Уравнения с модулем 7 класс матвертикаль

Методические рекомендации по теме: «Решение уравнений с модулем в курсе математики 7-8 класса»
методическая разработка по алгебре (7 класс) по теме

Методические рекомендации по теме: «Решение уравнений с модулем в курсе математики 7-8 класса». В работе представлены способы решения уравнений с модулем. Даны карточки заданий: с применением классификации, с выполнением некоторой части задания, с сопутствующими указаниями и инструкциями, «найди ошибку», с алгоритмом выполнения уравнений.

Скачать:

ВложениеРазмер
Reshenie_uravneniy_s_modulem_v_kurse_algebry_7-8_klassov.doc140.5 КБ

Предварительный просмотр:

Методические рекомендации по теме: «Решение уравнений с модулем в курсе математики 7-8 класса»

Автор: Давыдова Наталья Александровна,

учитель математики МОУ «Лицей №4»

Практически каждый учитель знает, какие проблемы вызывают у учащихся задания, содержащие модуль. Это один из самых трудных материалов, с которыми школьники сталкиваются на экзаменах.

Выбор темы обусловлен тем, что, во-первых, задачи, связанные с абсолютными величинами, часто встречаются на математических олимпиадах и на экзаменах, во-вторых, это понятие широко применяется не только в различных разделах школьного курса математики, но и в курсе высшей математики. Так в математическом анализе понятие абсолютной величины числа используется при определении основных понятий: предела, ограниченности функции и других. В теории приближенных вычислений употребляется понятие абсолютной погрешности. В механике, в геометрии изучается понятие вектора, одной из характеристик которого служит его длина (модуль вектора).

Несмотря на то, что тема «Модуль числа» проходит «красной нитью» через весь курс школьной и высшей математики, для ее изучения по программе отводится очень мало времени (в 6 классе -2 часа, в 8 классе — 4 часа).

Исходя из всего вышесказанного, учителю необходимо находить разнообразные методические приемы, использовать различные подходы и методы в обучении решению задач с модулем. Разнообразие методов будет способствовать сознательному усвоению математических знаний, вовлечению учащихся в творческую деятельность, а также решению ряда методических задач, встающих перед учителем в процессе обучения, в частности, реализации внутрипредметных связей (алгебра-геометрия), расширению области использования графиков, повышению графической культуры учеников.

Указанные обстоятельства обусловили выбор темы творческой работы. Цель работы: показать необходимость более глубокого рассмотрения темы «Решение уравнений с модулем» в школьной программе; разработать методические рекомендации по использованию различных методов при решении задач с модулем.

§1. Основные способы, используемые при решении уравнений, содержащих модуль.

Напомним основные понятия, используемые в данной теме. Уравнением с одной переменной называют равенство, содержащее переменную. Корнями уравнения называются значения переменной, при которых уравнение обращается в верное равенство. Решить уравнение – значит, найти все его корни или доказать, что корней нет. Уравнением с модулем называют равенство, содержащее переменную под знаком модуля.

При решении уравнений, содержащих знак абсолютной величины, мы будем основываться на определении модуля числа и свойствах абсолютной величины числа.

Существует несколько способов решения уравнений с модулем. Рассмотрим подробнее каждый из них.

1 способ. Метод последовательного раскрытия модуля.

Пример 1 . Решим уравнение |х-5|=4.

Исходя из определения модуля, произведем следующие рассуждения. Если выражение, стоящее под знаком модуля неотрицательно, то есть х-5≥0, то уравнение примет вид х-5=4. Если значение выражения под знаком модуля отрицательно, то по определению оно будет равно – (х-5)=4 или х-5= -4. Решая полученные уравнения, находим: х 1 =9, х 2 =1.

Решим этим же способом уравнение, содержащее «модуль в модуле».

Пример 2 . Решим уравнение ||2х-1|-4|=6.

Рассуждая аналогично, рассмотрим два случая.

1). |2х-1|-4=6, |2х-1|=10. Используя еще раз определение модуля, получим: 2х-1=10 либо 2х-1= -10. Откуда х 1 =5,5, х 2 = -4,5.

2). |2х-1|-4= -6, |2х-1|= -2. Понятно, что в этом случае уравнение не имеет решений, так как по определению модуль всегда неотрицателен.

2 способ. Метод интервалов.

Опорная информация:

Метод интервалов – это метод разбиения числовой прямой на промежутки, в которых по определению модуля знак абсолютной величины можно будет снять. Для каждого из промежутков необходимо решить уравнение и сделать вывод относительно получившихся корней. Корни, удовлетворяющие промежуткам, и дадут окончательный ответ.

Пример 3 . Решим уравнение |х+3|+|х-1|=6.

Найдем корни (нули) каждого выражения, содержащегося под знаком модуля: х+3=0, х= -3; х-1=0, х=1. Эти значения х разбивают числовую прямую на три промежутка:

Решим уравнение отдельно в каждом из получившихся промежутков. В первом промежутке (х

-х-3-х+1=6. Откуда х= -4. Число -4 является решением данного уравнения, так как оно принадлежит рассматриваемому промежутку. Во втором промежутке (-3 ≤ х

Пример 4 . |2-х|=2х+1.

Прежде всего, следует установить область допустимых значений. Возникает естественный вопрос, почему в предыдущих примерах не было необходимости этого делать. В этом уравнении в правой части стоит выражение с переменной, которое может быть отрицательным. Таким образом, область допустимых значений – это промежуток [-½; +∞). Найдем нуль выражения, стоящего под знаком модуля: 2-х=0, х=2.

В первом промежутке: 2-х=2х+1, х=⅓. Это значение принадлежит ОДЗ, значит, является корнем уравнения.

Во втором промежутке: -2+х=2х+1, х= -3. -3 не принадлежит ОДЗ, а следовательно не является корнем уравнения. Ответ: ⅓.

3 способ. Графический метод.

Суть данного метода заключается в использовании графиков функций для нахождения корней уравнения. Этот метод реже других применяют для решения уравнений, содержащих модуль, так как, во-первых, он занимает достаточно много времени и не всегда рационален, а, во-вторых, результаты, полученные при построении графиков, не всегда являются точными.

Пример 5 . |х+1|=2. Построим графики функций у=|х+1| и у=2.

Для построения графика у=|х+1|, построим график функции у=х+1, а затем отразим часть прямой, лежащую ниже оси ОХ. Абсциссы точек пересечения графиков и есть корни уравнения: х 1 =1, х 2 = -3. Ответ: 1; -3.

Пример 6 . |х 2 -1|=|4-х 2 |.

Построим графики функций у=|х 2 -1| и у=|4-х 2 |. Для этого построим графики функций у= х 2 -1 и у=4-х 2 , а затем отобразим часть графиков, лежащую ниже оси ОХ.

4 способ. Метод решения при помощи зависимостей между числами а и в, их модулями и квадратами этих чисел.

Пример 7 . Решим уравнение |х 2 -8х+5|=|х 2 -5|.

Учитывая соотношение (1), получим:

х 2 -8х+5= х 2 -5 или х 2 -8х+5= -х 2 +5

Таким образом, корни исходного уравнения: х 1 =1,25; х 2 =0; х 3 =4.

В силу соотношения (2) получаем: (х+3) 2 =(х-5) 2 ;

х 2 +6х+9= х 2 -10х+25;

Пример 9 . (1-3х) 2 =(х-2) 2 .

Учитывая соотношение (2), получаем: |1-3х|=|х-2|, откуда из соотношения (1), имеем:

1-3х=х-2 или 1-3х= -х+2

5 способ. Использование геометрической интерпретации модуля.

Опорная информация: геометрический смысл модуля разности величин – это расстояние между ними. Например, геометрический смысл выражения |х-а| — длина отрезка координатной оси, соединяющей точки с абсциссами а и х. Перевод алгебраической задачи на геометрический язык часто позволяет избежать громоздких решений.

Пример 10. |х-2|+|х-3|=1.

Исходя из геометрической интерпретации модуля, левая часть уравнения представляет собой сумму расстояний от некоторой точки с абсциссой х до двух фиксированных точек с абсциссами 2 и 3. Тогда очевидно, что все точки с абсциссами, принадлежащими отрезку [2;3] обладают требуемым свойством, а точки, расположенные вне этого отрезка – нет. Отсюда, множеством решений уравнения является отрезок [2;3].

Пример 11. |х-2|-|х-3|=1.

Рассуждая аналогично, получим, что разность расстояний до точек с абсциссами 2 и 3 равна 1 только для точек, расположенных на координатной оси правее числа 3. Следовательно, решением данного уравнения будет являться луч, выходящий из точки 3, и направленный в положительном направлении оси ОХ.

Обобщением вышеприведенных уравнений 10 и 11 являются следующие равносильные переходы:

Проанализировав представленные способы решения уравнений, содержащих модуль, можно сделать вывод, что ни один из них не является универсальным и для получения наилучших результатов необходимо добиваться того, чтобы ученик овладел возможно большим количеством методов решения, оставляя право выбора решения за собой.

§2. Методические рекомендации по использованию методов решения уравнений, содержащих модуль.

Практика обучения учащихся 7-8 классов способам решения уравнений, содержащих модули, позволила выявить достоинства и недостатки каждого способа, которые для удобства сведены в таблицу.

Метод последовательного раскрытия модулей

1). Объявляя условие раскрытия одного модуля, можно пользоваться им для раскрытия других модуле тем самым, выигрывая время в решении задачи.

2). Последовательность действий, направленных на поиск ответа, позволяет контролировать и проверять промежуточные результаты.

Необходимость раскрытия модуля, что для некоторых заданий приводит к потере темпа в получении ответа.

Самый эффективный способ, так как сопровождается относительно небольшим объемом работы.

В силу необходимости нахождения концов интервалов может возникнуть ситуация, когда соответствующее уравнение либо вызывает серьезные затруднения при определении корней, либо недоступно ученику на данном этапе обучения.

Данный способ имеет очень широкое применение в других темах школьного курса математики.

Ответ определяется приблизительно.

Метод решения при помощи зависимостей между числами, их модулями и квадратами этих чисел

В некоторых случаях применение данного способа позволяет решать уравнения определенного вида на более раннем этапе.

В некоторых случаях выбор данного способа приводит к громоздкому решению, а иногда решение сводится к уравнению, недоступному для ученика на данном этапе обучения.

Геометрическая интерпретация модуля

Перевод алгебраической задачи на геометрический язык часто позволяет избежать громоздких решений.

Применение данного способа ограничивается уравнениями определенного вида.

Проанализировав достоинства и недостатки каждого из указанных способов, можно с уверенностью сказать, что на мотивационном этапе формирования умения решать уравнения с модулем ученикам следует показывать все, доступные на данном этапе обучения способы решения, и, главное, на конкретных примерах доказывать, что первый этап решения – выбор самого эффективного способа.

  1. Рассмотрим пример |х 2 +4х+3|=|х 2 -3|.

Решим это уравнение методом интервалов. Для этого найдем концы интервалов, решив уравнения х 2 +4х+3=0 и х 2 -3=0. В результате х 1 = -1, х 2 = -3, х 3 = , х 4 = — . Видим, что первое уравнение – квадратное, поэтому его решение недоступно ученику седьмого класса, впрочем, также как и второе уравнение, для решения которого необходимо знание арифметического квадратного корня. Кроме того, отметив полученные числа на координатном луче, получим пять промежутков, в каждом из которых, предварительно сняв знак модуля необходимо опять решить квадратное уравнение.

Если же использовать четвертый способ ( метод решения при помощи зависимостей между числами, их модулями и квадратами этих чисел ), то это уравнение можно решить на более раннем этапе. Итак,

|х 2 +4х+3|=|х 2 -3| х 2 +4х+3=х 2 -3 или х 2 +4х+3= -х 2 +3.

х 1 = -1,5; х 2 =0; х 3 = -2.

Ясно, что способ решения при помощи зависимостей между величинами, их модулями и квадратами величин, является самым эффективным для решения этого уравнения.

Решим это уравнение двумя способами.

а) метод интервалов : Найдем концы интервалов: х=7 и х=8. Отметим эти числа на координатной прямой, а затем решим уравнение в каждом из получившихся промежутков:

х=8 х – любое число

б) использование геометрической интерпретации. Использование равносильных переходов, вытекающих из геометрической интерпретации, позволяют сразу найти ответ: [8;+∞).

3. Рассмотрим пример |(х-1)(х-3)|=х-3. Это уравнение можно решить тремя способами.

а) последовательное раскрытие модуля:

Если (х-1)(х-3) ≥ 0, то Если (х-1)(х-3)

х 2 -4х+3=х-3, х 2 -4х+3= -х+3,

х 2 -5х+6=0, х 2 -3х=0,

х 1 =3, х 2 =2. х 1 =0, х 2 =3.

2 – не удовлетворяет условию . 0, 3 — не удовлетворяет условию.

б) метод интервалов: найдем концы интервалов, решив уравнение (х-1)(х-3)=0, откуда х 1 =1, х 2 =3.

х 1 =2, х 2 =3. х 1 =0, х 2 =3. х 1 =2, х 2 =3.

в) графический метод: для решения уравнения построим в одной системе координат графики функций у=|х 2 -4х+3| и у=-3.

Построим у=|х 2 -4х+3|. Для этого сначала рассмотрим функцию у=х 2 -4х+3, графиком которой является парабола, ветви направлены вверх. Вершина параболы в точке (2; -1). Строим график и отображаем часть параболы, которая лежит ниже оси ОХ в верхнюю полуплоскость. Далее в этой же системе координат строим график у=х-3. Графики функций пересеклись в точке с абсциссой 3.

Завершая рассмотрение различных способов решения уравнений, содержащих знак модуля, еще раз отметим тот важный факт, что ни один из них не является универсальным и для получения наилучших результатов необходимо добиваться того, чтобы ученик овладел возможно большим количеством методов решения, оставляя право выбора решения за собой.

Таким образом, можно сделать следующий вывод: систематическое использование различных способов для решения уравнений, содержащих абсолютную величину, приводит не только к повышению интереса к математике, повышению творческой активности школьников, но и повышает уверенность детей в собственных силах, так как у них имеется возможность выбора того способа решения, который наиболее эффективен в каждом конкретном случае.

Решение уравнений с модулем в курсе математики 7-8 класса

Практически каждый учитель знает, какие проблемы вызывают у учащихся задания, содержащие модуль. Это один из самых трудных материалов, с которыми школьники сталкиваются на экзаменах.

Выбор темы обусловлен тем, что, во-первых, задачи, связанные с абсолютными величинами, часто встречаются на математических олимпиадах и на экзаменах, во-вторых, это понятие широко применяется не только в различных разделах школьного курса математики, но и в курсе высшей математики. Так в математическом анализе понятие абсолютной величины числа используется при определении основных понятий: предела, ограниченности функции и других. В теории приближенных вычислений употребляется понятие абсолютной погрешности. В механике, в геометрии изучается понятие вектора, одной из характеристик которого служит его длина (модуль вектора).
Несмотря на то, что тема «Модуль числа» проходит «красной нитью» через весь курс школьной и высшей математики, для ее изучения по программе отводится очень мало времени (в 6 классе -2 часа, в 8 классе — 4 часа).

Исходя из всего вышесказанного, учителю необходимо находить разнообразные методические приемы, использовать различные подходы и методы в обучении решению задач с модулем. Разнообразие методов будет способствовать сознательному усвоению математических знаний, вовлечению учащихся в творческую деятельность, а также решению ряда методических задач, встающих перед учителем в процессе обучения, в частности, реализации внутрипредметных связей (алгебра-геометрия), расширению области использования графиков, повышению графической культуры учеников.

Указанные обстоятельства обусловили выбор темы творческой работы. Цель работы: показать необходимость более глубокого рассмотрения темы «Решение уравнений с модулем» в школьной программе; разработать методические рекомендации по использованию различных методов при решении задач с модулем. §1. Основные способы, используемые при решении уравнений, содержащих модуль.

Напомним основные понятия, используемые в данной теме. Уравнением с одной переменной называют равенство, содержащее переменную. Корнями уравнения называются значения переменной, при которых уравнение обращается в верное равенство. Решить уравнение – значит, найти все его корни или доказать, что корней нет. Уравнением с модулем называют равенство, содержащее переменную под знаком модуля.

При решении уравнений, содержащих знак абсолютной величины, мы будем основываться на определении модуля числа и свойствах абсолютной величины числа.

Существует несколько способов решения уравнений с модулем. Рассмотрим подробнее каждый из них.

1 способ. Метод последовательного раскрытия модуля.

Пример 1. Решим уравнение |х-5|=4.

Исходя из определения модуля, произведем следующие рассуждения. Если выражение, стоящее под знаком модуля неотрицательно, то есть х-5≥0, то уравнение примет вид х-5=4. Если значение выражения под знаком модуля отрицательно, то по определению оно будет равно – (х-5)=4 или х-5= -4. Решая полученные уравнения, находим: х1=9, х2=1.
Ответ: 9; 1.
Решим этим же способом уравнение, содержащее «модуль в модуле».

Пример 2. Решим уравнение ||2х-1|-4|=6.

Рассуждая аналогично, рассмотрим два случая.
1). |2х-1|-4=6, |2х-1|=10. Используя еще раз определение модуля, получим: 2х-1=10 либо 2х-1= -10. Откуда х1=5,5, х2= -4,5.
2). |2х-1|-4= -6, |2х-1|= -2. Понятно, что в этом случае уравнение не имеет решений, так как по определению модуль всегда неотрицателен.
Ответ: 5,5; -4,5.
2 способ. Метод интервалов.
Опорная информация:

Метод интервалов – это метод разбиения числовой прямой на промежутки, в которых по определению модуля знак абсолютной величины можно будет снять. Для каждого из промежутков необходимо решить уравнение и сделать вывод относительно получившихся корней. Корни, удовлетворяющие промежуткам, и дадут окончательный ответ.

Пример 3. Решим уравнение |х+3|+|х-1|=6.
Найдем корни (нули) каждого выражения, содержащегося под знаком модуля: х+3=0, х= -3; х-1=0, х=1. Эти значения х разбивают числовую прямую на три промежутка:
-3 1

Решим уравнение отдельно в каждом из получившихся промежутков. В первом промежутке (х Давыдова Наталья Александровна 12.06.2011 241039 0

Урок математики в 7-м классе по теме: «Модуль числа»

Разделы: Математика

Цели:

  • Образовательные:
    • сформировать понятие модуля;
    • научить находить модуль числа (отработать его свойства и алгоритм нахождения);
    • научить решать уравнения, содержащие модуль (разобрать решение упражнений более высокого уровня);
    • подготовить учащихся к изучению следующих тем курса.
  • Воспитательные:
    • воспитывать познавательную активность учащихся и культуру общения.
  • Развивающие:
    • развивать логическое мышление;
    • развивать сознательное восприятие учебного материала и интерес к предмету.

Оборудование:

  • модель магнитной координатной прямой;
  • магниты (модели точек);
  • плакаты;
  • цветные мелки;
  • раздаточный материал;
  • учебник.

I. Умственная гимнастика

1. Вспомнить теоретический минимум, необходимый для изучения нового материала.

а) Какая прямая называется координатной прямой?
б) Что такое координата точки?
в) Какие числа называются противоположными?
г) Что можно сказать о расположении 2 х противоположных чисел на координатной прямой?

2. Назвать координаты точек M, N и K, если:

а) точка M удалена от начала отсчета на 13 единичных отрезков вправо;
б) точка N находится от О (0) на растоянии 4,5 единичных отрезков влево;
в) точка K удалена от О (0) на 7 единичных отрезков.

3. Какие равенства верны:

а) – (– 8) = 8,
б) – (– 35) = – 35,
в) + 49 = – (– 49),
г) – 5 = – (+ 5),
д) – (+ 12) = – 12,
е) – 0 = – (– 0),
ж) – 2/3 = – (+ 2/3)?

II. Сообщение темы и целей урока

III. Объяснение нового материала

– Отметим на координатной прямой точку, изображающую число 6. Обозначим ее А.

  1. Точка А находится на расстоянии 6 единичных отрезков справа от О (0).
  2. Есть ли на координатной прямой ещё точки, расстояние от которых до О (0) равно 6 единичным отрезкам?
  3. Для такого расстояния придумано специальное название: модуль числа.

– Модуль (modulus) в переводе с латинского языка означает “мера, размер”.
Модулем числа называют расстояние от точки, изображающей число на координатной прямой до начала отсчета.
Модуль числа а обозначают | а |. Этот термин “модуль” ввёл в 1806 г. французский математик Жорж Аргон.

| 6 | = 6, | – 6 | = 6
| – 3,5 | = 3,5; | 3,5 | = 3,5
| 0 | = 0

Т.к. модуль числа – это расстояние, он никогда не будет отрицательным.


источники:

http://www.uchportal.ru/publ/15-1-0-471

http://urok.1sept.ru/articles/311184