Уравнения с переменными 7 класс

Линейное уравнение с одной переменной

Содержание

Что такое уравнение

Для изучения темы линейного уравнения вспомним, что уравнением называют равенство, в составе которого есть неизвестное число. Это неизвестное число-переменную нам и нужно найти.

К примеру, не будут уравнениями выражения $3n-4$ или $d + 8$. Ведь в них не требуется найти значение переменной и отсутствует знак равенства. Это просто буквенные выражения. А вот записи: $4y-7 = 13$ или $-5x = 6x-2$ являются уравнениями.

Чаще всего уравнения используют, чтобы решить задачу.

Приведем пример

Папе и сыну вместе $45$ лет, при этом известно, что отец старше на $19$ лет. Найдем, сколько лет каждому из них?

Обозначим возраст сына за $x$, тогда папе будет $x+19$ лет. Получим уравнение: $x + (x + 19) = 45$, так как по условию вместе им $45$ лет. Решим:

после раскрытия скобок: $2x + 19 = 45$,

То есть с помощью составления уравнения мы выяснили, что сыну $13$ лет. Отцу тогда $32$ года $(13 + 19)$. И вместе им действительно $45$ лет: $$13 + 32 = 45$$

Таким образом, записав по условию задачи уравнение, мы смоделировали алгебраическую модель ситуации.

Неизвестная переменная может обозначаться в уравнении не только буквами $x$ или $y$, но и любыми другими латинскими буквами.

Когда от нас требуется решить уравнение, мы должны найти все его корни либо показать, что их нет.

Корень уравнения – это значение неизвестной переменной, превращающее уравнение в верное равенство.

Рассмотрим пример

Выясним, является ли корнем этого уравнения $x = 4$. Подставим $4$ вместо $x$ и получим: $$<3\times 4>-1 = 5$$$$12-1 = 5$$$$11 = 5$$

При решении мы поняли, что $x ≠ 4$, так как $11 ≠ 5$. То есть число $4$ не может быть корнем данного в задании уравнения. Посчитайте самостоятельно, какой корень у этого уравнения?

Корней может быть несколько, один или не быть совсем. В последнем случае говорят обычно, что уравнение не имеет решения или не имеет корней.

В примере с папой и сыном корень уравнения единственный: $x = 13$. Ведь нет других вариантов решения, при которых будут выполнены все условия и получится верное равенство. Проверьте сами?

Что такое линейное уравнение

Если числа в конечном уравнении $2x = 26$ к нашему первому примеру заменить на буквы $a$ и $b$, мы получим уравнение вида $ax = b$.

Подобные уравнения и называются линейными.

Уравнения вида $ax = b$, где $x$ — переменная, $a$ и $b$ — некоторые числа, называются линейными уравнениями с одной переменной

Когда уравнения содержат, к примеру, степень: $$x^2 + 3 = 7$$ или неизвестная переменная находится в знаменателе дроби: $$\frac <8> — 3 = 0$$ они не будут называться линейными.

Иногда в составе уравнения есть несколько переменных, это тоже не наш случай: такие уравнения будут изучаться позже.

Коэффициенты и решение линейных уравнений

Числа $a$ и $b$ в линейном уравнении называют коэффициентами. Они могут быть выражены любыми числами, в том числе отрицательными или дробными. При этом $a$ называют коэффициентом при неизвестной переменной, а коэффициент $b$ свободным.

В наших примерах у уравнений был единственный корень. Наверное, вы заметили, что в них коэффициенты $a$ и $b$ были равны числам, отличным от нуля. Подобные уравнения решаются по простому алгоритму: $$x = \frac $$

Посмотрим, когда линейное уравнение никак не может иметь корней (или верного решения).

Попробуем взять коэффициент $a$, равный $0$, а коэффициент $b$ — любое число, не равное $0$. Тогда получим уравнение: $$0\times x = b$$ При умножении $x$ на ноль всегда будет ноль, но у нас $b ≠ 0$. Следовательно, правая и левая части такого уравнения между собой не равны, и при $a = 0$, а $b ≠ 0$ линейное уравнение не имеет верного решения.

Но линейное уравнение может иметь и множество решений. Рассмотрим такой случай. Например, что будет, если оба коэффициента равны нулю: $a = 0$ и $b = 0$? $$0\times x + 0 = 0$$ Ясно, что любое подобное уравнение с обоими коэффициентами, равными нулю, имеет бесконечно много корней. Почему? Потому что любое число при умножении на 0 дает ноль. Какое бы число вместо $x$ мы не подставили, равенство будет верным.

Таким образом, при решении линейных уравнений мы пришли к трем общим ситуациям:

Величины $a$ и $b$$a ≠ 0$, $b$ — любое$a = b = 0$$a = 0$, $b ≠ 0$
Корни уравнения $ax = b$$x = \frac $$x$ — любоекорней нет

Свойства линейных уравнений

Цель любого линейного уравнения – выразить $x$ и понять, чему он будет равен.

До того, как начать решать уравнение, над ним необходимо произвести все доступные арифметические действия, например, сложение/вычитание, раскрытие скобок, умножение/деление отдельно для свободных коэффициентов и отдельно для членов уравнения с неизвестной переменной.

Для упрощения дальнейшего решения с уравнениями можно произвести те же действия, что применяются к другим математическим выражениям.

Свойства линейных уравнений:

  1. Любой член можно перенести из одной части линейного уравнения в другую, но при этом нужно не забыть заменить знак на противоположный.

В процессе решения надо так преобразовать уравнение, чтобы все известные члены оказались с одной стороны равенства, а неизвестные — с другой.

Например: $5x = 30-3x$. Для решения перенесем $-3x$ в левую часть с противоположным знаком и получим $5x + 3x = 30$.

  1. В ходе решения обе части уравнения можно одновременно делить или умножать на какое-то одно и то же число, отличающееся от $0$. При этом равенство будет оставаться верным.

Часто второе свойство применяется в уравнениях с дробями. Например, нужно решить уравнение: $$\frac <5><2>\times x = 8$$ Чтобы избавиться от дроби, попробуем и правую и левую части уравнения умножить на $2$. Тогда мы получим: $$2\times \frac <5><2>\times x = 2\times 8$$ После умножения уравнение примет следующий вид: $$5x = 16$$

Согласитесь, такое уравнение решить намного легче. При этом после подобных преобразований равенство не нарушается, и мы получаем равносильные уравнения.

Решение простых линейных уравнений

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Какие бывают виды уравнений

Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  • если а равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Числовой коэффициент — число, которое стоит при неизвестной переменной.

Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.

Приведем подобные и завершим решение.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

    Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

−4x = 12 | : (−4)
x = −3

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

Алгоритм решения простого линейного уравнения
  1. Раскрываем скобки, если они есть.
  2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
  3. Приводим подобные члены в каждой части уравнения.
  4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.

Примеры линейных уравнений

Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

    Перенести 1 из левой части в правую со знаком минус.

Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.

Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.

5х − 15 + 2 = 3х − 12 + 2х − 1

Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.

5х − 3х − 2х = −12 − 1 + 15 − 2

Приведем подобные члены.

Ответ: х — любое число.

Пример 3. Решить: 4х = 1/8.

    Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.

Пример 4. Решить: 4(х + 2) = 6 − 7х.

  1. 4х + 8 = 6 − 7х
  2. 4х + 7х = 6 − 8
  3. 11х = −2
  4. х = −2 : 11
  5. х = −2/11

Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.

Пример 5. Решить:

  1. 3(3х — 4) = 4 · 7х + 24
  2. 9х — 12 = 28х + 24
  3. 9х — 28х = 24 + 12
  4. -19х = 36
  5. х = 36 : (-19)
  6. х = — 36/19

Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

5х — 15 + 2 = 3х — 2 + 2х — 1

Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

Приведем подобные члены.

Ответ: нет решений.

Пример 7. Решить: 2(х + 3) = 5 − 7х.

Уравнения с переменными 7 класс

УРАВНЕНИЕ И ЕГО КОРНИ

Решим задачу: «На двух полках 40 книг, причем на верхней полке в 8 раза больше книг, чем на нижней. Сколько книг на нижней полке?»

Обозначим буквой х число книг на нижней полке. Тогда число книг на верхней полке равно Зх. По условию задачи на обеих полках находится 40 книг. Это условие можно записать в виде равенства:

3x + x = 40.

Чтобы найти неизвестное число книг, мы составили равенство, содержащее переменную. Такие равенства называют уравнениями. Переменную в уравнении называют также неизвестным числом или просто неизвестным.

Нам надо найти число, при подстановке которого вместо х в уравнение Зх + х = 40 получается верное равенство. Такое число называют решением уравнения или корнем уравнения. Равенство Зх + х = 40 верно при х = 10. Число 10 — корень уравнения Зх + х = 40.

Определение. Корнем уравнения называется значение переменной, при котором уравнение обращается в верное равенство.

Уравнение Зх + х = 40 имеет один корень. Можно привести примеры уравнений, которые имеют два, три и более корней или вообще не имеют корней.

Так, уравнение (х—4)(х — 5) (х—6)=0 имеет три корня: 4, б и 6. Действительно, каждое из этих чисел обращает в нуль один из множителей произведения (х—4) (х—5)(х—б), а значит, и само произведение. При любом другом значении х ни один из множителей в нуль не обращается, а значит, не обращается в нуль и произведение. Уравнение х + 2 = х не имеет корней, так как при любом значении х левая часть уравнения на 2 больше правой части.

Решить уравнение — значит найти все его корни или доказать, что их нет.

Уравнение х 2 =4 имеет два корня — числа 2 и —2. Уравнение (х—2) (х+2)=0 также имеет корни 2 и —2. Уравнения, имеющие одни и те же корни, называют равносильными уравнениями. Уравнения, не имеющие корней, также считают равносильными.

Уравнения обладают следующими свойствами:

1) если к обеим частям уравнения прибавить одно и то же число, то получится уравнение, равносильное данному;

2) если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.

Рассмотрим уравнение х 2 — 2 = 7. Прибавив к левой и правой частям этого уравнения число 2, получим уравнение х 2 = 9. Докажем, что уравнения х 2 — 2 = 7 и х 2 = 9 равносильны.

Пусть некоторое значение х является корнем первого уравнения, т. е. при этом значении- х уравнение х 2 —2 = 7 обращается в верное равенство. Прибавив к обеим частям этого равенства число 2, мы снова получим верное равенство. Значит, при этом значении х второе уравнение также обращается в верное равенство. Мы доказали, что каждый корень первого уравнения является корнем второго уравнения.

Допустим теперь, что некоторое значение х является корнем второго уравнения х 2 = 9, т. е. обращает его в верное равенство. После вычитания из обеих частей этого равенства числа 2 мы получим верное равенство. Значит, при этом значении х первое уравнение также обращается в верное равенство. Поэтому каждый корень второго уравнения является корнем первого.

Таким образом, уравнения х 2 — 2 = 7 и х 2 = 9 имеют одни и те же корни, т. е. являются равносильными.

Подобными рассуждениями устанавливается справедливость обоих свойств уравнений в общем случае.

3) Можно также доказать, что если в уравнении перенести слагаемое ив одной части в другую, изменив его знак, то получится уравнение, равносильное данному. Например, перенеся в уравнении 5х = 2х + 9 слагаемое 2х с противоположным знаком из правой части уравнения в левую, получим уравнение 5х—2дс=9, ему равносильное.

Перенос слагаемых из одной части уравнения в другую часто применяется при решении уравнений.

ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙ

Каждое из уравнений 5х = — 4, — 0,2х = 0, —х= —6,5 имеет вид ах = b где а и b — числа. В первом уравнении а = 5, b= — 4, во втором а= —0,2, b = 0, в третьем а= — 1, b= —6,5. Такие уравнения называют линейными уравнениями с одной переменной.

Определение. Уравнение вида ах = b, где х — переменная, а и b — числа, называется линейным уравнением с одной переменной.

Число а называется коэффициентом при переменной, а число b — свободным членом.

Рассмотрим линейное уравнение ах = b, в котором коэффициент а не равен нулю. Разделив обе части уравнения на а, получим . Значит, линейное уравнение ах=b в котором а≠ 0, имеет единственный корень

Рассмотрим теперь линейное уравнение ах = b, у которого коэффициент а равен нулю. Если а = 0 и b≠ О, то уравнение ах =b не имеет корней, так как равенство Ox = b, где b≠ 0, не является верным ни при каком x. Если а = 0 и b = О, то любое значение х является корнем уравнения, так как равенство 0х = 0 верно при любом х.

Решение многих уравнений сводится к решению линейных уравнений.

Пример. Решим уравнение

Перенесем слагаемое —х в левую часть уравнения, а слагаемое 28 в правую, изменив при этом их знаки:

Приведем подобные слагаемые:

Заменяя последовательно одно уравнение другим, равносильным ему, мы получили линейное уравнение, в котором коэффициент при х отличен от нуля. Разделим обе части уравнения на этот коэффициент:

Число —5 является корнем уравнения .

Может случиться, Что при решении уравнения мы придем к линейному уравнению вида 0х=b. В этом случае исходное уравнение либо не имеет корней, либо его корнем является любое число. Например, уравнение сводится к уравнению Ох = 7, и, значит, оно не имеет корней. Уравнение сводится к уравнению 0х = 0, и, значит, любое число является его корнем.


источники:

http://skysmart.ru/articles/mathematic/reshenie-prostyh-linejnyh-uravnenij

http://forkettle.ru/vidioteka/estestvoznanie/matematika/181-algebra/algebra-7-9-klassy/1891-algebra-7-9-klassy-1-uravneniya-s-odnoj-peremennoj-vyrazheniya-i-ikh-preobrazovaniya