Уравнения с двумя переменными задачи 7 класс

Задания для самоподготовки по теме: «Системы линейных уравнений с двумя неизвестными» 7 класс
план-конспект урока (алгебра, 7 класс) по теме

Скачать:

ВложениеРазмер
zadaniya_dlya_samopodgotovki_po_teme_sistemy_uravneniy_7_i_8klass.doc142.5 КБ

Предварительный просмотр:

Задания для самоподготовки по теме: «Системы линейных уравнений с двумя неизвестными»

3х-2у=0. 3х+у=7. 5х+2у=0. 5х-2у=9.

5. х+5у=7, 6. х+у=7, 7. 4х-3у=-1, 8. х+2у=-2,

3х+2у=-5. 5х-7у=11. х-5у =4. 3х-у=8.

9. 2х-5у=-7, 10. х-у=3, 11. 3х-5у=16, 12. 2х+3у=-7,

х-3у=-5. 3х+4у=2. 2х+у=2. х-у=4.

13. 2х+5у=-7, 14. х-3у=8, 15. 2х-3у=5, 16. х-4у=-1,

3х-у=15. 2х-у=6. х-6у=-2. 3х-у=8.

17. 5х-4у=12, 18. 6х+у=5, 19. 2х-3у=11, 20. х-6у=-2,

х-5у=-6. 2х-3у=-5. 5х+у=2. 2х+3у=11.

21. 3х-2у=16, 22. 2х+3у=3, 23. 4х-2у=-6, 24. 3х+2у=8,

4х+у=3. 5х+6у=9. 6х+у==11. 2х+6у=10.

25. 5х+у==14, 26. 3х-2у=5, 27. х+4у=7, 28. 2х-3у=5,

3х-2у=-2. 2х+5у=16. х-2у=-5. 3х+2у=14.

29. х-2у=7, 30. 4х-6у=26, 31. х+3у=7, 32. 8х+3у=-21,

х+2у=-1. 5х+3у=1. х+2у=5. 4х+5у=-7.

33. х-2у=8, 34. 8х+2у=11, 35. 2х-у=13, 36. 7х+3у=1,

х-3у=6. 6х-4у=11. 2х+3у=9. 2х-6у=-10.

37. 2х+3у=10, 38. 3х-2у=5, 39. 2х+у=-5, 40. 2х+3у=1,

х-2у=-9. 5х+4у=1. х-3у=-6. 6х-2у=14.

Задания для самоподготовки по теме: «Системы уравнений второй степени с двумя неизвестными»

2х+у=6. ху=-14. 2ху=3. х 2 +2у=33.

5. 3ху=1, 6. у-х=2, 7. 4у-х=1, 8. х-у=1,

6х+у=3. 4х+у 2 =13. 2ху =1. х 2 -у=3.

9. х 2 -у=-2, 10 . х+у=4, 11. 3х-у=-10, 12. х+у=5,

2х+у=2. х 2 -у=2. х 2 +у=10. ху=6.

13. х-у=7, 14. ху=8, 15. х-у=7, 16. х+у=1,

ху=-10. х+у=6. ху=-12. х 2 +у 2 =25.

17. х+у=10, 18. х+у=3, 19. х-у=4, 20. 2х+у 2 =6,

х 2 -у 2 =40. х 2 +у 2 =29. х 2 -у 2 =40. х+у=3.

21. х-у=4, 22. х-у=2, 23. х-у=4, 24. х-у=6,

ху=5. 3х-у 2 =6. ху==12. х 2 +у 2 =20.

25. х 2 -3у==22, 26. х-у=4, 27. х+у=4, 28. х-у=2,

х+у=2. х 2 +у 2 =10. х 2 -4у=5. х-у 2 =2.

29. х+у=2, 30. х 2 -у=-1, 31. у-х=2, 32. х 2 +2у=12,

ху=-15. х+у=1. у 2 -4х=13. 2х-у=10.

33 . х 2 -3у=1, 34. х-2у=2, 35 . х-у=-6, 36. х+у=-2,

х+у=3. 3х-у 2 =11. ху=40. у 2 -3х=6.

37. х-у=4, 38. х 2 +ху=12, 39. 2х+у=-5, 40. 2х+3у=1,

ху+у 2 =6. у-х=2. х-3у=-6. 6х-2у=14.

41. х-у=5, 42. х+у=3, 43. у 2 -3ху+х 2 -х+у+9=0,

х 2 +2ху-у 2 =-7. х 2 +2ху+2у 2 =18. у-х=2.

47. х-у=7, 48. — =-2, 49. + =4,

Ответы к теме: ««Системы линейных уравнений с двумя неизвестными»

Ответы к теме: «Системы уравнений второй степени с двумя неизвестными»

По теме: методические разработки, презентации и конспекты

Двумерные массивы (прямоугольные таблицы). Информационная модель решения системы линейных уравнений с двумя неизвестными методом Крамера.

На уроке мы изучаем метод Крамера для решения системы линейных уравнений, основанный на вычислении определителя прямоугольной матрицы, и составляем информационную модель вычисления корней с испо.

Презентации к урокам алгебры в 7 классе по теме «Системы линейных уравнений с двумя неизвестными».

Презентации сделаны к урокам алгебры в 7 классе по теме «Системы линейных уравнений с двумя неизвестными». Эти презентации могут быть как частью урока, так и монтировать целый урок. Эти пр.

«Системы линейных уравнений с двумя неизвестными»

Презентация по алгебре 7 класса содержит определение системы линейных уравнений , понятие решения системы линейных уравнений.Рассмотрены возможные случаи существования решений системы уравнений.

Презентация Системы линейных уравнений с двумя неизвестными.

Знакомство со способами решения систем линейных уравнений с двумя неизвестными.

Конспект урока 7 класс » «РЕШЕНИЕ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ С ДВУМЯ НЕИЗВЕСТНЫМИ МЕТОДОМ ПОДСТАНОВКИ»

Представлен конспект урока изучения нового материала по теме «РЕШЕНИЕ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ С ДВУМЯ НЕИЗВЕСТНЫМИ МЕТОДОМ ПОДСТАНОВКИ».

Урок алгебры в 7 классе по теме «Системы линейных уравнений с двумя неизвестными».

Урок закрепления темы «Системы линейных уравнений с двумя неизвестными» — 10 урок в теме. На уроке применяются коллективная, групповая, индивидуальная, дифференцированная формы работы.

Урок алгебры в 7 классе по теме «Системы линейных уравнений с двумя неизвестными»

Урок закрепления темы «Системы линейных уравнений с двумя неизвестными» — 10 урок в теме. На уроке применяются коллективная, групповая, индивидуальная, дифференцированная формы работы.

Уравнения с двумя переменными (неопределенные уравнения)

Разделы: Математика

Обращение автора к данной теме не является случайным. Уравнения с двумя переменными впервые встречаются в курсе 7-го класса. Одно уравнение с двумя переменными имеет бесконечное множество решений. Это наглядно демонстрирует график линейной функции, заданный в виде ax + by=c. В школьном курсе учащиеся изучают системы двух уравнений с двумя переменными. В результате из поля зрения учителя и, поэтому ученика, выпадает целый ряд задач, с ограниченными условиями на коэффициент уравнения, а также методы их решения.

Речь идет о решении уравнения с двумя неизвестными в целых или натуральных числах.

В школе натуральные и целые числа изучаются в 4-6-х классах. К моменту окончания школы не все ученики помнят различия между множествами этих чисел.

Однако задача типа “решить уравнение вида ax + by=c в целых числах” все чаще встречается на вступительных экзаменах в ВУЗы и в материалах ЕГЭ.

Решение неопределенных уравнений развивает логическое мышление, сообразительность, внимание анализировать.

Я предлагаю разработку нескольких уроков по данной теме. У меня нет однозначных рекомендаций по срокам проведения этих уроков. Отдельные элементы можно использовать и в 7-м классе (для сильного класса). Данные уроки можно взять за основу и разработать небольшой элективный курс по предпрофильной подготовке в 9-м классе. И, конечно, этот материал можно использовать в 10-11 классах для подготовки к экзаменам.

Цель урока:

    повторение и обобщение знаний по теме “Уравнения первого и второго порядка”
  • воспитание познавательного интереса к учебному предмету
  • формирование умений анализировать, проводить обобщения, переносить знания в новую ситуацию

Урок 1.

Ход урока.

1) Орг. момент.

2) Актуализация опорных знаний.

Определение. Линейным уравнением с двумя переменными называется уравнение вида

mx + ny = k, где m, n, k – числа, x, y – переменные.

Определение. Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство.

Уравнения с двумя переменными, имеющими одни и те же решения, называются равносильными.

1. 5x+2y=12 (2)y = -2.5x+6

Данное уравнение может иметь сколько угодно решений. Для этого достаточно взять любое значение x и найти соответствующее ему значение y.

Пусть x = 2, y = -2.5•2+6 = 1

x = 4, y = -2.5•4+6 =- 4

Пары чисел (2;1); (4;-4) – решения уравнения (1).

Данное уравнение имеет бесконечно много решений.

3) Историческая справка

Неопределенные (диофантовы) уравнения – это уравнения, содержащие более одной переменной.

В III в. н.э. – Диофант Александрийский написал “Арифметику”, в которой расширил множество чисел до рациональных, ввел алгебраическую символику.

Так же Диофант рассмотрел проблемы решения неопределенных уравнений и им даны методы решения неопределенных уравнений второй и третьей степени.

4) Изучение нового материала.

Определение: Неоднородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = k, где m, n, k, x, y Z k0

Если свободный член k в уравнении (1) не делится на наибольший общий делитель (НОД) чисел m и n, то уравнение (1) не имеет целых решений.

Пример: 34x – 17y = 3.

НОД (34; 17) = 17, 3 не делится нацело на 17, в целых числах решения нет.

Пусть k делится на НОД (m, n). Делением всех коэффициентов можно добиться, что m и n станут взаимно простыми.

Если m и n уравнения (1) взаимно простые числа, то это уравнение имеет по крайней мере одно решение.

Если коэффициенты m и n уравнения (1) являются взаимно простыми числами, то это уравнение имеет бесконечно много решений:

где (; ) – какое-либо решение уравнения (1), t Z

Определение. Однородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = 0, где (2)

m, n, x, y Z

Если m и n – взаимно простые числа, то всякое решение уравнения (2) имеет вид

5) Домашнее задание. Решить уравнение в целых числах:

  • 9x – 18y = 5
  • x + y= xy
  • Несколько детей собирали яблоки. Каждый мальчик собрал по 21 кг, а девочка по 15 кг. Всего они собрали 174 кг. Сколько мальчиков и сколько девочек собирали яблоки?
  • Замечание. На данном уроке не представлены примеры решения уравнений в целых числах. Поэтому домашнее задание дети решают исходя из утверждения 1 и подбором.

    Урок 2.

    1) Организационный момент

    2) Проверка домашнего задания

    5 не делится нацело на 9, в целых числах решений нет.

    Методом подбора можно найти решение

    3) Составим уравнение:

    Пусть мальчиков x, x Z, а девочек у, y Z, то можно составить уравнение 21x + 15y = 174

    Многие учащиеся, составив уравнение, не смогут его решить.

    Ответ: мальчиков 4, девочек 6.

    3) Изучение нового материала

    Столкнувшись с трудностями при выполнении домашнего задания, учащиеся убедились в необходимости изучения их методов решений неопределенных уравнений. Рассмотрим некоторые из них.

    I. Метод рассмотрения остатков от деления.

    Пример. Решить уравнение в целых числах 3x – 4y = 1.

    Левая часть уравнения делится на 3, следовательно, должна делиться и правая часть. Рассмотрим три случая.

    1. Если y = 3m, m Z, то 4y + 1= 4•3m + 1 = 12m + 1 не делится на 3.
    2. Если y = 3 m + 1, то 4y +1 = 4• (3m + 1)+1 = 12m + 5 не делится на 3.
    3. Если y = 3 m + 2, то 4y +1 = 4• (3m + 2)+1 = 12m + 9 делится на 3, поэтому 3x = 12m + 9, следовательно, x = 4m + 3, а y = 3m + 2.

    Ответ: где m Z.

    Описанный метод удобно применять в случае, если числа m и n не малы, но зато разлагаются на простые сомножители.

    Пример: Решить уравнения в целых числах.

    Пусть y = 4n, тогда 16 — 7y = 16 – 7•4n = 16 – 28n = 4*(4-7n) делится на 4.

    y = 4n+1, тогда 16 – 7y = 16 – 7• (4n + 1) = 16 – 28n – 7 = 9 – 28n не делится на 4.

    y = 4n+2, тогда 16 – 7y = 16 – 7• (4n + 2) = 16 – 28n – 14 = 2 – 28n не делится на 4.

    y = 4n+3, тогда 16 – 7y = 16 – 7• (4n + 3) = 16 – 28n – 21 = -5 – 28n не делится на 4.

    Следовательно, y = 4n, тогда

    4x = 16 – 7•4n = 16 – 28n, x = 4 – 7n

    Ответ: , где n Z.

    II. Неопределенные уравнения 2-ой степени

    Сегодня на уроке мы лишь коснемся решения диофантовых уравнений второго порядка.

    И из всех типов уравнений рассмотрим случай, когда можно применить формулу разности квадратов или другой способ разложения на множители.

    Пример: Решить уравнение в целых числах.

    13 – простое число, поэтому оно может быть разложено на множители лишь четырьмя способами: 13 = 13•1 = 1•13 = (-1)(-13) = (-13)(-1)

    Рассмотрим эти случаи

    а) =>

    б) =>

    в) =>

    г) =>

    4) Домашнее задание.

    Примеры. Решить уравнение в целых числах:

    а)

    2x = 42x = 52x = 5
    x = 2x = 5/2x = 5/2
    y = 0не подходитне подходит
    2x = -4не подходитне подходит
    x = -2
    y = 0

    б)

    в)

    Итоги. Что значит решить уравнение в целых числах?

    Какие методы решения неопределенных уравнений вы знаете?

    Упражнения для тренировки.

    1) Решите в целых числах.

    а) 8x + 12y = 32x = 1 + 3n, y = 2 — 2n, n Z
    б) 7x + 5y = 29x = 2 + 5n, y = 3 – 7n, n Z
    в) 4x + 7y = 75x = 3 + 7n, y = 9 – 4n, n Z
    г) 9x – 2y = 1x = 1 – 2m, y = 4 + 9m, m Z
    д) 9x – 11y = 36x = 4 + 11n, y = 9n, n Z
    е) 7x – 4y = 29x = 3 + 4n, y = -2 + 7n, n Z
    ж) 19x – 5y = 119x = 1 + 5p, y = -20 + 19p, p Z
    з) 28x – 40y = 60x = 45 + 10t, y = 30 + 7t, t Z

    2) Найти целые неотрицательные решения уравнения:

    а) 8x + 65y = 81x = 2, y = 1
    б) 17x + 23y = 183x = 4, y = 5

    3) Найти все пары целых чисел (x; y), удовлетворяющие следующим условиям

    а) x + y = xy(0;0), (2;2)
    б) (1;2), (5;2), (-1;-1), (-5;-2)

    Число 3 можно разложить на множители:

    a) б) в) г)
    в) (11;12), (-11;-12), (-11;12), (11;-12)
    г) (24;23), (24;-23), (-24;-23), (-24;23)
    д) (48;0), (24;1), (24;-1)
    е) x = 3m; y = 2m, mZ
    ж) y = 2x – 1x = m: y = 2m – 1, m Z
    з) x = 2m; y = m; x = 2m; y = -m, m Z
    и)решений нет

    4) Решить уравнения в целых числах

    (-3;-2), (-1;1), (0;4), (2;-2), (3;1), (5;4)
    (x — 3)(xy + 5) = 5(-2;3), (2;-5), (4;0)
    (y + 1)(xy – 1)=3(0;-4), (1;-2), (1;2)
    (-4;-1), (-2;1), (2;-1), (4;1)
    (-11;-12), (-11;12), (11;-12), (11;12)
    (-24;23), (-24;23), (24;-23), (24;23)

    5) Решить уравнения в целых числах.

    а) (-1;0)
    б)(5;0)
    в) (2;-1)
    г) (2; -1)
  • Детская энциклопедия “Педагогика”, Москва, 1972 г.
  • Алгебра-8, Н.Я. Виленкин, ВО “Наука”, Новосибирск, 1992 г.
  • Конкурсные задачи, основанные на теории чисел. В.Я. Галкин, Д.Ю. Сычугов. МГУ, ВМК, Москва, 2005г.
  • Задачи повышенной трудности в курсе алгебры 7-9 классов. Н.П. Косрыкина. “Просвещение”, Москва, 1991 г.
  • Алгебра 7, Макарычев Ю.Н., “Просвещение”.
  • Решение задач с использованием систем линейных уравнений с двумя переменными.

    Данная разработка предназначена для учеников 7 класса, а также для тех, кто желает отработать навык решения задач. Теоретическая часть содержит примеры решения задач с использованием систем уравнений. В практической части представлено большое количество задач с тематическим разделением.

    Просмотр содержимого документа
    «Решение задач с использованием систем линейных уравнений с двумя переменными.»

    Решение задач с использованием систем линейных уравнений с двумя переменными.

    Переходим теперь к практическому применению систем линейных уравнений с двумя переменными. Часто бывает, что в задачах неизвестны два, а то и три-четыре компонента. И в этом случае обозначение какого-то одного компонента переменной не облегчает решение задачи. Тогда нужно ввести две или три переменные. Вот здесь нам как раз и понадобится система уравнений и способы её решения. Приведём пример с полным описанием.

    Например, решить задачу. Лодка за 3 ч движения по течению и 4 ч против течения проходит 114 км. Найдите скорость лодки по течению и её скорость против течения, если за 6 ч движения против течения она проходит такой же путь, как за 5 ч по течению.

    Решение. В задаче описывается движение по воде. А значит, должна быть собственная скорость лодки и скорость течения реки. Они нам и не известны, поэтому обозначим через км/ч собственную скорость лодки, а через км/ч – скорость течения реки. Тогда скорость лодки по течению реки равна км/ч, а скорость лодки против течения реки — км/ч. За 3 ч движения по течению реки лодка пройдёт км, а за 5 ч — км. За 4 ч против течения лодка пройдёт км, а за 6 ч — км. По условию задачи известно, что за 3 ч по течению и 4 ч против течения лодка пройдёт всего 114 км, значит, составляем первое уравнение: Также по условию задачи известно, что за 6 ч движения против течения лодка проходит такой же путь, что и за 5 ч по течению, поэтому составляем второе уравнение:

    Для наглядности составим условие задачи в виде таблицы.


    источники:

    http://urok.1sept.ru/articles/417558

    http://multiurok.ru/index.php/files/reshenie-zadach-s-ispolzovaniem-sistem-lineinykh-u.html