Уравнения рейнольдса осредненного турбулентного движения

Уравнения Рейнольдса

Уравнения Рейнольдса

Уравнения Рейнольдса. Как уже отмечалось, турбулентное движение жидкости характеризуется случайными хаотическими случайными изменениями скорости и других гидродинамических параметров. Поскольку эти изменения носят характер нерегулярных пульсаций, поля гидродинамических параметров могут быть выражены как сумма усредненных полей параметров и 2 полей пульсаций параметров. Используя это представление, запишите фактические локальные предсказания скорости-их среднее u«, «те U2 и пульсирующая добавка по, давление р = р + р ’будет делать то же самое. Так… С учетом пульсационной составляющей среднего времени 7.

Метод осреднения Рейнольдса заключается в замене случайно изменяющихся характеристик потока (скорость, давление, плотность) суммами осреднённых и пульсационных составляющих. Людмила Фирмаль

  • Локальная скорость и давление равны нулю: их-0; их= * 0; ig = 0; пульсирующая составляющая равна p ’= 0, поскольку вероятность как положительных, так и отрицательных значений является равной знакопеременной величиной. Рейнольдс предложил следовать определенным правилам после усреднения. Если /и p-средние зависимые переменные, а a-любая из 4 независимых переменных x, y, r, то/ = /; д] 7 *(* _ / + P = / + P; / p = / p;= -; I / Людмила Фирмаль
  • Турбулентное тангенциальное напряжение выражается в виде tturb, Е = Р»

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Турбулентный режим движения жидкости

Движение жидкости, наблюдаемое при больших скоростях, называют турбулентный режим движения жидкости. В этом случае в движении жидкости нет видимой закономерности. Отдельные частицы перемешиваются между собой и движутся по самым причудливым все время меняющимся траекториям весьма сложной формы.

В этой статье подробно описывается процесс турбулентного режима, переход в турбулентный режим из ламинарного, формула и закон этого режима и многое другое.

Содержание статьи

Турбулентный режим движения в опытах

Для более конкретного представления турбулентного режима движения жидкости рассмотрим опыт Рейнольдса. Подробное описание здесь.

При добавлении краски в поток жидкости движущейся с небольшой скоростью красная краска будет двигаться ровной струйкой.

При увеличении скорости потока движение частиц так же увеличится. Струйка краски будет колебаться как на указано на рисунке.

При открытии крана и увеличении расхода через трубку, поток краски будет всё более интенсивнее перемешиваться с основным потоком жидкости, образуя всё больше вихрей.

Несмотря на кажущуюся беспорядочность движения частиц и изменения их скорости, величина средней скорости в достаточно большом промежутке времени остается постоянной.

Турбулентный режим движения жидкости всегда характеризуется пульсация скоростей. Под действием пульсации частицы жидкости, движущиеся в главном (осевом) направлении потока, получают, кроме того, так же и поперечные перемещения, вследствие чего между соседними слоями жидкости возникает обмен частицами, вызывающими непрерывное перемешивание жидкости.

Однако у стенок, ограничивающих поток, имеют место совсем иные, особые условия для движения жидкости. Наличие твердых границ делает поперечные движения частиц невозможными. Поэтому перемешивание жидкости здесь не происходит и частицы движутся по извилистым траекториям, почти параллельно стенкам.

Переход ламинарного режима в турбулентный

Все выше описанное позволяет установить следующую схему движения потока жидкости, обычно и принимаемую за основную рабочую схему при исследовании турбулентного режима.

По этой схеме у стенок образуется весьма тонкий слой, в котором движение жидкости происходит по законам ламинарного режима. Основная же центральная часть потока (ядро), связанная с этим слоем, называемым вязким (или ламинарным) подслоем, короткой переходной зоной, движется турбулентно с почти одинаковой для всех частиц жидкости средней скоростью.

Наличие вязкого (ламинарного) подслоя доказано экспериментально в результате весьма тщательных и точных измерений. Толщина этого слоя очень мала и обычно определяется долями миллиметра. Она зависит от числа Рейнольдса, и тем меньше, чем больше это число, т.е. чем больше турбулентность потока.

При значениях Re -0,875

где d – диаметр трубы.

Из чего следует, что движение жидкости при турбулентном режиме течения должно всегда происходить со значительно большей затратой энергии, чем при ламинарном.

При ламинарном режиме энергия расходуется только на преодоление сил внутреннего трения между движущимися с различной скоростью соседними слоями жидкости. При турбулентном режиме, кроме этого, значительная энергия затрачивается на процесс перемешивания, вызывающий в жидкости дополнительные касательные напряжения.

Формула турбулентного режима течения

В старых теориях о турбулентном режиме принималось, что у стенок, ограничивающих поток, образуется некоторый неподвижный слой, по которому со значительными скоростями движется вся остальная масса жидкости.

Наличие этого неподвижного слоя с неизбежностью приводило к неправдоподобным выводам о “разрыве” скоростей, т.е. к такому закону распределения скоростей в поперечном сечении, при котором имеет место внезапное скачкообразное изменение скорости от нуля в неподвижном слое до конечной величины в остальной части потока.

Современные теории турбулентного режима течения исходят из схемы Л. Прандтля, который установил теоретический закон распределения скоростей в поперечном сечении потока.

По этому закону скорость в какой-нибудь точке сечения, например цилиндрической трубы, на расстоянии y от ее оси определяется формулой.

где υ0 – осевая скорость
r – радиус трубы
χ — числовой коэффициент, определяемый опытным путем
υ * — динамическая скорость, определяется по формуле

Для практического применения применяют выведенные из указанной выше формулы.

Для гладких труб

Для шероховатых труб

Для того, чтобы в трубе установилось распределение скоростей, соответствующее турбулентному режиму, жидкость должна пройти от входного сечения трубы некоторый определенный участок, называемый начальным участком турбулентного режима.

Длина этого участка определяется по формуле

Где d – диаметр трубы
Re – число Рейнольдса

Высказанные таким образом соображения о механизме движения и распределении скоростей в турбулентном потоке подтверждаются большим числом опытных данных. Из их рассмотрения следует, что при турбулентном режиме, как и нужно было ожидать, скорости распределяются по сечению более равномерно, чем при ламинарном режиме.

Для иллюстрации этого положения приведена картинка с нарисованными на ней кривыми распределения скоростей для потока жидкости в цилиндрической трубе при турбулентном режиме(сплошная линия) и при ламинарном режиме (пунктир).

При турбулентном режиме отношение средней скорости к максимальной осевой υср / υ0 изменяется от 0,75 до 0,90, в то время как при ламинарном режиме это отношении равно 0,5.

При этом следует иметь ввиду, что чем больше число Рейнольдса, т.е. чем интенсивнее происходит процесс перемешивания жидкости, тем больше будет это соотношение.

Видео по теме

Турбулентность наступает после превышения некоторого критического значения числа Рейнольдса, но в некоторых случаях она может возникнуть самопроизвольно.

Например, в случае перепада давления когда соседние области потока движутся рядом или проникают одна в другую, при воздействии силы тяжести или когда жидкая среда обтекает непроницаемую поверхность.

Уравнения Рейнольдса.

Как уже отмечалось, сложность турбулентного движения делает невозможным строгое рассмотрение течений при заданных граничных условиях. Одной из возможных альтернатив является переход от истинной картины, детали которой нам неизвестны, к рассмотрению осредненного турбулентного течения, т.е., по существу, замена принципиально неустановившегося движения на квазиустановившееся. Этот переход был предложен О.Рейнольдсом. Суть его сводится к тому, что в уравнениях движения вязкой жидкости (уравнениях Навье-Стокса) и уравнении неразрывности истинные значения параметров по определенным правилам заменяются их осредненными значениями. Получаемая таким образом новая система уравнений носит название уравнений Рейнольдса. Вывод этих уравнений выходит за рамки настоящего курса. Интересующиеся могут найти его в ряде учебных пособий, в частности, Федяевский К.К., Войткунский Я.И., Фаддеев Ю.И. Гидромеханика. — Л.: Судостроение, 1968. — 567 с.

Наиболее существенным результатом этой операции является то, что вследствие нелинейности уравнений Навье-Стокса в уравнениях Рейнольдса появляются дополнительные члены, которые получили название напряжений Рейнольдса. Для наиболее простого плоскопараллельного течения эти напряжения имеют вид:

, (12.3)

где (угловые скобки — символ осреднения).

Таким образом, в осредненном турбулентном потоке к обычным вязкостным напряжениям добавляются напряжения, зависящие от пульсации скорости. Физически это объясняется тем, что между разными участками турбулентного потока происходит обмен количеством движения, обусловленный перемешиванием частиц. Перенос количества движения вызывает дополнительное торможение либо ускорение отдельных масс жидкости, т.е. приводит к возникновению турбулентных напряжений.

Поскольку исходная система уравнений являлась замкнутой (четыре уравнения и четыре неизвестных — , , , ), то появление дополнительных членов в уравнениях Рейнольдса приводит к тому, что она превращается в незамкнутую. Возникает новая проблема «замыкания системы уравнений Рейнольдса».

Дата добавления: 2014-11-13 ; просмотров: 22 ; Нарушение авторских прав


источники:

http://www.nektonnasos.ru/article/gidravlika/turbulentnyj-rezhim/

http://lektsii.com/1-21959.html

Читайте также:
  1. Будем искать частное решение уравнения
  2. Вопрос 3. Под каким номером указан вид частного решения уравнения , где — многочлены четвертой степени?
  3. Вывод закона Бернулли из уравнения Эйлера и термодинамических соотношений
  4. Вывод уравнения Бернулли
  5. ГЕОМЕТРИЧЕСКИЙ И ЭНЕРГЕТИЧЕСКИЙ СМЫСЛ УРАВНЕНИЯ БЕРНУЛЛИ
  6. ГИББСА — ГЕЛЬМГОЛЬЦА УРАВНЕНИЯ
  7. Графическое представление уравнения парной линейной регрессии
  8. Дифференциального уравнения второго порядка методом прогонки
  9. Дифференциальные уравнения вращения твердого тела вокруг неподвижной оси.
  10. Дифференциальные уравнения второго порядка