Уравнения с отбором корней примеры

Отбор корней в тригонометрическом уравнение

В этой статье и постараюсь объяснить 2 способа отбора корней в тригонометрическом уравнение: с помощью неравенств и с помощью тригонометрической окружности. Перейдем сразу к наглядному примеру и походу дела будем разбираться.

а) Решить уравнение sqrt(2)cos^2x=sin(Pi/2+x)
б) Найдите все корни этого уравнения, принадлежащие промежутку [-7Pi/2; -2Pi]

Решим пункт а.

Воспользуемся формулой приведения для синуса sin(Pi/2+x) = cos(x)

sqrt(2)cos^2x — cosx = 0

cosx(sqrt(2)cosx — 1) = 0

x1 = Pi/2 + Pin, n ∈ Z

sqrt(2)cosx — 1 = 0

x2 = arccos(sqrt(2)/2) + 2Pin, n ∈ Z
x3 = -arccos(sqrt(2)/2) + 2Pin, n ∈ Z

x2 = Pi/4 + 2Pin, n ∈ Z
x3 = -Pi/4 + 2Pin, n ∈ Z

Решим пункт б.

1) Отбор корней с помощью неравенств

Здесь все делается просто, полученные корни подставляем в заданный нам промежуток [-7Pi/2; -2Pi], находим целые значения для n.

-7Pi/2 меньше или равно Pi/2 + Pin меньше или равно -2Pi

Сразу делим все на Pi

-7/2 меньше или равно 1/2 + n меньше или равно -2

-7/2 — 1/2 меньше или равно n меньше или равно -2 — 1/2

-4 меньше или равно n меньше или равно -5/2

Целые n в этом промежутку это -4 и -3. Значит корни принадлежащие этому промежутку буду Pi/2 + Pi(-4) = -7Pi/2, Pi/2 + Pi(-3) = -5Pi/2

Аналогично делаем еще два неравенства

-7Pi/2 меньше или равно Pi/4 + 2Pin меньше или равно -2Pi
-15/8 меньше или равно n меньше или равно -9/8

Целых n в этом промежутке нет

-7Pi/2 меньше или равно -Pi/4 + 2Pin меньше или равно -2Pi
-13/8 меньше или равно n меньше или равно -7/8

Одно целое n в этом промежутку это -1. Значит отобранный корень на этом промежутку -Pi/4 + 2Pi*(-1) = -9Pi/4.

Значит ответ в пункте б: -7Pi/2, -5Pi/2, -9Pi/4

2) Отбор корней с помощью тригонометрической окружности

Чтобы пользоваться этим способом надо понимать как работает эта окружность. Постараюсь простым языком объяснить как это понимаю я. Думаю в школах на уроках алгебры эта тема объяснялась много раз умными словами учителя, в учебниках сложные формулировки. Лично я понимаю это как окружность, которую можно обходить бесконечное число раз, объясняется это тем, что функции синус и косинус периодичны.

Обойдем раз против часовой стрелки

Обойдем 2 раза против часовой стрелки

Обойдем 1 раз по часовой стрелки (значения будут отрицательные)

Вернемся к нашем вопросу, нам надо отобрать корни на промежутке [-7Pi/2; -2Pi]

Чтобы попасть к числам -7Pi/2 и -2Pi надо обойти окружность против часовой стрелки два раза. Для того, чтобы найти корни уравнения на этом промежутке надо прикидывать и подставлять.

Рассмотри x = Pi/2 + Pin. Какой приблизительно должен быть n, чтобы значение x было где-то в этом промежутке? Подставляем, допустим -2, получаем Pi/2 — 2Pi = -3Pi/2, очевидно это не входит в наш промежуток, значит берем меньше -3, Pi/2 — 3Pi = -5Pi/2, это подходит, попробуем еще -4, Pi/2 — 4Pi = -7Pi/2, также подходит.

Рассуждая аналогично для Pi/4 + 2Pin и -Pi/4 + 2Pin, находим еще один корень -9Pi/4.

Сравнение двух методов.

Первый способ (с помощью неравенств) гораздо надежнее и намного проще для пониманию, но если действительно серьезно разобраться с тригонометрической окружностью и со вторым методом отбора, то отбор корней будет гораздо быстрее, можно сэкономить около 15 минут на экзамене.

Способы отбора корней в тригонометрических уравнениях

Класс: 10

Автор проекта:
Шелкова Полина,
Класс: 10

Руководитель:
Злобова Людмила Викторовна,
учитель математики

ВВЕДЕНИЕ

Слово «тригонометрия» греческое, оно переводится как «измерение треугольников» (τρίγονον — «тригон» — треугольник и μετρειν — «метрео» — измеряю).

Тригонометрия, как и всякая другая наука, выросла из практической деятельности человека. Потребности развивающегося мореплавания, для которого требовалось умение правильно определять курс корабля в открытом море по положению небесных светил, оказали большое влияние на развитие астрономии и тесно связанной с ней тригонометрией. Предполагают, что основополагающее значение для развития тригонометрии в эпоху ее зарождения, имели работы древнегреческого астронома Гиппарха Никейского (180-125 лет до н. э.) (прил. №3). Систематическое использование полной окружности в 360° установилось в основном благодаря Гиппарху и его таблице хорд (прил. №2). Т.е. таблицы, которые выражают длину хорды для различных центральных углов в круге постоянного радиуса, что является аналогом современных таблиц тригонометрических функций. Впрочем, до нас не дошли оригинальные таблицы Гиппарха, как и почти все, что им написано. И мы, можем составить себе о них представление главным образом по сочинению «Великое построение» или «Альмагесту» знаменитого астронома Клавдия Птолемея, жившего в середине II века н.э.

Несмотря на то, что в работах ученых древности нет «тригонометрии» в строгом смысле этого слова, но по существу они, пользуясь известными им средствами элементарной геометрии, решали те задачи, которыми занимается тригонометрия. Например, задачи на решение треугольников (определение всех сторон и углов треугольника по трем его известным элементам), теоремы Евклида и Архимеда представленные в геометрическом виде, эквивалентны специфическим тригонометрическим формулам. Главным достижением средневековой Индии стала замена хорд синусами. Это позволило вводить различные функции, связанные со сторонами и углами прямоугольного треугольника. Таким образом, в Индии было положено начало тригонометрии, как учению о тригонометрических величинах.

Учёные стран Ближнего и Среднего Востока с VIII века развили тригонометрию своих предшественников. Уже в середине IX века среднеазиатский учёный аль-Хорезми написал сочинение «Об индийском счёте». После того, как трактаты мусульманских ученых были переведены на латынь, многие идеи греческих, индийских и мусульманских математиков стали достоянием европейской, а затем и мировой науки. В дальнейшем потребности географии, геодезии, военного дела, способствовали развитию тригонометрии. Особенно усиленно шло ее развитие в средневековое время. Большая заслуга в формировании тригонометрии как отдельной науки принадлежит азербайджанскому ученому Насир ад-Дину ат-Туси (1201-1274), написавшему «Трактат о полном четырехстороннике». Творения ученых этого периода привели к выделению тригонометрии как нового самостоятельного раздела науки. Однако в их трудах еще не была введена необходимая символика. Современный вид тригонометрия получила в трудах Леонарда Эйлера (1707-1783). На основании трудов Эйлера были составлены учебники тригонометрии, излагавшие ее в строгой научной последовательности (прил. №4). Тригонометрические вычисления применяются во многих областях человеческой деятельности: в геометрии, в физике, в астрономии, в архитектуре, в геодезии, инженерном деле, в акустике, в электронике и т.д.

I РАЗДЕЛ (теоретический)

Тема проекта и её актуальность: почему я выбрала тему «Способы отбора корней в тригонометрических уравнениях»?

  • Расширить и углубить свои знания, полученные в курсе геометрии 8-9 класса.
  • Тригонометрические уравнения рассматриваются в курсе алгебры и начал математического анализа 10-11 класса.
  • Тригонометрические уравнения включены в КИМы ЕГЭ по математике.

Решение тригонометрических уравнений и отбор корней, принадлежащих заданному промежутку — это одна из сложнейших тем математики, которая выносится на Единый Государственный Экзамен. По результатам анкетирования многие учащиеся затрудняются или вообще не умеют решать тригонометрические уравнения и особенно затрудняются в отборе корней, принадлежащих промежутку. Немаловажно также знать, тригонометрические формулы, табличные значения тригонометрических функций для решения целого ряда заданий Единого Государственного Экзамена по математике.

Цель проекта: изучить способы отбора корней в тригонометрических уравнениях и выбрать для себя наиболее рациональные подходы для качественной подготовки к ЕГЭ.

Задачи:

  • познакомиться с историческими сведениями о возникновении тригонометрии, как науки;
  • изучить соответствующую литературу;
  • научиться решать тригонометрические уравнения;
  • найти теоретический материал и изучить методы отбора корней в тригонометрических уравнениях;
  • научиться отбирать корни в тригонометрических уравнениях, принадлежащим заданному промежутку;
  • подготовиться к ЕГЭ по математике.

Приёмы отбора корней тригонометрического уравнения на заданном промежутке.

При решении тригонометрических уравнений предлагается провести отбор корней из множества значений неизвестного. В тригонометрическом уравнении отбор корней можно осуществлять следующими способами: арифметическим, алгебраическим, геометрическим и функционально-графическим.

Арифметический способ отбора корней состоит в непосредственной подстановке полученных корней в уравнение, учитывая имеющиеся ограничения, при переборе значений целочисленного параметра.

Алгебраический способ предполагает составление неравенств, соответствующих дополнительным условиям, и их решение относительно целочисленного параметра.

Геометрический способ предполагает использование при отборе корней двух вариантов: тригонометрической окружности или числовой прямой. Тригонометрическая окружность более удобна, когда речь идет об отборе корней на промежутке или в случае, когда значение обратных тригонометрических функций, входящих в решения, не являются табличными. В остальных случаях предпочтительнее модель числовой прямой. Числовую прямую удобно использовать при отборе корней на промежутке, длина которого не превосходит 2 или требуется найти наибольший отрицательный или наименьший положительный корень уравнения.

Функционально-графический способ предполагает отбор корней осуществлять с использование графиков тригонометрических функций. Чтобы использовать данный способ отбора корней, требуется умение схематичного построения графиков тригонометрических функций.

II РАЗДЕЛ (практический)

Покажу практически три наиболее эффективных и рациональных, с моей точки зрения, метода отбора корней на примере решения следующего тригонометрического уравнения:

sinx−cos2x=0; [применили формулу двойного угла: cos2x = cos 2 x−sin 2 x]

sinx−(cos 2 x−sin 2 x)=0;

sinx−(1−sin 2 x−sin 2 x)=0;

Введем новую переменную: sinx = t, -1 ≤ t ≤1, получим

Вернемся к замене:

б) Рассмотрим три способа отбора корней, попадающих в отрезок .

1 способ: обратимся к единичной окружности. Отметим на ней дугу, соответствующую указанному отрезку, т.е. выполним отбор корней арифметическим способом и с помощью тригонометрической окружности:

2 способ: указанный отрезок соответствует неравенству: Подставим в него полученные корни:

3 способ: разместим корни уравнения на числовой прямой. Сначала отметим корни, подставив вместо n, и нуль (0), а потом добавим к каждому корню периоды.

Нам останется только выбрать корни, которые попали в нужный нам отрезок.

ЗАКЛЮЧЕНИЕ

При работе над моим проектом я изучила методы решения тригонометрических уравнений и способы отбора корней тригонометрических уравнений. Выяснила для себя положительные и отрицательные моменты. При апробации этих подходов в отборе корней тригонометрического уравнения, понимаешь, что каждый из этих способов удобен по-своему в том или ином случае. Например, алгебраический способ (решение неравенством) наиболее эффективен, когда промежуток для отбора корней достаточно большой, в тоже время он дает практически стопроцентное нахождение целочисленного параметра для вычисления корней, а применение арифметического способа приводит к громоздким вычислениям. При отборе корней уравнения, удовлетворяющих дополнительным условиям, т.е. когда корни уравнения принадлежат заданному промежутку, мне проще и нагляднее получить корни с помощью тригонометрической окружности, а проверить себя можно арифметическим способом. Замечу, что при решении тригонометрических уравнений трудности, связанные с отбором корней, возрастают, если в уравнении приходится учитывать ОДЗ. Как показывает практика и анкетирование моих одноклассников, из четырёх возможных методов отбора корней тригонометрического уравнения по дополнительным условиям, наиболее предпочтительным является отбор корней по окружности. Анкетирование проходили 12 респондентов, изучающих тригонометрию (прил. №5). Большинство из них отвечали, что этот раздел математики достаточно сложный: большой объем информации, очень много формул, табличных значений, которые нужно знать и уметь применять на практике. Еще как одна из проблем — небольшое количество времени, отведенное на изучение этого сложного раздела математики. И я разделяю их мнение. При такой сложности, многие считают, что тригонометрия важный раздел математики, который находит применение в других науках и практической деятельности человека.

СПИСОК ЛИТЕРАТУРЫ

  1. Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. 10 класс: учеб для общеобразоват. организаций: базовый и углубленный уровни/ [С.М.Никольский, М.К.Потапов, Н.Н.Решетников и др.]-3 -е изд.- М.: Просвещение, 2016.
  2. Алгебра и начала математического анализа: Учеб для 10-11 кл.общеобразоват. организаций / А.Н.Колмогоров, А.М.Абрамов, Ю.П.Дудницин и др. под редакцией А.Н.Колмогорова — М. Просвещение, 2017.
  3. С.В Кравцев и др. Методы решения задач по алгебре: от простых до самых сложных — М: Издательство: «Экзамен», 2005.
  4. Корянов А.Г., Прокофьев А.А. — Тригонометрические уравнения: методы решения и отбор корней. — М.: Математика ЕГЭ, 2012.

Решение тригонометрических уравнений с отбором корней

В презентации представлены рекомендации по подготовке к выполнению задания № 13 ЕГЭ профильного уровня, методы решения тригонометрических уравнений и методы отбора корней.

Просмотр содержимого документа
«Решение тригонометрических уравнений с отбором корней»

Рекомендации по подготовке к выполнению задания №13 (решение тригонометрического уравнения с отбором корней) ЕГЭ профильного уровня

Примеры заданий С1 (№ 13 с 2016 г.) в ЕГЭ 2010-2015 гг.

Примеры заданий С3 (№ 13 с 2016 г.) в ЕГЭ 2016-2017 гг.

Пример решения задания 13 из демоверсии ЕГЭ 2018 (профильный уровень)

Запись ответа в работе участника экзамена может отличаться от приведенной в критериях (содержать один целочисленный параметр n или несколько k , m , n ). Важно, чтобы в ответе были приведены все ответы для пункта а .

Пример задания 13 из вариантов ЕГЭ 2018 (профильный уровень)

Критерии проверки задания 13

Обоснованно получены верные ответы в обоих пунктах

Обоснованно получен верный ответ в пункте а

Решение не соответствует ни одному из критериев, перечисленных выше

получены неверные ответы из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения обоих пунктов – пункта а и пункта б

Прежде чем приступать к решению заданий 13, нужно запомнить и научиться применять формулы записи решений простейших тригонометрических уравнений и далее овладеть методами решения основных типов тригонометрических уравнений.

Следует обратить внимание учащихся, что в случае отбора корней использование общей формулы серии решений для синуса и косинуса не всегда является удобной.

При выполнении пункта б задания 13 удобнее не объединять серии решений, а наоборот — представлять их совокупностью.

Серии решений, записанные через совокупности

Нюансы начальной подготовки к овладению методами решения задания 13

1. По возможности при выполнении пункта б задания не использовать запись

Эта запись не показывает: во-первых, что серий решений две;

во-вторых, что период синуса .

Отбирать корни при такой форме записи крайне неудобно.

Замечание . В случае использования этих формул нужно отметить на оси синусов значение а и получить на тригонометрической окружности две точки.

2. Давать отдельные задачи на отбор корней без решения уравнений.

Нюансы начальной подготовки к овладению методами решения задания 13

3. Учиться проверять ответ. Для этого задавать вопрос:

«Сколько корней данная серия решений

может иметь на данном отрезке?»

4. Начинать обучение с заданий на отработку методов решений уравнений и способов отбора корней, в которых первична идейная часть, а вычислительная часть достаточно проста.

5. Самоконтроль! Прежде чем записывать окончательный ответ, убедиться еще раз в верности корней их непосредственной подстановкой в исходное уравнение.

Методы решения тригонометрических уравнений

При решения тригонометрических уравнений обычно используют один из следующих методов:

  • равносильных преобразований с применением формул;
  • замены, сведение к алгебраическому уравнению;
  • разложение на множители;
  • метод вспомогательного аргумента (линейные уравнения);
  • функциональный.

Методы решения тригонометрических уравнений

Рекомендации по оформлению решения задания 13 на экзамене

Задание 13 (С1). Задание содержит два пункта:

а) решить тригонометрическое уравнение,

б) отобрать его корни на данном промежутке.

Соответственно в ответе должно быть две части:

а) все корни уравнения (не забудьте написать n∈Z ),

б) отобранные на данном промежутке корни.

Решение уравнения лучше никак не комментировать и не писать знаков равносильности, так как часто при верном решении выпускники ошибаются в комментариях и ставят проверяющих в тупик.

Отбор корней , можно проводить разными способами, но рекомендуется его провести на окружности. При этом в начале отбора стоит написать фразу: отберем корни с помощью единичной окружности и затем на окружности обязательно все обозначить: точки – концы промежутка (в данном случае дуги), сами корни и жирным выделить саму дугу. Этот рисунок рисуется не для себя, а для проверяющего, на нем все должно быть видно.

Методы отбора корней тригонометрических уравнений

При решения тригонометрических уравнений в случаях

отбора корней обычно используют один из следующих

  • арифметический;
  • алгебраический;
  • геометрический (на тригонометрической

окружности или числовой прямой);

  • функционально-графический.

Арифметический метод отбора корней

Арифметический метод отбора корней связан с вычислением корней при переборе значений целочисленного параметра или нахождением значений тригонометрических выражений непосредственной подстановкой при проверке корней.

а) непосредственная подстановка полученных корней в уравнение и имеющиеся ограничения;

б) перебор значений целочисленного параметра и вычисление корней.

Замечание. В решении должна присутствовать оценка возможных значений целочисленного параметра.

Отбор корней непосредственной подстановкой

В случае непосредственной подста-новки серий полученных решений для удаления «посторонних» решений полезным оказывается использование формул приведения:

Алгебраический метод отбора корней

Алгебраический метод отбора корней удобен в тех случаях, когда:

– последовательный перебор значений параметров приводит к вычислительным трудностям;

– промежуток для отбора корней большой;

– значения обратных тригонометрических функций, входящих в серии решений, не являются табличными;

– при решении задач с дополнительными условиями.

Алгебраический метод – это:

а) решение неравенства относительно целочисленного параметра и вычисление корней;

б) исследование уравнения с двумя целочис ленными параметрами.

Геометрический метод отбора корней

Геометрический способ отбора корней предполагает наличие у учащихся навыков изображения решения простейших тригонометри-ческих уравнений и неравенств на числовой окружности или прямой, поэтому необходимо напомнить им основные действия с точками числовой окружности, связанные с формулами решений простейших тригонометрических уравнений.

Геометрический способ предполагает:

а) изображение корней на тригонометрической окружности и их отбор с учетом имеющихся ограничений;

б) изображение корней на числовой прямой с последующим отбором и учетом имеющихся ограничений.

Решение задания 13 с отбором корней на окружности

Отбор корней на числовой прямой

Отбор корней на числовой прямой

Геометрический метод отбора корней

Функционально-графический метод: отбор корней с использованием графиков простейших тригонометрических функций.

При этом подходе требуется умение схематичного построения графика тригонометрической функции и применение формул корней соответствующих уравнений.

Функционально-графический метод отбора корней

Если уравнение приводится к виду можно сделав замену , решить уравнение относительно t , а затем решить полученные уравнения с относительно .

Решение задания 13 (преобразование + замена)

Решение задания 13 (разложение на множители)

Решение задания 13 (разложение на множители)

Решение задания 13 (разложение на множители)

Пример оформления решения задания 13

Пример оформления решения задания 13


источники:

http://urok.1sept.ru/articles/687140

http://multiurok.ru/index.php/files/reshenie-trigonometricheskikh-uravnenii-s-otborom.html