Уравнения с модулем и параметром 7 класс

Алгебра

План урока:

Модуль числа

Напомним, что такое модуль числа. Так называют значение числа, взятое без учета его знака. То есть модуль чисел 9 и (– 9) одинаков и равен 9. Для обозначения модуля применяют специальные прямоугольные скобки:

|2,536| = |– 2,536| = 2,536

Грубо говоря, операция нахождения модуля сводится к отбрасыванию у числа знака «минус», если он у него есть. Вообще, если число х неотрицательно, то его модуль |х| = х. Если же число отрицательно, то его модуль имеет противоположное значение: |х| = х. Математически это можно записать так:

Именно такое определение обычно и применяется в математике.

Модуль играет важную роль в математике. Дело в том, с его помощью удобно записывать расстояние между двумя точками на координатной прямой. Пусть на ней отмечены точки a и b. Расстояние между ними равно |a – b|, причем неважно, какое из этих чисел больше, а какое меньше:

Также модуль возникает при извлечении квадратного корня из четной степени числа:

В частности, если n = 1, получим формулу:

Для того чтобы получить график функции у = |x|, сначала надо построить график функции без учета знака модуля:

Далее следует выполнить преобразование. Те точки графика, которые располагаются выше оси Ох, остаются на своем месте. В данном случае это та часть графика, которая находится в I четверти. Те же точки, которые располагаются ниже оси Ох, должны быть симметрично (относительно этой самой оси Ох) отображены. В результате они окажутся выше оси Ох:

В результате получилась «галочка».

Пример. Постройте график ф-ции у = |х 2 – 4х + 3|

Решение. Для построения графика функции, содержащей модуль, сначала надо построить график для «подмодульного» выражения. Поэтому построим график у = х 2 – 4х + 3. Это квадратичная ф-ция, ее график – это парабола:

Часть графика, в промежутке от 1 до 3, находится ниже оси Ох. Чтобы построить ф-цию у = |х 2 – 4х + 3|, надо перевернуть эту часть графика:

Решение уравнений с модулем

Изучим простейший случай уравнения, содержащего модуль, когда вся его слева записано выр-ние в модульных скобках, а справа находится число. То есть уравнение имеет вид

где b – какое-то число, а у(х) – произвольная ф-ция.

Если b 10 + 97x 4 – 12,56х 3 + 52х 2 + 1001х – 1234| = – 15

Решение: Справа стоит отрицательное число. Однако модуль не может быть меньше нуля. Это значит, что у ур-ния отсутствуют корни.

Ответ: корни отсутствуют.

Если b = 0, то мы получим какое-то произвольное ур-ние у(х) = 0, у которого могут быть корни. Проще говоря, модульные скобки в таком случае можно просто убрать.

Пример. Решите ур-ние

Ясно, что подмодульное выр-ние равно нулю:

Наиболее интересен случай, когда b> 0, то есть в правой части стоит положительное число. Ясно, что тогда под модулем находится либо само это число b, либо противоположное ему число – b:

То есть мы получаем два различных ур-ния: у(х) = bи у(х) = – b.

Пример. Решите ур-ние

Решение. В правой части – положительное число, поэтому либо х = – 10, либо х = 10.

Пример. Решите ур-ние

Решение. Исходное ур-ние разбивается на два других ур-ния:

10х + 5 = 7 или 10х + 5 = – 7

10х = 2 или 10х = – 12

х = 0,2 или х = – 1,2

Пример. Найдите корни ур-ния

Решение. Снова заменим исходное равенство на два других:

x 2 – 2х – 4 = 4 или x 2 – 2х – 4 = – 4

Имеем два квадратных ур-ния. Решим каждое из них:

D = b 2 – 4ас = (– 2) 2 – 4•1•(– 8) = 4 + 32 = 36

Нашли корни (– 2) и 4. Решаем второе ур-ние:

х = 0 или х – 2 = 0

Получили ещё два корня: 0 и 2.

Встречаются случаи, когда в уравнении, содержащем знак модуля, под ним находятся обе части равенства:

Здесь возможны два варианта. Либо подмодульные выр-ния равны друг другу (у(х) = g(x)), либо у них противоположные значения (у(х) = – g(x)). То есть снова надо решить два ур-ния.

Пример. Решите ур-ние

|x 2 + 2x– 1| = |х + 1|

Решение. Выр-ния справа и слева (без знака модуля) либо равны, либо противоположны. Можно составить два ур-ния:

x 2 + 2x– 1 = х + 1 или x 2 + 2x– 1 = – (х + 1)

х 2 + х – 2 = 0 или х 2 + 3х = 0

Решим 1-ое ур-ние:

D = b 2 – 4ас = 1 2 – 4•1•(– 2) = 1 + 8 = 9

Теперь переходим ко 2-омуур-нию:

х = 0 или х + 3 = 0

Всего удалось найти 4 корня: (– 1), (– 2), 2 и 0.

Возможен случай, когда в левой части равенства находится модуль выр-ния, а в правой – обычное выражение, без модуля. Такое ур-ние имеет вид |у(х)| = g(x). Здесь также возможны два варианта: у(х) = g(x) или у(х) = – g(x). Однако следует учитывать ещё один факт. Модуль не может быть отрицательным, а потому должно выполняться нер-во g(x)⩾ 0. Но это неравенство не надо решать. Достаточно просто подставить в него все полученные корни и проверить, справедливо ли нер-во.

Пример. Найдите решение уравнения, содержащего модуль:

|х 2 + 3,5х – 20| = 4,5х

Решение. Рассмотрим два отдельных равенства:

х 2 + 3,5х – 20 = 4,5х илих 2 + 3,5х – 20 = – 4,5х

х 2 – х – 20 = 0 или х 2 + 8х – 20 = 0

Решим каждое из полученных квадратных ур-ний.

D = b 2 – 4ас = 1 2 – 4•1•(– 20) = 1 + 80 = 81

D = b 2 – 4ас = 8 2 – 4•1•(– 20) = 64 + 80 = 144

Итак, получили 4 корня: (– 4), 5, (– 10) и 2. Однако правая часть исходного ур-ния, 4,5x, не может быть отрицательной, ведь модуль числа – это всегда неотрицательная величина:

Для х = – 4 и х = – 10 это условие не выполняется, поэтому эти корни должны быть исключены.

Мы рассмотрели три случая, когда ур-ние имеет вид:

Однако порою ур-ние не удается свести ни к одному из этих видов. Тогда для решения уравнений и неравенств, содержащих модуль, следует рассматривать их на отдельных интервалах, где подмодульные выр-ния не изменяют свой знак.

Пример. Найдите корни ур-ния

Решение. Выр-ния х + 1 и х – 4 меняют знак при переходе через точки (– 1) и 4:

Если отметить обе точки на прямой, то они образуют на ней 3 интервала:

Исследуем ур-ние на каждом из полученных промежутков.

Так как при х 2 + bx + c = 0

Параметры встречаются не только при описании ур-ний, но и, например, при рассмотрении функций. Так, линейная функция задается формулой у = kx + b. Здесь числа k и b являются параметрами. Так как ур-ние у = kx + b задает на плоскости прямую линию, то величины k и b порою называют параметрами уравнения прямой.

Если при решении обычного ур-ния мы определяем значение его корней в виде конкретных чисел, то при решении ур-ний с параметром находят формулу, позволяющую при заданном значении параметра вычислить значение корня.

Пример. Решите ур-ние

и найдите его корни при значении параметра а, равном 3.

Решение. Вынесем множитель х за скобки:

х = 0 или х – 2а = 0

Получили, что при любом значении параметра а ур-ние имеет два корня. Один из них равен нулю при любом значении а, а второй вычисляется по формуле х = 2а:

при а = 3х = 2•3 = 6

Ответ: есть два корня – 0 и 2а. При а = 2 корни равны 0 и 6.

Пример. Решите ур-ние

р 2 х – 3рх = р 2 – 9

Решение. Слева вынесем за скобки множитель рх, а выр-ние справа преобразуем, используя формулу разности квадратов:

рх(р – 3) = (р – 3)(р + 3)

Возникает желание поделить обе части рав-ва на р(р – 3), чтобы выразить х. Однако сразу так делать нельзя, ведь если величина р(р – 3) равна нулю, то получится деление на ноль.

Поэтому сначала изучим случаи, когда один из множителей слева равен нулю. Если р = 0, то мы получим рав-во

0•х•(0 – 3) = (0 – 3) (3 – 0)

Это неверное тождество, а потому при р = 0 ур-ние корней не имеет.

Если р – 3 = 0, то есть р = 3, получится следующее

Это равенство верно при любом х. Значит, при р = 3 корнем ур-ния является любое число.

Если же р≠ 0 и р ≠ 3, то произведение р(р – 3) также не равно нулю, а потому обе части равенства можно поделить на р(р – 3). Тогда получим

В этом случае ур-ние имеет единственный корень.

Ответ: при р = 0 корней нет; при р = 3 корнем является любое число; при других рх = (р + 3)/р.

Часто в задаче требуется не выразить корень ур-ния через параметр, а лишь оценить количество корней ур-ния или диапазон их значений.

Пример. Сколько корней имеет ур-ние

при различных значениях параметра b.

Решение. Будем решать ур-ние графическим методом. Для этого сначала построим график у = |х 2 – 6х + 5|. В модульных скобках находится обычная квадратичная функция, чьи ветви смотрят вверх. Найдем нули функции:

D = b 2 – 4ас = (– 6) 2 – 4•1•5 = 36 + 20 = 16

Итак, нули ф-ции – это точки 1 и 5. Найдем координату х0 вершины параболы по формуле:

Подставив х0 в квадратичную ф-цию найдем координату у0 вершины параболы:

3 2 – 6•3 + 5 = 9 – 18 + 5 = – 4

Теперь построим квадратичную ф-цию:

Для построения графика, содержащего модуль функции, надо отобразить точки с отрицательными ординатами (они находятся ниже оси Ох) симметрично относительно оси Ох:

Мы построили график левой части ур-ния. График правой части представляет собой горизонтальную прямую у = b. Можно выделить 5 различных случаев взаимного расположения этих графиков:

При b 4 есть горизонтальная прямая пересекает график лишь в 2 точках, то есть получаем 2 корня.

Ответ: нет корней при b 4; 3 корня при b = 4; 4 корня при 0 4 – (а + 2)х 2 + 3а – 3 = 0

имеет ровно 4 корня?

Решение. Это ур-ние является биквадратным, то есть для его решения нужно произвести замену у = х 2 :

у 2 – (а + 2)у + 3а – 3 = 0 (1)

Для того, чтобы исходное ур-ние имело 4 корня, необходимо, чтобы у квадратного уравнения с параметром(1) было два положительных корня: у1 и у2. Тогда, проводя обратную замену х 2 = у1 и х 2 = у2, мы получим два разных квадратных ур-ния, корни которых будут равны

Если же хоть один из двух корней, например, у1, окажется равным нулю, то величины

Совпадут (они обе будут равны нулю), и останется лишь 3 корня. Если же у1 будет отрицательным числом, то ур-ние

вовсе не будет иметь решений, и тогда останется не более 2 корней.

Итак, решим ур-ние (1):

у 2 – (а + 2)у + 3а – 3 = 0

D = b 2 – 4ас = (– (а + 2)) 2 – 4•1•(3а – 3) = (а + 2) 2 – 12 а + 12 =

= а 2 + 4а + 4 – 12а + 12 = а 2 – 8а + 16 = а 2 – 2•4•а + 4 2 = (а – 4) 2

Чтобы у ур-ния (1) было два различных корня, дискриминант должен быть положительным. Величина (а – 4) 2 положительна при всех значениях а, кроме а = 4, которое обращает дискриминант в ноль. Значит, а ≠ 4.

Извлечем корень из дискриминанта:

Корни ур-ния (1) можно вычислить по формулам:

И у1, и у2 должны быть положительными величинами, однако у1 меньше, чем у2 (ведь для его вычисления дискриминант брали со знаком «минус», а не «плюс»). Поэтому достаточно записать нер-во:

Получили неравенство, содержащее модуль. Для избавления от модульных скобок в нер-ве рассмотрим 2 случая. Если а – 4>0, то есть а > 4, выполняется равенство

Это нер-во выполняется при любом допустимом значении а, поэтому при а >4 исходное ур-ние имеет 4 корня.

Итак, при условии, что а 1. Это значит, что а∊(1; 4). С учетом первого случая, при котором было получено решение

можно записать окончательный ответ: а∊(1; 4)∪(4; + ∞).

Пример. При каких параметрах а у ур-ния

х 2 – 2(а + 1)х + а 2 + 2а – 3 = 0

существует два корня, которые принадлежат интервалу (– 5; 5)?

Решение. Данное ур-ние является квадратным. Найдем его дискриминант:

D = b 2 – 4ас = (– 2(а + 1)) 2 – 4•1•( а 2 + 2а – 3) = 4(а 2 + 2а + 1) – 4(а 2 + 2а – 3) =

= 4(а 2 + 2а + 1 – а 2 – 2а + 3) = 4•4 = 16

Получаем, что при любом а дискриминант положителен, а потому уур-ния 2 корня. Вычислить их можно по формулам

Для того, чтобы оба решения уравнения с параметром принадлежали интервалу (– 5; 5), нужно, чтобы меньший из них (это х1) был больше – 5, больший (это х2) – меньше – 5:

Значит, должны выполняться два нер-ва

х1>– 5и х2 – 5 и а + 3 – 4 и а 1 (-1)

«Линейные уравнения с параметрами». 7-й класс

Класс: 7

Презентация к уроку

Загрузить презентацию (327 кБ)

Цели урока:

  • Обучающая: формировать умение решать линейные уравнения с параметрами.
  • Развивающая:
    • развивать исследовательскую деятельность учащихся;
    • развивать логическое мышление для сознательного восприятия учебного материала;
    • развивать внимание, зрительскую память, активность учащихся на уроке.

Тип урока: введение нового материала.

Учебник: «Алгебра-7» авт. Ю.Н.Макарычев, Н.Г. Миндюк и др. издательство «Мнемозина», 2008 год.

I. Проверка домашнего задания (работа выполнялась на двойных листах и сдаётся на проверку).

Готовые решения проецируются на доску и разбирается (проговаривается) алгоритм решения.

№ 624. Решите уравнение:

а) 0,3(2x – 1) – 0,4 (x + 8) = 1,2x – 1;
0,6x – 0,3 – 0,4x – 3,2 = 1,2x – 1;
0,6x – 0,4x –1,2x = 0,3 + 3,2– 1;
– x = 2,5;
x = –2,5. Ответ: – 2,5.

в) – 6(2 – 0,2x) + 11 = – 4(3 – 0,3x) – 1;
– 12 + 1,2x + 11 = – 12 + 1,2x – 1;
1,2x – 1,2x = 12 – 11 + 1;
0x = 2. Ответ: решений нет.

№ 625. Решите уравнение

а) (2x – 1)(3x + 7) – (1 + 6x)(x + 2) = 4;
6x 2 + 14x – 3x – 7 – (x + 2 + 6×2 + 12x) = 4;
6x 2 + 14x – 3x – 7 – x – 2 – 6×2 – 12x = 4;
6x 2 + 14x – 3x – x – 6x 2 – 12x = 4 + 7 + 2;
– 2x = 13;
x = – 6,5. Ответ: – 6,5.

№ 626. Решите уравнение

№ 622. При каких значениях a уравнение ax = 2a – 1:

а) имеет единственный корень; (при a 0)
б) имеет бесконечно много корней; (таких значений a нет)
в) не имеет корней? (при a = 0).

II. Устная работа (задания проецируются на доску)

1. Найдите корни уравнения:

а) 14 + 3x = 5 – x ; (– 2,25)
б) 105y – 28 = 105y + 7;
в) 34x + 2 = 34x + 2. (x – любое число)

2. При каких значениях a число 3 является корнем уравнения?

а) ax = – 6; (при a = – 2)
б) 8x = 3a . (при a = 8)

3. Укажите контрольные значения, при которых уравнение не имеет решений или решением является любое число?

а) (5 – a) x = 0; б) (b + 4) x = 5; в) ax = x.

III. Изучение нового материала

Учитель. Сегодня на уроке мы с вами будем учиться решать линейные уравнения с параметрами.

Задание 1

Рассмотрим уравнение mx + 3 = 4m – 2x. Оно содержит две переменные: m и x.

1. Вопрос. Чем же они отличаются? (одна из переменных, например m, принимает любые значения, тогда переменная x принимает не все значения, а только те, которые получаются при заданных значениях переменной m).

2. Задание. Решите данное уравнение при m = 2, – 1, 0.

если m = 2, то уравнение примет вид 2x + 3 = 8 – 2x. Ответ: ;
если m = – 1, то уравнение примет вид – x + 3 = – 4 – 2x. Ответ: – 7;
если m = 0, то уравнение примет вид 3 = – 2x. Ответ: – 1,5 )

3. Задание. Решите данное уравнение, задав свое значение для переменной m.
Переменную m, значения которой мы задаём, называют параметром (фиксированным числом).
Определение: решить уравнение с параметром – значит, для любых допустимых значений параметра найти значения неизвестной переменной.

4. Вопрос. Можем ли мы перебрать все значения параметра m, чтобы найти значения x? (нет)

5. Возникла проблемная ситуация. Как же решить данное уравнение mx + 3 = 4m – 2x?
Нет ли другого подхода к решению уравнения?
Оказывается существует. Для решения линейного уравнения с параметром применяется тот же
алгоритм решения, как и для линейного уравнения без параметра, т.е.перенос слагаемых и
приведение подобных слагаемых. Всегда ли эти операции выполняются? (да).
Выполним указанные операции:

6. Вопрос. Всегда ли можно выполнить деление? (нет).

7. Задание. Найдите контрольные значения, при которых уравнение не имеет решений.

Запишем решение уравнения далее так:

Задание 2 (разобрать так же подробно на доске)

Решите уравнение n 2 x + 3nx = 5n + 15;

n 2 x + 3nx = 5n + 15;
n (n + 3) x = 5 (n + 3);
n = – 3; 0 – контрольные значения параметра

1) при n = – 3 уравнение примет вид 0x = 0, x – любое число;
2) при n = 0 уравнение примет вид 0x = 15, решений нет;

Задание 3.

Самостоятельное решение уравнений с последующей проверкой на доске.

1. 2кx – 5(2 + x) = 7.

2кx – 5(2 + x) = 7;
2кx – 5x – 10 = 7;
2кx –5x = 7 + 10;
(2к –5) x = 17;
2к –5 = 0, к = 2,5 – контрольное значение параметра

1) при к = 2,5 уравнение примет вид 0x = 17, решений нет;

2. a 2 x – 2a = a 2 + ax

a 2 x – 2a = a 2 + ax;
a 2 x – ax = a 2 + 2a;
a(a – 1)x = a (a + 2);
a(a – 1) = 0, a = 0; 1 – контрольные значения параметра

1) при a = 0 уравнение примет вид 0x = 0, x – любое число;
2) при a = 1 уравнение примет вид 0x = 3, решений нет;


IV. Подведение итогов

1. Что мы сегодня рассматривали на уроке? (решение линейных уравнений с параметрами.)
2. В чем заключался алгоритм решения таких уравнений? Какие равносильные преобразования применяли?

а) освобождение от знаменателя, умножив обе части равенства на одно и тоже отличное от нуля число;
б) раскрытие скобок;
в) перенос слагаемых из одной части равенства в другую с противоположным знаком;
г) приведение подобных слагаемых.

V. Выставление оценок

VI. Домашнее задание

1) № 631; № 632; № 633.
2) Дополнительное задание

Уравнения с модулем, содержащие параметр. 7 класс.

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Уравнения с модулем, сводящиеся к линейным и содержащие параметр.

7класс (методические рекомендации).

Солодовникова Галина Николаевна, учитель математики

МБОУ Школа №16 г. Саров Нижегородской области.

«Задачи с параметрами незаменимое средство для тренировки логического мышления».

Данный материал можно использовать на уроках алгебры в 7 классе, на занятиях математического кружка общеобразовательной школы, для самостоятельного ознакомления с данной темой учениками 7-ого класса.

На втором занятии были рассмотрены и решены уравнения:

1) ах-3х= -1. Ответ. Если а=3,то корней нет; если а≠3, то х= .

2) тх-7т=5х-6. Ответ. Если т=5, то корней нет; если т≠5, то х = .

3) х-3 m = 12-4 m х. Ответ. Если m =0,то корней нет; если m =-4, то х-любое число;

4) = . Ответ. Если а=0,то корней нет; если а≠0, то х= .

5) + 1 = . Ответ. Если а=0, то корней нет; Если а≠0, то х = .

На 3-ем занятии мы рассмотрим уравнения с модулем, содержащие параметр.

**При решении будем использовать определение модуля, которое было дано ученикам в 6классе.

(Математика 6. А.Г.Мерзляк, В.Б.Полонский, М.С.Якир. Глава 4.Рациональные числа и действия над ними. § 32.

Модулем числа называют расстояние от начала отсчета до точки, изображающей это число на координатной прямой.

«Ключевое слово» в этом определении расстояние .

Модуль числа принимает только неотрицательные значения (расстояние не может быть отрицательным)*.

В данном уравнении х-неизвестное, а-параметр, который может принимать любые значения.

Если а=0,то уравнение примет вид 0∙ | х | =0 , х-любое число.

Ответ. Если а=0, то х-любое число; если а≠0, то х=0.

1.Если а=0, уравнение примет вид 0∙ | х | =1. Данное уравнение корней не имеет.

1)если а принимает отрицательные значения и уравнение корней не имеет;

2)если а>0, то принимает положительные значения и х=±

Ответ. Если а≤0, то корней нет; если а>0, то х = ±.

Если а-2=0, т.е. а=2, то уравнение примет вид 0∙ | х | =0, х-любое число.

Ответ. Если а=2, то х-любое число; если а≠2, то х=0.

Если а-2=0, т.е. а=2, то уравнение примет вид 0∙ | х | =5∙0 или 0∙ | х | =0 , х-любое число.

Ответ. Если а=2, то х-любое число; если а≠2, то х=±5.

1.Если а-2=0,т.е. а=2, то уравнение примет вид 0∙ | х | =0∙5 или 0∙ | х | =0, х-любое число.

Ответ. Если а=2, то х-любое число; если а

1.Если 7-а=0,т.е. а=7, то уравнение примет вид 0∙9∙ | х | =0 или 0∙ | х | =0, х-любое число.

2.Если а+2=0, т.е. а=-2,то уравнение примет вид 9∙0∙ | х | = — 9 или 0∙ | х | = — 9 ,данное уравнение корней не имеет.

2) если а>-2,то правая часть данного уравнения (- ) принимает отрицательные значения и уравнение корней не имеет.

Ответ. Если а=7, х-любое число;

если а ≥ -2, а≠7, то корней нет;

Задания для самостоятельной работы.

2)если а=0, то х-любое число; если а≠0, то х=1;

3)если а 0, то х=а-4 или х= — а – 4;

4)если а= — 3, то х-любое число; если а≠ -3,то х= -2;

5)если а=0,х-любое число; если а≠0,то х= — 1или х= -7;

6)если а=0, то х-любое число; если а=1, то х=1;

если а 1,то х=- а +2 или х=а;

7)если а=-2, то х-любое число; если а≥2, то корней нет; если а

На следующем занятии рассмотрим дробно-рациональные уравнения, содержащие параметр в знаменателе дроби.

1.Алгебра 6 класс. А.Г. Мерзляк, В.П.Полонский, М.С.Якир. Москва,»Вентана-Граф» 2015.

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 929 человек из 80 регионов

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 686 человек из 75 регионов

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 313 человек из 69 регионов

Ищем педагогов в команду «Инфоурок»

Дистанционные курсы для педагогов

«Взбодрись! Нейрогимнастика для успешной учёбы и комфортной жизни»

Свидетельство и скидка на обучение каждому участнику

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 587 007 материалов в базе

Материал подходит для УМК

«Алгебра», Мерзляк А.Г., Полонский В.Б., Якир М.С.

§ 2. Линейное уравнение с одной переменной

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

«Психологические методы развития навыков эффективного общения и чтения на английском языке у младших школьников»

Свидетельство и скидка на обучение каждому участнику

Другие материалы

  • 24.07.2018
  • 464
  • 0

  • 23.07.2018
  • 1872
  • 51

  • 21.07.2018
  • 2296
  • 3

  • 29.05.2018
  • 387
  • 14

  • 29.05.2018
  • 334
  • 9

  • 12.05.2018
  • 784
  • 4

  • 15.03.2018
  • 3592
  • 462

  • 08.02.2018
  • 1451
  • 5

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 26.07.2018 3397
  • DOCX 21.3 кбайт
  • 44 скачивания
  • Рейтинг: 5 из 5
  • Оцените материал:

Настоящий материал опубликован пользователем Солодовникова Галина Николаевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

  • На сайте: 4 года и 5 месяцев
  • Подписчики: 1
  • Всего просмотров: 12503
  • Всего материалов: 13

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

РДШ организовало сбор гуманитарной помощи для детей из ДНР

Время чтения: 1 минута

Инфоурок стал резидентом Сколково

Время чтения: 2 минуты

Студенты российских вузов смогут получить 1 млн рублей на создание стартапов

Время чтения: 3 минуты

В ростовских школах рассматривают гибридный формат обучения с учетом эвакуированных

Время чтения: 1 минута

Рособрнадзор не планирует переносить досрочный период ЕГЭ

Время чтения: 0 минут

Ленобласть распределит в школы прибывающих из Донбасса детей

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Только на 23 февраля!
Получите новую
специальность
по низкой цене

Цена от 1220 740 руб. Промокод на скидку Промокод скопирован в буфер обмена ПП2302 Выбрать курс Все курсы профессиональной переподготовки


источники:

http://urok.1sept.ru/articles/628776

http://infourok.ru/uravneniya-s-modulem-soderzhaschie-parametr-klass-3167851.html