Уравнения с многочленами 7 класс задания

«Многочлены и действия над ними». Алгебра. 7-й класс

Разделы: Математика

Класс: 7

Цели: обобщение и закрепление пройденного материала: повторить понятие многочлена, правило умножения многочлена на многочлен и закрепить это правило в ходе выполнения тестовой работы, закрепить навыки решения уравнений и задач с помощью уравнений.

Оборудование: плакат «Кто смолоду делает и думает сам, тот и становится потом надёжнее, крепче, умнее» (В. Шукшин). Кодоскоп, магнитная доска, кроссворд, карточки-тесты.

План урока.

1. Организационный момент.
2. Проверка домашнего задания.
3. Устные упражнения (разгадывание кроссворда).
4. Решение упражнений по теме.
5. Тест по теме: « Многочлены и действия над ними» (4 варианта).
6. Итоги урока.
7. Домашнее задание.

Ход урока

I. Организационный момент

Учащиеся класса делятся на группы по 4-5 человек, выбирается старший в группе.

II. Проверка домашнего задания.

Домашнее задание учащиеся готовят на карточке дома. Каждый ученик проверяет свою работу через кодоскоп. Учитель предлагает оценить домашнюю работу самому ученику и поставит оценку в ведомости, сообщая критерий оценки: «5» ─ задание выполнено верно и самостоятельно; «4» ─ задание выполнено верно и полностью, но с помощью родителей или одноклассников; «3» ─ во всех остальных случаях, если задание выполнено. Если задание не выполнено, можно поставить прочерк.

III. Устные упражнения.

1) Для повторения теоретических вопросов учащимся предлагается кроссворд. Кроссворд решают группой устно, и ответы дают учащиеся из разных групп. Выставляем оценки: «5» ─ 7 верных слов, «4» ─ 5,6 верных слов, «3» ─ 4 верных слова.

  1. Свойство умножения, используемое при умножении одночлена на многочлен;
  2. способ разложения многочлена на множители;
  3. равенство, верное при любых значениях переменной;
  4. выражение, представляющее собой сумму одночленов;
  5. слагаемые, имеющие одну и ту же буквенную часть;
  6. значение переменной, при котором уравнение обращается в верное равенство;
  7. числовой множитель у одночленов.

2) Выполните действия:

а) (3х – 5у) + (4х – 3у)
в) 5а2(4а – 2)

б) (6а ─ 4b) – (5а + b)
г) (2а – 3)(4 – а)

IV. Письменные упражнения по теме: « Многочлены и действия над ними».

1. Выполните действия:

а) –5а(а 2 – 3а – 4 );
б) (m ─ 2n)(m + 2n─1);
в) (5b – 1)(b 2 – 5b + 1);
г) (а 3 – а 2 + а – 1)(а + 1).

2. Решите уравнения:

а) 3х 2 – (3х + 2)(х – 1) = 8
б) (3х – 2)(2х + 3) – (6х 2 – 85) = 99
в) (1 – х)(х + 4) + х(х +4) = 0

Ответ: х = 6.
Ответ: х = 4.
Ответ: х = –4.

3. Если длину прямоугольника уменьшить на 4 см, а ширину его увеличить на 7 см, то получится квадрат, площадь которого будет на 100 см 2 больше площади прямоугольника. Определить сторону квадрата. (Cторона квадрата равна 24 см).

Учащиеся решают задания в группах, обсуждая, помогая друг другу. Когда группы выполнили задание, осуществляется проверка по решениям, записанным на доске. После проверки выставляются оценки: за данную работу учащиеся получают две оценки: самооценка и оценка группы. Критерий оценки: «5» ─ всё решил верно, и помогал товарищам, «4» ─ допустил ошибки при решении, но исправил их с помощью товарищей, «3» ─ интересовался решением и всё решил с помощью одноклассников.

V. Тестовая работа.

I вариант

1. Представьте в стандартном виде многочлен 3а – 5а∙а – 5 + 2а 2 – 5а +3.

1) ─ 3а2 – 2а – 2
3) ─ 3а2 – 8а – 2

2) ─5а3 – 2
4) 2а2 – 7а – 2

2. Преобразуйте в многочлен стандартного вида: (3а – 2аb + 9) + (5аb – 9 — 3а ).

1) 3аb + 6а + 18
3) 8аb – 5а

2) 3а – 2аb + 9 + 5аb – 9 – 3а
4) 3аb

3. Найдите разность многочленов 2х 2 – х + 2 и ─ 3х 2 ─2х + 1.

1) 5х 2 + х + 3
3) 5х 2 ─ 3х + 3

2) 5х 2 +х +1
4) ─ х 2 ─ 3х + 3

4. Представьте в виде многочлена: (2а – 1)( –a 2 +а – 3).

1) ─2а 3 + 2а 2 – 6а
3) ─2а 3 + а 2 – 7а + 3

2) ─2а 3 + 3а 2 – 6а – 3
4) ─2а 3 + 3а 2 – 7а + 3

5. Представьте в виде многочлена выражение: 2 – (3а – 1)(а + 5).

1) 3а 2 +14а – 7
3) ─3а 2 – 14а + 7

2) 3а 2 – 14а + 7
4) ─3а 2 ─ 14а – 3

6. Решите уравнение: 2х 2 + 7х = 0.

1) х = 0
3) х = 0 и х = ─3,5

2) х = ─3,5
4) х = 0 и х = 3,5

7. Разложите на множители многочлен: 15а 3 b – 3а 2 b 2

1)─3а 2 b(b – 5а)
3)─3а 2 b(5а – b)

2)─3а 2 b(─5а – b)
4)─3а 2 b(─5а + 3b)

II вариант

1. Представьте в стандартном виде многочлен 5х 2 – 5 + 4х ─ 3х∙х + 2 – 2х.

1) 5х 2 – х – 1
3) 2х 2 + 6х – 1

2) 4х 3 – 1
4) 2х 2 + 2х – 3

2. Преобразуйте в многочлен стандартного вида: (8ху – 5у + 2) + (3у – 3 – 8ху).

1) 8ху – 5у + 2 + 3у – 3 – 8ху
3) 16ху – 2у – 1

2) – 2у – 1
4) – 2у + 5

3. Найдите разность многочленов 4у 2 – 2у + 3 и — 2у 2 + 3у +2.

1) 6у 2 – 5у + 5
3) 6у 2 – 5у + 1

2) 6у 2 + у + 5
4) 2у 2 + у + 5

4. Представьте в виде многочлена выражение 1 – (2у – 3)(у + 2).

1) ─2у 2 – у + 7
3) 2у 2 + у – 7

2) ─2у 2 – у – 5
4) 2у 2 – у +7

5. Решите уравнение: ─3х 2 + 5х = 0.

1) х =
3) х = 0 и х = ─

2) х = 0 и х =
4) х = 0

6. Представьте в виде произведения: 5а 3 – 3а 2 – 10а + 6.

1) (а 2 – 2)(5а + 3)
3) (а 2 + 2)(5а + 3)

2) (а 2 + 2)(5а – 3)
4) (а 2 – 2)(5а – 3)

7. Разложите на множители многочлен: 18х 2 у 4 – 6ху 3

1)─2ху 3 (─9ху – 3)
3)─2ху 3 (─9ху + 3)

2)─2ху 3 (9ху + 6)
4)─2ху 3 (6 – 9ху)

III вариант

1. Найдите значение многочлена ─ 6а 2 – 5аb + b 2 – ( ─3а 2 – 5аb + b 2 ) при а = ─ , b=─3.

3) ─

4) ─

2. Упростите выражение: ─8х – ( 5х – (3х – 7 )).

1) ─ 10х – 7
3) ─16х – 7

3. Определите степень многочлена: 3х 2 у ─ 4х 3 у ─3ху 2 + 2х 3 у + у 2 + 2х 3 у.

4. Выполните умножение: ─3х∙( ─ 2х 2 + х – 3 )

1) 6х 2 + 3х + 9х
3) ─6х 3 – 3х 2 + 9х

2) 6х 3 – 3х 2 +9х
4) 6х 3 – 3х 2 – 9х

5. Какой многочлен надо поставить вместо *, чтобы выполнялось равенство: ─4а 2 ∙ * = 12а 6 х – 20а 2 х + 12а 3 ?

1) ─3а 4 х – 5х – 3а
3) ─3а 4 х + 5х – 3а

2) ─3а 3 х + 5х – 3а
4) 3а 4 х + 5х – 3а

6. Представьте в виде произведения: 3х 3 – 2х 2 – 6х + 4.

1) (х 2 + 2)(3х + 2)
3) (х 2 + 2)(3х – 2)

2) (х 2 – 2)(3х + 2)
4) (х 2 – 2)(3х – 2)

7. Представьте в виде произведения выражение: а(х – у) ─2b(у – х)

1) (х – у)(а ─ 2b)
3) (х – у)(а + 2b)

2) (у – х)(а ─ 2b)
4) (у – х)(а + 2)

IV вариант

1. Найдите значение многочлена ─ 8а 2 – 2ах – х 2 – ( ─4а 2 – 2ах – х 2 ) при а= ─, х= ─ 2 .

1) ─ 16

2) ─

3) ─

4)

2. Упростите выражение: ─ 5а – (2а – (3а – 5)).

1) ─4а – 5
3) ─10а – 5

3. Определите степень многочлена: а 2 b 2 + 2аb – 2а 2 b 2 – 2а 2 + 5а + а 2 b 2 +1.

4. Выполните умножение: ─4а ∙ (─5а 2 + 2а – 1).

1) 20а 3 – 8а 2 – 4а
3) ─20а 3 – 8а 2 + 4а

2) 20а 3 + 8а 2 + 4а
4) 20а 3 — 8а 2 + 4а

5. Какой многочлен надо поставить вместо *, чтобы выполнялось равенство: ─3х 3 ∙ * = 6х 6 а – 12х 3 а + 9х 4 ?

1) ─2х 3 а + 4а – 3х
3) 2х 3 а + 4а – 3х

2) ─2х 2 а + 4а – 3х
4) ─2х 3 а – 4а – 3х

6. Представьте в виде многочлена: (3х – 2)(─x 2 + х – 4).

1) ─3х 3 + 5х 2 – 10х – 8
3) ─3х 3 + 3х 2 – 14х + 8

2) ─3х 3 + 3х 2 – 12х
4) ─3х 3 + 5х 2 – 14х + 8

7. Представьте в виде произведения выражение: 2с(b – а) – d(а – b)

1) (а – b)(2с – d)
3) (b – а)(2с – d)

2) (b – а)(2с + d)
4) (а – b)(2с + d)

Многочлены

Определения и примеры

Многочлен — это сумма одночленов.

Например, выражение 2x + 4xy 2 + x + 2xy 2 является многочленом. Проще говоря, многочлен это несколько одночленов, соединенных знаком «плюс».

В некоторых многочленах одночлены могут соединяться знаком «минус». Например, 3x − 5y − 2x . Следует иметь ввиду, что это по-прежнему сумма одночленов. Многочлен 3x − 5y − 2x это сумма одночленов 3x , −5y и − 2x , то есть 3x + (−5y) + (−2x) . После раскрытия скобок образуется многочлен 3x − 5y − 2x .

Соответственно, рассматривая по отдельности каждый одночлен многочлена, его нужно рассматривать вместе со знаком, который перед ним располагается. Так, в многочлене 3x − 5y − 2x минус перед одночленом 5y относится к коэффициенту 5 , а минус перед одночленом 2x относится к коэффициенту 2 . Чтобы не противоречить определению многочлена, вычитание можно заменять сложением:

Но это действие нагромождает многочлен скобками, поэтому вычитание на сложение не заменяют, учитывая в будущем, что каждый одночлен многочлена будет рассматриваться вместе со знаком, который перед ним располагается.

Одночлены, из которых состоит многочлен, называют членами многочлена.

Если многочлен состоит из двух членов, то такой многочлен называют двучленом. Например, многочлен x + y является двучленом.

Если многочлен состоит из трёх членов, то такой многочлен называют трехчленом. Например, многочлен x + y + z является трехчленом.

Если какой-нибудь многочлен содержит обычное число, то это число называют свободным членом многочлена. Например, в многочлене 3x + 5y + z + 7 член 7 является свободным членом. Свободный член многочлена не содержит буквенной части.

Многочленом также является любое числовое выражение. Так, следующие выражения являются многочленами:

Сложение многочленов

К многочлену можно прибавить другой многочлен. Например, прибавим к многочлену 2x + y многочлен 3x + y.

Заключим в скобки каждый многочлен и соединим их знаком «плюс», указывая тем самым, что мы складываем многочлены:

Теперь раскрываем скобки:

Далее приведём подобные слагаемые:

Таким образом, при сложении многочленов 2x + y и 3x + y получается многочлен 5x + 2y.

Разрешается также сложение многочленов в столбик. Для этого их следует записать так, чтобы подобные слагаемые располагались друг под другом, затем выполнить самó сложение. Решим предыдущий пример в столбик:

Если в одном из многочленов окажется слагаемое, которое не имеет подобного слагаемого в другом многочлене, оно переносится к результату без изменений. Как говорят при сложении обычных чисел — «сносится».

Например, сложим в столбик многочлены 2x 2 + y 3 + z + 2 и 5x 2 + 2y 3 . Для начала запишем их так, чтобы подобные слагаемые располагались друг под другом, затем выполним их сложение. Обнаруживаем, что во втором многочлене не содержатся слагаемые, которые можно было бы сложить со слагаемыми z и 2 из первого многочлена. Поэтому слагаемые z и 2 переносятся к результату без изменений (вместе со своими знаками)

Решим этот же пример с помощью скобок:

Пример 3. Сложить многочлены 7x 3 + y + z 2 и x 3 − z 2

Решим этот пример в столбик. Запишем второй многочлен под первым так, чтобы подобные слагаемые располагались друг под другом:

Во втором многочлене не было слагаемого, которого можно было бы сложить со слагаемым y из первого многочлена, поэтому это слагаемое было перенесёно к результату без изменений. А сложение подобных слагаемых z 2 и −z 2 дало в результате 0 . Ноль по традиции не записываем. Поэтому окончательный ответ это 8x 3 + y.

Решим этот же пример с помощью скобок:

Вычитание многочленов

Из многочлена можно вычесть другой многочлен. Например, вычтем из многочлена 2x + y многочлен 3x + y .

Заключим в скобки каждый многочлен и соединим их знаком «минус», указывая тем самым, что мы выполняем вычитание:

Теперь раскроем скобки:

Приведём подобные слагаемые. Слагаемые y и −y являются противоположными. Сумма противоположных слагаемых равна нулю

Приводя подобные слагаемые, мы обычно складываем их. Но в качестве знака операции можно использовать знак одночлена. Так, приводя подобные слагаемые y и −y мы сложили их по правилу приведения подобных слагаемых. Но можно не складывая, записать их друг за другом

Получится тот же результат, поскольку выражения y + (−y) и y − y одинаково равны нулю:

Возвращаемся к нашему примеру. Вычеркнем члены y и −y :

А сложение подобных слагаемых 2x и −3x , даст в результате −x

Или без сложения, записав члены друг за другом:

Значит, при вычитании из многочлена (2x + y) многочлена (3x + y) получится одночлен −x .

Решим этот же пример в столбик:

Пример 2. Вычесть из многочлена 13x − 11y + 10z многочлен −15x + 10y − 15z

Решим этот пример с помощью скобок, а затем в столбик:

Следует быть внимательным при вычитании в столбик. Если не следить за знаками, вероятность допустить ошибку очень высокá. Нужно учитывать не только знак операции вычитания, но и знак располагающийся перед слагаемым.

Так, в данном примере из слагаемого 10z вычиталось слагаемое −15z

Результат вычисления этого выражения должен быть положительным, поскольку 10z − (−15z) = 10z + 15z .

Складывая или вычитая многочлены при помощи скобок, первый многочлен в скобки можно не заключать. Так, в данном примере из многочлена 13x − 11y + 10z требовалось вычесть многочлен −15x + 10y − 15z

Вычитание было записано так:

Но первый многочлен можно не заключать в скобки:

Заключение первого многочлена в скобки на первых порах позволяет начинающим наглядно увидеть, что второй многочлен полностью вычитается из первого, а не из определенной его части.

Представление многочлена в виде суммы или разности

Многочлен можно представить в виде суммы или разности многочленов. По сути это обратное действие раскрытию скобок, поскольку идея подразумевает, что имеется некий многочлен, и из него можно образовать сумму или разность многочленов, заключив в скобки некоторые из членов исходного многочлена.

Пусть имеется многочлен 3x + 5y + z + 7 . Представим его в виде суммы двух многочленов.

Итак, из членов исходного многочлена нужно образовать два многочлена, сложенные между собой. Давайте заключим в скобки члены 3x и 5y , а также члены z и 7 . Далее объединим их с помощью знака «плюс»

Значение исходного многочлена при этом не меняется. Если раскрыть скобки в получившемся выражении (3x + 5y) + (z + 7) , то снова получим многочлен 3x + 5y + z + 7 .

В скобки также можно было бы заключить члены 3x, 5y, z и прибавить это выражение в скобках к члену 7

Представляя многочлен в виде разности многочленов, нужно придерживаться следующего правила. Если члены заключаются в скобки после знака минуса, то этим членам внутри скобок нужно поменять знаки на противоположные.

Вернемся к многочлену 3x + 5y + z + 7 . Представим его в виде разности двух многочленов. Давайте заключим в скобки многочлен 3x и 5y , а также z и 7, затем объединим их знаком «минус»

Но мы видим, что после знака минуса следует заключение членов z и 7 в скобки. Поэтому этим членам нужно поменять знаки на противоположные. Делать это нужно внутри скобок:

Заключая члены в скобки, нужно следить за тем, чтобы значение нового выражения тождественно было равно предыдущему выражению. Этим и объясняется замена знаков членов внутри скобок. Если в выражении (3x + 5y) − (−z − 7) раскрыть скобки, то получим изначальный многочлен 3x + 5y + z + 7 .

Вообще, представляя многочлен в виде суммы или разности, можно придерживаться следующих правил:

Если перед скобками ставится знак «плюс», то все члены внутри скобок записываются со своими же знаками.

Если перед скобками ставится знак «минус», то все члены внутри скобок записываются с противоположными знаками.

Пример 1. Представить многочлен 3x 4 + 2x 3 + 5x 2 − 4 в виде суммы каких-нибудь двучленов:

Пример 2. Представить многочлен 3x 4 + 2x 3 + 5x 2 − 4 в виде разности каких-нибудь двучленов:

Перед вторыми скобками располагался минус, поэтому члены 5x 2 и −4 были записаны с противоположными знаками.

Многочлен и его стандартный вид

Многочлен, как и одночлен, можно привести к стандартному виду. В результате получается упрощенный многочлен, с которым удобно работать.

Чтобы привести многочлен к стандартному виду, нужно привести подобные слагаемые в этом многочлене. Подобные слагаемые в многочлене называют подобными членами многочлена, а приведение подобных слагаемых в многочлене — приведением его подобных членов.

Подобные члены многочлена это члены, имеющие одинаковую буквенную часть.

Приведём многочлен 2x + 4xy 2 + xxy 2 к стандартному виду. Для этого приведём его подобные члены. Подобными членами в этом многочлене являются 2x и x , а также 4xy 2 и −xy 2 .

В результате получили многочлен 3x + 3xy 2 , который не имеет подобных членов. Такой вид многочлена называют многочленом стандартного вида.

Как и у одночлена, у многочлена имеется степень. Чтобы определить степень многочлена, сначала его нужно привести к стандартному виду, затем выбрать тот одночлен, степень которого является наибольшей из всех.

В предыдущем примере мы привели многочлен 2x + 4xy 2 + xxy 2 к стандартному виду. В результате получили многочлен 3x + 3xy 2 . Он состоит из двух одночленов. Степенью первого одночлена является 1, а степенью второго одночлена является 3. Наибольшая из этих степеней является 3. Значит, многочлен 3x + 3xy 2 является многочленом третьей степени.

А поскольку многочлен 3x + 3xy 2 тождественно равен предыдущему многочлену 2x + 4xy 2 + xxy 2 , то и этот предыдущий многочлен является многочленом третьей степени.

Степенью многочлена стандартного вида называют наибольшую из степеней, входящих в него одночленов.

В некоторых многочленах прежде всего требуется привести к стандартному виду одночлены, входящие в него, и только потом приводить сам многочлен к стандартному виду.

Например, приведем многочлен 3xx 4 + 3xx 3 − 5x 2 x 3 − 5x 2 x к стандартному виду. Этот многочлен состоит из одночленов, которые не приведены к стандартному виду. Сначала приведём их к стандартному виду:

Теперь получившийся многочлен 3x 5 + 3x 4 − 5x 5 − 5x 3 можно привести к стандартному виду. Для этого приведем его подобные члены. Подобными являются члены 3x 5 и −5x 5 . Больше подобных членов нет. Члены 3x 4 и −5x 3 будут переписаны без изменений:

Пример 2. Привести многочлен 3ab + 4cc + ab + 3c 2 к стандартному виду.

Сначала приведем одночлен 4cc , входящий в исходный многочлен, к стандартному виду, получим 4с 2

Далее приведём подобные члены:

Пример 3. Привести многочлен 4x 2 − 4yx 2 + 17yy к стандартному виду.

Подобными членами в данном многочлене являются 4x 2 и −x 2 , а также −4y , 17y и −y . Приведем их:

Приводя подобные члены, можно использовать скобки. Для этого подобные члены следует заключить в скобки, затем объединить выражения в скобках с помощью знака «плюс».

Решим предыдущий пример с помощью скобок. Подобными членами в нём были 4x 2 и −x 2 , а также −4y , 17y и −y . Заключим их в скобки и объединим с помощью знака «плюс»

Теперь в скобках выполним приведение подобных членов:

В получившемся выражении (3x 2 ) + (12y) раскроем скобки:

Конечно, такой подход нагромождает выражение, но зато позволяет свести к минимуму допущение ошибок.

Пример 4. Привести многочлен 12x 2 − 9y − 9x 2 + 6y + y к стандартному виду.

Заключим в скобки подобные слагаемые и объединим их с помощью знака «плюс»

Далее вычисляем содержимое скобок:

Избавляемся от скобок при помощи раскрытия:

Изменение порядка следования членов

Рассмотрим двучлен x − y . Как сделать так, чтобы член −y располагался первым, а член x вторым?

Многочлен это сумма одночленов. То есть исходный двучлен двучлен x − y является суммой x и −y

От перестановки мест слагаемых сумма не меняется. Тогда x и −y можно поменять местами

Пример 2. В двучлене −y − x поменять местами члены.

Двучлен −y − x это сумма членов −y и −x

Тогда согласно переместительному закону сложения получим (−x) + (−y) . Избавим выражение от скобок:

Таким образом, решение можно записать покороче:

Пример 3. Упорядочить члены многочлена x + xy 3 − x 2 в порядке убывания степеней.

Наибольшую степень в данном многочлене имеет член xy 3 , далее −x 2 , а затем x . Запишем их в этом порядке:

Умножение одночлена на многочлен

Одночлен можно умножить на многочлен. Чтобы умножить одночлен на многочлен, нужно этот одночлен умножить на каждый член многочлена и полученные произведения сложить.

Например, умножим одночлен 3x 2 на многочлен 2x + y + 5 . При умножении одночлена на многочлен, последний нужно заключать в скобки:

Теперь умножим одночлен 3x 2 на каждый член многочлена 2x + y + 5 . Получающиеся произведения будем складывать:

Вычислим получившиеся произведения:

Таким образом, при умножении одночлена 3x 2 на многочлен 2x + y + 5 получается многочлен 6x 3 + 3x 2 y + 15x 2 .

Умножение желательно выполнять в уме. Так решение получается короче:

В некоторых примерах одночлен располагается после многочлена. В этом случае опять же каждый член многочлена нужно перемножить с одночленом и полученные произведения сложить.

Например, предыдущий пример мог быть дан в следующем виде:

В этом случае мы умножили бы каждый член многочлен (2x + y + 5) на одночлен 3x 2 и сложили бы полученные результаты:

Умножение одночлена на многочлен (или умножение многочлена на одночлен) основано на распределительном законе умножения.

То есть чтобы умножить число a на сумму b + c , нужно число a умножить на каждое слагаемое суммы b + c , и полученные произведения сложить.

Вообще, умножение одночлена на многочлен, да и распределительный закон умножения имеют геометрический смысл.

Допустим, имеется прямоугольник со сторонами a и b

Увеличим сторону b на c

Достроим отсутствующую сторону и закрасим для наглядности получившийся прямоугольник:

Теперь вычислим площадь получившегося большого прямоугольника. Он включает в себя желтый и серый прямоугольники.

Чтобы вычислить площадь получившегося большого прямоугольника, можно по отдельности вычислить площади желтого и серого прямоугольников и сложить полученные результаты. Площадь желтого прямоугольника будет равна ab , а площадь серого ac

А это всё равно что длину большого прямоугольника умножить на его ширину. Длина в данном случае это b + c , а ширина это a

или ширину умножить на длину, чтобы расположить буквы a, b и c в алфавитном порядке:

Таким образом, выражения a × (b + c) и ab + ac равны одному и тому же значению (одной и той же площади)

К примеру, пусть у нас имеется прямоугольник длиной 4 см, и шириной 2 см, и мы увеличили длину на 2 см

Тогда площадь данного прямоугольника будет равна 2 × (4 + 2) или сумме площадей желтого и серого прямоугольников: 2 × 4 + 2 × 2 . Выражения 2 × (4 + 2) и 2 × 4 + 2 × 2 равны одному и тому же значению 12

2 × (4 + 2) = 2 × 4 + 2 × 2 = 12.

Действительно, в получившемся большом прямоугольнике содержится двенадцать квадратных сантиметров:

Пример 2. Умножить одночлен 2a на многочлен a 2 − 7a − 3

Умножим одночлен 2a на каждый член многочлена a 2 − 7a − 3 и сложим полученные произведения:

Пример 3. Умножить одночлен −a 2 b 2 на многочлен a 2 b 2 − a 2 − b 2

Умножим одночлен −a 2 b 2 на каждый член многочлена a 2 b 2 − a 2 − b 2 и сложим полученные произведения:

Пример 4. Выполнить умножение −1,4x 2 y 6 (5x 3 y − 1,5xy 2 − 2y 3 )

Умножим одночлен −1,4x 2 y 6 на каждый член многочлена 5x 3 y − 1,5xy 2 − 2y 3 и сложим полученные произведения:

Пример 5. Выполнить умножение

Умножим одночлен на каждый член многочлена и сложим полученные произведения:

Выполняя короткие решения, результаты записывают сразу друг за другом вместе со знаком полученного члена. Рассмотрим поэтапно, как было выполнено короткое решение данного примера.

Сначала одночлен нужно умножить на первый член многочлена , то есть на . Умножение выполняется в уме. Получается результат . В исходном выражении ставим знак равенства и записываем первый результат:

После этого в исходном выражении никаких знаков ставить нельзя. Нужно сразу приступать к следующему умножению.

Следующим шагом будет умножение одночлена на второй член многочлена , то есть на . Получается результат . Этот результат является положительным, то есть со знаком плюс . В исходном выражении этот результат записывается вместе с этим плюсом сразу после члена

После этого в исходном выражении никаких знаков ставить нельзя. Нужно сразу приступать к следующему умножению.

Следующим шагом будет умножение одночлена на третий член многочлена , то есть на . Получается результат . Этот результат является отрицательным, то есть со знаком минус. В исходном выражении этот результат записывается вместе со своим минусом сразу после члена

Иногда встречаются выражения, в которых сначала нужно выполнить умножение одночлена на многочлен, затем опять на одночлен. Например:

В этом примере сначала член 2 умножается на многочлен (a + b) , затем результат умножается на c . Для начала выполним умножение 2 на (a + b) и заключим полученный результат в скобки

Скобки говорят о том, что результат умножения 2 на (a + b) полностью умножается на c . Если бы мы не заключили скобки 2a + 2b , то получилось бы выражение 2a + 2b × с , в котором на с умножается только 2b . Это привело бы к изменению значения изначального выражения, а это недопустимо.

Итак, получили (2a + 2b)с . Теперь умножаем многочлен (2a + 2b) на одночлен c и получаем окончательный результат:

Умножение также можно было бы выполнить сначала умножив (a + b) на с и полученный результат перемножить с членом 2

В данном случае срабатывает сочетательный закон умножения, который говорит о том, что если выражение состоит из нескольких сомножителей, то произведение не будет зависеть от порядка действий:

a × b × с = (a × b) × с = a × (b × с)

То есть умножение можно выполнять в любом порядке. Это не приведёт к изменению значения изначального выражения.

Умножение многочлена на многочлен

Чтобы умножить многочлен на многочлен, нужно каждый член первого многочлена умножить на каждый член второго многочлена и полученные произведения сложить.

Например, умножим многочлен x + 3 на y + 4

Заключим в скобки каждый многочлен и объединим их знаком умножения ×

Либо запишем их друг за другом без знака × . Это тоже будет означать умножение:

Теперь умножим каждый член первого многочлена (x + 3) на каждый член второго многочлена (y + 4) . Здесь опять же будет применяться распределительный закон умножения:

Отличие в том, что у нас вместо переменной c имеется многочлен (y + 4) , состоящий из членов y и 4 . Наша задача умножить (x + 3) сначала на y , затем на 4. Чтобы не допустить ошибку, можно представить, что члена 4 пока не существует вовсе. Для этого его можно закрыть рукой:

Получаем привычное для нас умножение многочлена на одночлен. А именно, умножение многочлена (x + 3) на одночлен y . Выполним это умножение:

Мы умножили (x + 3) на y . Теперь осталось умножить (x + 3) на 4. Для этого умножаем каждый член многочлена (x + 3) на одночлен 4. На этот раз в исходном выражении (x + 3)(y + 4) рукой закроем y , поскольку на него мы уже умножали многочлен (x + 3)

Получаем умножение многочлена (x + 3) на одночлен 4. Выполним это умножение. Умножение необходимо продолжать в исходном примере (x + 3)(y + 4) = xy + 3y

Таким образом, при умножении многочлена (x + 3) на многочлен (y + 4) получается многочлен xy + 3y + 4x + 12.

По другому умножение многочлена на многочлен можно выполнить ещё так: каждый член первого многочлена умножить на второй многочлен целиком и полученные произведения сложить.

Решим предыдущий пример, воспользовавшись этим способом. Умножим каждый член многочлена x + 3 на весь многочлен y + 4 целиком и сложим полученные произведения:

В результате приходим к умножению одночлена на многочлен, которое мы изучили ранее. Выполним это умножение:

Получится тот же результат что и раньше, но члены полученного многочлена будут располагаться немного по другому.

Умножение многочлена на многочлен имеет геометрический смысл. Допустим, имеется прямоугольник, длина которого a и ширина b

Площадь этого прямоугольника будет равна a × b .

Увеличим длину данного прямоугольника на x , а ширину на y

Достроим отсутствующие стороны и закрасим для наглядности получившиеся прямоугольники:

Теперь вычислим площадь получившегося большого прямоугольника. Для этого вычислим по отдельности площадь каждого прямоугольника, входящего в этот большой прямоугольник и сложим полученные результаты. Площадь жёлтого прямоугольника будет равна ab , площадь серого xb , площадь фиолетового ay , площадь розового xy

А это всё равно что умножить длину получившегося большого прямоугольника на его ширину. Длина в данном случае это a + x , а ширина b + y

То есть выражения (a + x)(b + y) и ab + xb + ay + xy тождественно равны

Представим, что у нас имелся прямоугольник, длиной 6 см и шириной 3 см, и мы увеличили его длину на 2 см, а ширину на 1 см

Достроим отсутствующие стороны и закрасим для наглядности получившиеся прямоугольники:

Площадь получившегося большого прямоугольника будет равна (6 + 2)(3 + 1) или сумме площадей прямоугольников, входящих в большой прямоугольник: 6 × 3 + 2 × 3 + 6 × 1 + 2 × 1 . В обоих случаях получим один и тот же результат 32

6 × 3 + 2 × 3 + 6 × 1 + 2 × 1 = 32

(6 + 2)(3 + 1) = 6 × 3 + 2 × 3 + 6 × 1 + 2 × 1 = 18 + 6 + 6 + 2 = 32

Действительно, в получившемся большом прямоугольнике содержится тридцать два квадратных сантиметра:

Пример 2. Умножить многочлен a + b на c + d

Заключим исходные многочлены в скобки и запишем их друг за другом:

Теперь умножим каждый член первого многочлена (a + b) на каждый член второго многочлена (c + d)

Пример 4. Выполнить умножение (−x − 2y)(x + 2y 2 )

Умножим каждый член многочлена (−x − 2y) на каждый член многочлена (x + 2y 2 )

Результат перемножения членов нужно записывать вместе со знаками этих членов. Рассмотрим поэтапно, как был решён данный пример.

Итак, требуется умножить многочлен (−x − 2y) на многочлен (x + 2y 2 ) . Сначала надо умножить многочлен (−x − 2y) на первый член многочлена (x + 2y 2 ) , то есть на x .

Умножаем −x на x , получаем −x 2 . В исходном выражении (−x − 2y)(x + 2y 2 ) ставим знак равенства и записываем −x 2

После этого в исходном выражении никаких знаков ставить нельзя. Нужно сразу приступать к следующему умножению. А именно умножению −2y на x . Получится −2xy . Этот результат является отрицательным, то есть со знаком минус. В исходном выражении записываем результат −2xy сразу после члена −x 2

Теперь умножаем многочлен (−x − 2y) на второй член многочлена (x + 2y 2 ) , то есть на 2y 2

Умножаем −x на 2y 2 , получаем −2xy 2 . В исходном выражении записываем этот результат сразу после члена −2xy

Приступаем к следующему умножению. А именно умножению −2y на 2y 2 . Получаем −4y 3 . В исходном выражении этот результат записываем вместе со своим минусом сразу после члена −2xy 2

Пример 5. Выполнить умножение (4a 2 + 2abb 2 )(2a − b)

Умножим каждый член многочлена (4a 2 + 2abb 2 ) на каждый член многочлена (2a − b)

В получившемся выражении можно привести подобные слагаемые:

Пример 6. Выполнить умножение −(a + b)(сd)

В этот раз перед скобками располагается минус. Этот минус является коэффициентом −1 . То есть исходное выражение является произведением трёх сомножителей: −1 , многочлена (a + b) и многочлена (с − d) .

Согласно сочетательному закону умножения, если выражение состоит из нескольких сомножителей, то его можно вычислять в любом порядке.

Поэтому сначала можно перемножить многочлены (a + b) и (сd) и полученный в результате многочлен умножить на −1 . Перемножение многочленов (a + b) и (с − d) нужно выполнять в скобках

Теперь перемножаем −1 и многочлен (ac + bc − ad − bd) . В результате все члены многочлена ( ac + bc − ad − bd ) поменяют свои знаки на противоположные:

Либо можно было перемножить −1 с первым многочленом (a + b) и результат перемножить с многочленом (с − d)

Пример 7. Выполнить умножение x 2 (x + 5)(x − 3)

Сначала перемножим многочлены (x + 5) и (x − 3) , затем полученный в результате многочлен перемножим с x 2

Пример 8. Выполнить умножение (a + 1)(a + 2)(a + 3)

Сначала перемножим многочлены (a + 1) и (a + 2) , затем полученный многочлен перемножим с многочленом (a + 3)

Итак, перемножим (a + 1) и (a + 2)

Полученный многочлен (a 2 + a + 2a + 2) перемножим с (a + 3)

Если быстрое перемножение многочленов на первых порах даётся тяжело, можно воспользоваться подробным решением, суть которого заключается в том, чтобы записать, как каждый член первого многочлена умножается на весь второй многочлен целиком. Такая запись хоть и занимает место, но позволяет свести к минимуму допущение ошибок.

Например, выполним умножение (a + b)(c + d)

Запишем как каждый член многочлена a + b умножается на весь многочлен c + d целиком. В результате придём к умножению одночлена на многочлен, выполнять которое проще:

Такая запись удобна при умножении двучлена на какой-нибудь многочлен, в котором содержится больше двух членов. Например:

Или при перемножении многочленов, содержащих больше двух членов. Например, умножим многочлен x 2 + 2x − 5 на многочлен x 3 − x + 2

Запишем перемножение исходных многочленов в виде умножения каждого члена многочлена x 2 + 2x − 5 на многочлен x 3 − x + 2 .

Получили привычное для нас умножения одночленов на многочлены. Выполним эти умножения:

В получившемся многочлене приведём подобные члены:

Одночлены, входящие в получившийся многочлен, расположим в порядке убывания степеней. Делать это необязательно. Но такая запись будет красивее:

Вынесение общего множителя за скобки

Мы уже учились выносить общий множитель за скобки в простых буквенных выражениях. Теперь мы немного углубимся в эту тему, и научимся выносить общий множитель за скобки в многочлене. Принцип вынесения будет таким же, как и в простом буквенном выражении. Небольшие трудности могут возникнуть лишь с многочленами, состоящими из степеней.

Рассмотрим простой двучлен 6xy + 3xz . Вынесем в нём общий множитель за скобки. В данном случае за скобки можно вынести общий множитель 3x . Напомним, что при вынесении общего множителя за скобки, каждое слагаемое исходного выражения надо разделить на этот общий множитель:

В результате получили 3x(2y + z) . При этом в скобках образовался другой более простой многочлен (2y + z) . Выносимый за скобки общий множитель выбирают так, чтобы в скобках остались члены, которые не содержат общего буквенного множителя, а модули коэффициентов этих членов не имели общего делителя, кроме единицы.

Поэтому в приведенном примере за скобки был вынесен общий множитель 3x . В скобках образовался многочлен 2y + z , модули коэффициентов которого не имеют общего делителя кроме единицы. Это требование можно выполнить, если найти наибольший общий делитель (НОД) модулей коэффициентов исходных членов. Этот НОД станóвится коэффициентом общего множителя, выносимого за скобки. В нашем случае исходный многочлен был 6xy + 3xz . Коэффициенты исходных членов это числа 6 и 3, а их НОД равен 3.

А буквенную часть общего множителя выбирают так, чтобы члены в скобках не имели общих буквенных множителей. В данном случае это требование выполнилось легко. Общий буквенный множитель был виден невооруженным глазом — это был множитель x .

Пример 2. Вынести общий множитель за скобки в многочлене x 2 + x + xy

Все члены данного многочлены имеют коэффициент единицу. Наибольший общий делитель модулей из этих единиц есть единица. Поэтому числовая часть выносимого за скобки множителя будет единицей. Но единицу в качестве коэффициента не записывают.

Далее выбираем буквенную часть общего множителя. Прежде всего надо понимать, что любой член, входящий в многочлен, является одночленом. А одночлен это произведение чисел, переменных и степеней. Даже если членом многочлена является обычное число, его всегда можно представить в виде произведения единицы и самого этого числа. Например, если в многочлене содержится число 5, его можно представить в виде 1 × 5 . Если в многочлене содержится число 8 , то его можно представить в виде произведения множителей 2 × 2 × 2 (или как 2 × 4 )

С переменными такая же ситуация. Если в многочлене содержится член, являющийся переменной или степенью, их всегда можно представить в виде произведения. К примеру, если многочлен содержит одночлен x , его можно представить в виде произведения 1 × x . Если же многочлен содержит одночлен x 3 , его можно представить в виде произведения xxx .

Одночлены, из которых состоит многочлен x 2 + x + xy , можно разложить на множители так, чтобы мы смогли увидеть буквенный сомножитель, который является общим для всех членов.

Итак, первый член многочлена x 2 + x + xy , а именно x 2 можно представить в виде произведения x × x . Второй член x можно представить в виде 1 × x . А третий член xy оставим без изменения, или для наглядности перепишем его с помощью знака умножения x × y

Каждый член многочлена представлен в виде произведения множителей, из которых состоят эти члены. Легко заметить, что во всех трёх произведениях общим сомножителем является x. Выделим его:

Этот множитель x и вынесем за скобки. Опять же при вынесении общего множителя за скобки каждое слагаемое исходного выражения делим на этот общий множитель. В нашем случае каждый член многочлена x × x + 1 × x + x × y нужно разделить на общий множитель x

Значит, при вынесении общего множителя за скобки в многочлене x 2 + x + xy , получается x(x + 1 + y)

В результате в скобках остаются члены, которые не имеют общих буквенных сомножителей, а модули коэффициентов этих членов не имеют общих делителей, кроме 1.

Пример 2. Вынести общий множитель за скобки в многочлене 15x 2 y 3 + 12xy 2 + 3xy 2

Определим коэффициент общего множителя, выносимого за скобки. Наибольший общий делитель модулей коэффициентов 15, 12 и 3 это число 3. Значит, число 3 будет коэффициентом общего множителя, выносимого за скобки.

Теперь определим буквенную часть общего множителя, выносимого за скобки. Её нужно выбирать так, чтобы в скобках остались члены, которые не содержат общего буквенного множителя.

Перепишем буквенные части исходного многочлена 15x 2 y 3 + 12xy 2 + 3xy 2 в виде разложения на множители. Это позволит хорошо увидеть, что именно можно вынести за скобки:

Видим, что среди буквенных частей общим множителем является xyy , то есть xy 2 . Если вынести этот множитель за скобки, в скобках останется многочлен, не имеющий общего буквенного множителя.

В итоге общим множителем, выносимым за скобки, будет множитель 3xy 2

Для проверки можно выполнить умножение 3xy 2 (5xy + 4 + 1) . В результате должен получиться многочлен 15x 2 y 3 + 12xy 2 + 3xy 2

Пример 3. Вынести общий множитель за скобки в выражении x 2 + x

В данном случае за скобки можно вынести x

Это потому что первый член x 2 можно представить как xx . А второй член x представить как 1 × x

Не следует на письме подробно расписывать содержимое каждого члена, разлагая его на множители. Это легко делается в уме.

Пример 4. Вынести общий множитель за скобки в многочлене 5y 2 − 15y

В данном случае за скобки можно вынести 5y . Наибольший общий делитель модулей коэффициентов 5 и 15 это число 5. Среди буквенных множителей общим является y

Пример 5. Вынести общий множитель за скобки в многочлене 5y 2 − 15y 3

В данном примере за скобки можно вынести 5y 2 . Наибольший общий делитель модулей коэффициентов 5 и 15 это число 5 . Среди буквенных множителей общим является y 2

Пример 6. Вынести общий множитель за скобки в многочлене 20x 4 − 25x 2 y 2 − 10x 3

В данном примере за скобки можно вынести 5x 2 . Наибольший общий делитель модулей коэффициентов 20, −25 и −10 это число 5 . Среди буквенных множителей общим является x 2

Пример 7. Вынести общий множитель за скобки в многочлене a m + a m + 1

Второй член a m + 1 представляет собой произведение из a m и a , поскольку a m × a = a m + 1

Заменим в исходном примере член a m + 1 на тождественно равное ему произведение a m × a . Так проще будет увидеть общий множитель:

Теперь можно увидеть, что общим множителем является a m . Его и вынесем за скобки:

Проверка на тождественность

Решение задачи с многочленами порой растягивается на несколько строк. Каждое следующее преобразование должно быть тождественно равно предыдущему. Если возникают сомнения в правильности своих действий, то можно подставить произвольные значения переменных в исходное и полученное выражение. Если исходное и полученное выражение будут равны одному и тому же значению, то можно быть уверенным, что задача была решена правильно.

Допустим, нам нужно вынести общий множитель за скобки в следующем многочлене:

В данном случае за скобки можно вынести общий множитель 2x

Представим, что мы не уверены в таком решении. В этом случае нужно взять любое значение переменной x и подставить его сначала в исходное выражение 2x + 4x 2 , затем в полученное 2x(1 + 2x) . Если в обоих случаях результат будет одинаковым, то это будет означать, что задача решена правильно.

Возьмём произвольное значение x и подставим его в исходное выражение 2x + 4x 2 . Пусть x = 2 . Тогда получим:

2x + 4x 2 = 2 × 2 + 4 × 2 2 = 4 + 16 = 20

Теперь подставим значение 2 в преобразованное выражение 2x(1 + 2x)

2x(1 + 2x) = 2 × 2 × (1 + 2 × 2 ) = 4 × 5 = 20

То есть при x = 2 выражения 2x + 4x 2 и 2x(1 + 2x) равны одному и тому же значению. Это значит, что задача была решена правильно. Тоже самое будет происходить и при других значениях переменных x . Например, проверим наше решение при x = 1

2x + 4x 2 = 2 × 1 + 4 × 1 2 = 2 + 4 = 6
2x(1 + 2x) = 2 × 1 × (1 + 2 × 1 ) = 2 × 3 = 6

Пример 2. Вычесть из многочлена 5x 2 − 3x + 4 многочлен 4x 2 − x и проверить полученный результат, подставив вместо переменной x произвольное значение.

Мы выполнили два преобразования: cначала раскрыли скобки, а затем привели подобные члены. Теперь проверим эти два преобразования на тождественность. Пусть x = 2 . Подставим это значение сначала в исходное выражение, а затем в преобразованные:

Видим, что при каждом преобразовании значение выражения при x = 2 не менялось. Это значит, что задача была решена правильно.

Самостоятельные работы по теме: Многочлены 7 класс

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

МБОУ «Открытая (сменная) школа №2» города Смоленска

Мищенкова Татьяна Владимировна

Устная самостоятельная работа №1 (подготовительная)

(проводится с целью подготовки учащихся к усвоению новых знаний по теме: «Многочлен и его стандартный вид»)

1. Назовите подобные слагаемые в следующих выражениях:

а) 1,4а + 1– а 2 – 1,4 + b 2 ;

б) а 3 – 3а + b + 2 ab – x ;

в) 2а b + x – 3 ba – x .

2. Приведите подобные члены в выражениях:

a ) 2 a – 3 a +7 a ;

3. Приведите одночлены к стандартному виду и укажите степень одночлена:

a) 8xx; г ) – 2a 2 ba

б ) 10nmm; д ) 5p 2 * 2p;

в) 3 aab ; e ) – 3 p * 1,5 p 3 .

1. Назовите подобные слагаемые в следующих выражениях:

а) 8,3х – 7 – х 2 + 4 + у 2 ;

б) b 4 — 6 a +5 b 2 +2 a – 3 b 4 :

в) 3 xy + y – 2 xy – y .

2. Приведите подобные члены в выражениях:

a ) 10 d – 3 d – 19 d ;

в) 2х – 4у + 7х + 3у.

3. Приведите одночлены к стандартному виду и укажите степень одночлена:

Условие устной самостоятельной работы предлагается на экране или на доске, но текст до начала самостоятельной работы держится закрытым.

Самостоятельная работа проводится в начале урока. После выполнения работы используется самопроверка с помощью компьютера или классной доски.

Самостоятельная работа № 2

(проводится с целью закрепления умений и навыков учащихся приводить многочлен к стандартному виду и определять степень многочлена)

1. Приведите многочлен к стандартному виду:

б ) 3x 2 6y 2 – 5x 2 7y;

в) 11 a 5 – 8 a 5 +3 a 5 + a 5 ;

г) 1,9 x 3 – 2,9 x 3 – x 3 .

2. Приведите подобные члены и укажите степень многочлена:

a) 3t 2 – 5t 2 – 11t – 3t 2 + 5t +11;

б ) x 2 + 5x – 4 – x 3 – 5x 2 + 4x – 13.

3. Найти значение многочлена:

4 x 2 – 1 при x = 2.

4. Дополнительное задание.

Вместо * запишите такой член, чтобы получился многочлен пятой степени.

x 4 + 2 x 3 – x 2 + 1 + *

1. Приведите многочлены к стандартному виду:

б ) 5x 2 8y 2 + 7x 2 3y;

в) 2 m 6 + 5 m 6 – 8 m 6 – 11 m 6 ;

г) – 3,1 y 2 +2,1 y 2 – y 2. .

2. Приведите подобные члены и укажите степень многочлена:

a) 8b 3 – 3b 3 + 17b – 3b 3 – 8b – 5;

б ) 3h 2 +5hc – 7c 2 + 12h 2 – 6hc.

3. Найти значение многочлена:

2 x 3 + 4 при x =1.

4. Дополнительное задание.

Вместо * запишите такой член, чтобы получился многочлен шестой степени.

1. Приведите многочлены к стандартному виду:

a) 2aa 2 3b + a8b;

б ) 8x3y (–5y) – 7x 2 4y;

в) 20 xy + 5 yx – 17 xy ;

г) 8 ab 2 –3 ab 2 – 7 ab 2. .

2. Приведите подобные члены и укажите степень многочлена:

a) 2x 2 + 7xy + 5x 2 – 11xy + 3y 2 ;

б ) 4b 2 + a 2 + 6ab – 11b 2 –7ab 2 .

3. Найти значение многочлена:

– 4 y 5 – 3 при y = –1.

4. Дополнительное задание.

Составьте многочлен третьей степени, содержащий одну переменную.

Самостоятельная работа проводится в конце урока. Работу проверяет учитель, выявляя, надо ли заниматься дополнительно по данной теме.

Устная самостоятельная работа №3 (подготовительная)

(проводится с целью подготовки учащихся к усвоению новых знаний по теме: «Сложение и вычитание многочленов»)

1. Запишите в виде выражения:

a ) сумму двух выражений 3 a + 1 и a – 4;

б) разность двух выражений 5 x – 2 и 2 x + 4.

2. Сформулируйте правило раскрытия скобок, перед которыми стоят знаки «+» или «–».

3. Раскройте скобки:

б) ( x – y ) + ( y + z );

в) ( a – b ) – ( c – a ).

4. Найти значение выражения:

в) ( a – b ) – ( c – a ).

1. Запишите в виде выражения:

a ) сумму двух выражений 5 a – 3 и a + 2;

б) разность двух выражений 8 y – 1 и 7 y + 1.

2. Сформулируйте правило раскрытия скобок, перед которыми стоят знаки «+» или «–».

3. Раскройте скобки :

в) ( x – y ) – ( y – z ).

4. Найти значение выражения:

a ) 12,8 + (11 – 12,8);

в) 10,4 + 3 x – ( x +10,4) при x =0,3.

После выполнения работы используется самопроверка с помощью компьютера или классной доски.

Самостоятельная работа №4

(проводится с целью закрепления умений и навыков сложения и вычитания многочленов)

1. Составьте сумму и разность многочленов и приведите к стандартному виду:

a ) 5 x – 15у и 8 y – 4 x ;

б) 7 x 2 – 5 x +3 и 7 x 2 – 5 x .

2. Упростите выражение:

a ) (2 a + 5 b ) + (8 a – 11 b ) – (9 b – 5 a );

* б) (8 c 2 + 3 c ) + (– 7 c 2 – 11 c + 3) – (–3 c 2 – 4).

3. Дополнительное задание.

Запишите такой многочлен, чтобы его сумма с многочленом 3х + 1 была равна

1. Составьте сумму и разность многочленов и приведите к стандартному виду:

a) 21y – 7x и 8x – 4y;

б ) 3a 2 + 7a – 5 и 3a 2 + 1.

2. Упростите выражение:

a ) (3 b 2 + 2 b ) + (2 b 2 – 3 b — 4) – (– b 2 +19);

* б) (3 b 2 + 2 b ) + (2 b 2 – 3 b – 4) – (– b 2 + 19).

3. Дополнительное задание.

Запишите такой многочлен, чтобы его сумма с многочленом 4х – 5 была равна

1. Составьте сумму и разность многочленов и приведите к стандартному виду:

a ) 0,5 x + 6у и 3 x – 6 y ;

б) 2 y 2 +8 y – 11 и 3 y 2 – 6 y + 3.

2. Упростите выражение:

a ) (2 x + 3 y – 5 z ) – (6 x –8 y ) + (5 x – 8 y );

* б) ( a 2 – 3 ab + 2 b 2 ) – (– 2 a 2 – 2 ab – b 2 ).

3. Дополнительное задание.

Запишите такой многочлен, чтобы его сумма с многочленом 7х + 3 была равна x 2 + 7 x – 15.

1. Составьте сумму и разность многочленов и приведите к стандартному виду:

a ) 0,3 x + 2 b и 4 x – 2 b ;

б) 5 y 2 – 3 y и 8 y 2 + 2 y – 11.

2. Упростите выражение:

a) (3x – 5y – 8z) – (2x + 7y) + (5z – 11x);

* б ) (2x 2 –xy + y 2 ) – (x 2 – 2xy – y 2 ).

3. Дополнительное задание.

Запишите такой многочлен, чтобы его сумма с многочленом 2 x 2 + x + 3 и была равна 2 x + 3.

Самостоятельная работа проводится в конце урока. Работу проверяет учитель, выявляя, надо ли заниматься дополнительно по данной теме.

Самостоятельная работа №5

(проводится с целью формирования умений и навыков заключать многочлен в скобки)

1. Представьте многочлен в виде суммы двух многочленов, один из которых содержит букву a , а другой ее не содержит:

б ) ax 2 + x + a + 1.

m + am + n – an = (m+n) + (am – an).

2. Представьте многочлен в виде разности двух многочленов, первый из которых содержит букву b , а другой – нет (проверьте результат, раскрыв мысленно скобки):

ab – bc – x – y = (ab – bc) – (x + y).

1. Представьте многочлен в виде суммы двух многочленов, один из которых содержит букву b , а другой ее не содержит:

a) bx + by +2x + 2y;

б ) bx 2 – x + a – b.

2 m + bm 3 + 3 – b = (2 m +3) + ( bm 3 – b ).

2. Представьте многочлен в виде разности двух многочленов, первый из которых содержит букву a , а другой – нет (проверьте результат, раскрыв мысленно скобки):

б ) am + an + m – n;

x + ay – y – ax = (ay – ax) – (–x + y) = (ay – ay) – (y–x).

1. Представьте многочлен в виде суммы двух многочленов, один из которых содержит букву b , а другой ее не содержит:

a) b 3 – b 2 – b+3y – 1;

б ) – b 2 – a 2 – 2ab + 2.

– 2 b 2 – m 2 – 3 bm + 7 = (–2 b 2 – 3 bm ) + (– m 2 + 7) = (–2 b 2 – 3 bm ) + (7– m 2 ).

2. Представьте многочлен в виде разности двух многочленов, первый из которых содержит букву b , а другой – нет (проверьте результат, раскрыв мысленно скобки):

б ) 2b + a 2 – b 2 –1;

3 b + m – 1 – 2 b 2 = (3 b – 2 b 2 ) – (1– m ).

(для сильных учащихся, дан без образца решения)

1. Представьте многочлен в виде суммы двух многочленов с положительными коэффициентами:

2. Представьте выражения каким-либо способом в виде разности двучлена и трехчлена:

a) x 4 – 2x 3 – 3x 2 + 5x – 4;

б ) 3a 5 – 4a 3 + 5a 2 –3a +2.

Самостоятельная работа проводится в конце урока. После выполнения работы используется самопроверка по ключу и самооценка работы. Учащиеся, самостоятельно справившиеся с заданием, отдают тетради на проверку учителю.

C амостоятельная работа №6

(проводится с целью закрепления и применения знаний и умений умножения одночлена на многочлен)

1. Выполните умножение:

б) 5 x ( x 4 + x 2 – 1).

2. Упростите выражения:

б ) 3a (a – 2) – 5a(a+3).

3. Решите уравнение :

20 +4(2 x –5) =14 x +12.

4. Дополнительное задание.

Какой одночлен нужно вписать вместо знака *, чтобы выполнялось равенство:

1. Выполните умножение:

a ) — 4 x 2 ( x 2 –5);

б) -5 a ( a 2 — 3 a – 4).

2. Упростите выражения:

б) 3 x (8 y +1) – 8 x (3 y –5).

3. Решите уравнение:

3(7 x –1) – 2 =15 x –1.

4. Дополнительное задание.

Какой одночлен нужно вписать вместо знака *, чтобы выполнялось равенство:

( b + c – m ) * * = ab + ac – am .

1. Выполните умножение:

a ) – 7 x 3 ( x 5 +3);

б) 2 m 4 ( m 5 — m 3 – 1).

2. Упростите выражения:

б ) 3c (c +d) + 3d(c–d).

3. Решите уравнение:

9 x – 6( x – 1) =5( x +2).

4. Дополнительное задание.

Какой одночлен нужно вписать вместо знака *, чтобы выполнялось равенство:

* * ( x 2 – xy ) = x 2 y 2 – xy 3 .

1. Выполните умножение:

a ) – 5 x 4 (2 x – x 3 );

б) x 2 ( x 5 – x 3 + 2 x );

2. Упростите выражения:

a ) 2 x ( x +1) – 4 x (2– x );

б) 5 b (3 a – b ) – 3 a (5 b + a ).

3. Решите уравнение:

-8(11 – 2 x ) +40 =3(5 x — 4).

4. Дополнительное задание.

Какой одночлен нужно вписать вместо знака *, чтобы выполнялось равенство:

( x – 1) * * = x 2 y 2 – xy 2 .

C амостоятельная работа №7

(проводится с целью формирования умений и навыков решения уравнений и задач)

1. Используя образец решения, выполните задание.

5 x – 4( x – 1) =120,

2. Решите задачу:

На путь от поселка до станции автомобиль потратил на 1 час меньше, чем велосипедист. Найдите расстояние от поселка до станции, если автомобиль проехал его со средней скоростью 60 км/ч. А велосипедист 20 км/ч.

1. Используя образец решения, выполните задание.

2. Решите задачу:

Мастер изготавливает на 8 деталей в час больше, чем ученик. Ученик работал 6 часов, а мастер 8 часов, и вместе они изготовили 232 детали. Сколько деталей в час изготовил ученик?

Указания к решению:

а) заполните таблицу;

На 8 деталей больше

б) составьте уравнение;

в) решите уравнение;

г) сделайте проверку и запишите ответ.

(Для сильных учащихся, дан без образца)

1. Решите уравнение:

2. Решите задачу:

В столовую привезли картофель, упакованный в пакеты по 3 кг. Если бы он был упакован в пакеты по 5 кг, то понадобилось бы на 8 пакетов меньше. Сколько килограммов картофеля привезли в столовую?

Самостоятельная работа проводится в конце урока. После выполнения работы используется самопроверка по ключу.

В качестве домашнего задания учащимся предлагается творческая самостоятельная работа:

Придумайте задачу, которая решается с помощью уравнения

30 x = 60( x – 4) и решите ее.

Самостоятельная работа №8

(проводится с целью формирования умений и навыков вынесения общего множителя за скобки)

1. Вынесите общий множитель за скобки (проверьте свои действия умножением):

а) mx + my ; д) x 5 – x 4 ;

б) 5 ab – 5 b ; е) 4 x 3 – 8 x 2 ;

в ) – 4mn + n; * ж ) 2c 3 + 4c 2 + c ;

г ) 7ab – 14a 2 ; * з ) ax 2 + a 2 .

2. Дополнительное задание.

Докажите, что значение выражения 8 2 – 2 18 делится на 14.

1. Вынесите общий множитель за скобки (проверьте свои действия умножением):

а ) 10x + 10y; д ) a 4 + a 3 ;

б ) 4x + 20y; е ) 2x 6 – 4x 3 ;

в ) 9 ab + 3b; * ж ) y 5 + 3y 6 + 4y 2 ;

г ) 5xy 2 + 15y; * з ) 5bc 2 + bc.

2. Дополнительное задание.

Докажите, что значение выражения 8 5 – 2 11 делится на 17.

1. Вынесите общий множитель за скобки (проверьте свои действия умножением):

а ) 18ay + 8ax; д ) m 6 +m 5 ;

б ) 4ab — 16a; е ) 5z 4 – 10z 2 ;

в) – 4 mn + 5 n ; * ж) 3 x 4 – 6 x 3 + 9 x 2 ;

г) 3 x 2 y – 9 x ; * з) xy 2 +4 xy .

2. Дополнительное задание.

Докажите, что значение выражения 79 2 + 79 * 11 делится на 30.

1. Вынесите общий множитель за скобки (проверьте свои действия умножением):

а) – 7 xy + 7 y ; д) y 7 — y 5 ;

б) 8 mn + 4 n ; е) 16 z 5 – 8 z 3 ;

в) – 20 a 2 + 4 ax ; * ж) 4 x 2 – 6 x 3 + 8 x 4 ;

г) 5 x 2 y 2 + 10 x ; * з) xy +2 xy 2 .

2. Дополнительное задание.

Докажите, что значение выражения 313 * 299 – 313 2 делится на 7.

C амостоятельная работа проводится в начале урока. После выполнения работы используется проверка по ключу.

Краткое описание документа:

В методическом материале представлены самостоятельные работы по теме «Многочлены» (7 класс) с целью подготовки учащихся к усвоению новых знаний, с целью формирования знаний и навыков, с целью закрепления изученной темы в нескольких вариантах.

Некоторые самостоятельные работы даны с образцами решений.

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 924 человека из 80 регионов

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 686 человек из 75 регионов

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 309 человек из 69 регионов

Ищем педагогов в команду «Инфоурок»

Дистанционные курсы для педагогов

«Взбодрись! Нейрогимнастика для успешной учёбы и комфортной жизни»

Свидетельство и скидка на обучение каждому участнику

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 580 126 материалов в базе

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

Другие материалы

  • 02.12.2017
  • 2747
  • 23
  • 02.12.2017
  • 1468
  • 11

  • 02.12.2017
  • 269
  • 0
  • 02.12.2017
  • 1338
  • 11
  • 02.12.2017
  • 679
  • 2

  • 02.12.2017
  • 634
  • 1

  • 02.12.2017
  • 870
  • 1

  • 02.12.2017
  • 456
  • 0

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 02.12.2017 32696
  • DOCX 34.9 кбайт
  • 1050 скачиваний
  • Рейтинг: 4 из 5
  • Оцените материал:

Настоящий материал опубликован пользователем Мищенкова Татьяна Владимировна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

  • На сайте: 4 года и 3 месяца
  • Подписчики: 0
  • Всего просмотров: 37462
  • Всего материалов: 5

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

РДШ организовало сбор гуманитарной помощи для детей из ДНР

Время чтения: 1 минута

В Ростовской и Воронежской областях организуют обучение эвакуированных из Донбасса детей

Время чтения: 1 минута

Профессия педагога на третьем месте по популярности среди абитуриентов

Время чтения: 1 минута

Рособрнадзор не планирует переносить досрочный период ЕГЭ

Время чтения: 0 минут

Минпросвещения упростит процедуру подачи документов в детский сад

Время чтения: 1 минута

В Забайкалье в 2022 году обеспечат интернетом 83 школы

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.


источники:

http://spacemath.xyz/mnogochleny/

http://infourok.ru/samostoyatelnie-raboti-po-teme-mnogochleni-klass-2344550.html

1)