);
  • сильные кислоты (H 2 SO 4 , HNO 3 , HCl, HBr, HI, HClO 4 , HClO 3 , H 2 SeO 4 , . ).

Как видите, запомнить этот список совсем несложно: в него входят сильные кислоты и основания и все растворимые соли. Кстати, особо бдительным юным химикам, которых может возмутить тот факт, что сильные электролиты (нерастворимые соли) не вошли в этот перечень, могу сообщить следующее: НЕвключение нерастворимых солей в данный список вовсе не отвергает того, что они являются сильными электролитами.

Все остальные вещества должны присутствовать в ионных уравнениях в виде молекул. Тем требовательным читателям, которых не устраивает расплывчатый термин «все остальные вещества», и которые, следуя примеру героя известного фильма, требуют «огласить полный список» даю следующую информацию.

В виде молекул записывают:


  • все нерастворимые соли;
  • все слабые основания (включая нерастворимые гидроксиды, NH 4 OH и сходные с ним вещества);
  • все слабые кислоты (H 2 СO 3 , HNO 2 , H 2 S, H 2 SiO 3 , HCN, HClO, практически все органические кислоты . );
  • вообще, все слабые электролиты (включая воду. );
  • оксиды (всех типов);
  • все газообразные соединения (в частности, H 2 , CO 2 , SO 2 , H 2 S, CO);
  • простые вещества (металлы и неметаллы);
  • практически все органические соединения (исключение — растворимые в воде соли органических кислот).

Уф-ф, кажется, я ничего не забыл! Хотя проще, по-моему, все же запомнить список N 1. Из принципиально важного в списке N 2 еще раз отмечу воду.

Пример 2 . Составьте полное ионное уравнение, описывающие взаимодействие гидроксида меди (II) и соляной кислоты.

Решение . Начнем, естественно, с молекулярного уравнения. Гидроксид меди (II) — нерастворимое основание. Все нерастворимые основания реагируют с сильными кислотами с образованием соли и воды:

Cu(OH) 2 + 2HCl = CuCl 2 + 2H 2 O.

А теперь выясняем, какие вещества записывать в виде ионов, а какие — в виде молекул. Нам помогут приведенные выше списки. Гидроксид меди (II) — нерастворимое основание (см. таблицу растворимости), слабый электролит. Нерастворимые основания записывают в молекулярной форме. HCl — сильная кислота, в растворе практически полностью диссоциирует на ионы. CuCl 2 — растворимая соль. Записываем в ионной форме. Вода — только в виде молекул! Получаем полное ионное уравнение:

Сu(OH) 2 + 2H + + 2Cl — = Cu 2+ + 2Cl — + 2H 2 O.

Пример 3 . Составьте полное ионное уравнение реакции диоксида углерода с водным раствором NaOH.

Решение . Диоксид углерода — типичный кислотный оксид, NaOH — щелочь. При взаимодействии кислотных оксидов с водными растворами щелочей образуются соль и вода. Составляем молекулярное уравнение реакции (не забывайте, кстати, о коэффициентах):

CO 2 + 2NaOH = Na 2 CO 3 + H 2 O.

CO 2 — оксид, газообразное соединение; сохраняем молекулярную форму. NaOH — сильное основание (щелочь); записываем в виде ионов. Na 2 CO 3 — растворимая соль; пишем в виде ионов. Вода — слабый электролит, практически не диссоциирует; оставляем в молекулярной форме. Получаем следующее:

СO 2 + 2Na + + 2OH — = Na 2+ + CO 3 2- + H 2 O.

Пример 4 . Сульфид натрия в водном растворе реагирует с хлоридом цинка с образованием осадка. Составьте полное ионное уравнение данной реакции.

Решение . Сульфид натрия и хлорид цинка — это соли. При взаимодействии этих солей выпадает осадок сульфида цинка:

Na 2 S + ZnCl 2 = ZnS&#x2193 + 2NaCl.

Я сразу запишу полное ионное уравнение, а вы самостоятельно проанализируете его:

2Na + + S 2- + Zn 2+ + 2Cl — = ZnS&#x2193 + 2Na + + 2Cl — .

Предлагаю вам несколько заданий для самостоятельной работы и небольшой тест.

Упражнение 4 . Составьте молекулярные и полные ионные уравнения следующих реакций:

  1. NaOH + HNO 3 =
  2. H 2 SO 4 + MgO =
  3. Ca(NO 3 ) 2 + Na 3 PO 4 =
  4. CoBr 2 + Ca(OH) 2 =

Упражнение 5 . Напишите полные ионные уравнения, описывающие взаимодействие: а) оксида азота (V) с водным раствором гидроксида бария, б) раствора гидроксида цезия с иодоводородной кислотой, в) водных растворов сульфата меди и сульфида калия, г) гидроксида кальция и водного раствора нитрата железа (III).

В следующей части статьи мы научимся составлять краткие ионные уравнения и разберем большое количество примеров. Кроме того, мы обсудим специфические особенности задания 31, которое вам предстоит решать на ЕГЭ по химии.


источники:

http://lektsia.com/16×1813.html

http://www.repetitor2000.ru/ionnye_uravnenija_01.html