Уравнения с приведением к общему знаменателю

Решение уравнений с переменной в знаменателе дроби

Вы будете перенаправлены на Автор24

Уравнения, содержащие переменную в знаменателе можно решать двумя способами:

Приведя дроби к общему знаменателю

Используя основное свойство пропорции

Вне зависимости от выбранного способа необходимо после нахождения корней уравнения выбрать из найденных допустимые значения, т.е те, которые не обращают знаменатель в $0$.

1 способ. Приведение дробей к общему знаменателю.

Решение:

1.Перенесем дробь из правой части уравнения в левую

Для того чтобы правильно это сделать, вспомним, что при перенесении элементов в другую часть уравнения меняется знак перед выражениями на противоположный. Значит, если в правой части перед дробью был знак «+», то в левой перед ней будет знак «-».Тогда в левой части получим разность дробей.

2.Теперь отметим что у дробей разные знаменатели, значит для того, чтобы составить разность необходимо привести дроби к общему знаменателю. Общим знаменателем будет произведение многочленов, стоящих в знаменателях исходных дробей: $(2x-1)(x+3)$

Для того чтобы получить тождественное выражение, числитель и знаменатель первой дроби необходимо умножить на многочлен $(x+3)$, а второй на многочлен $(2x-1)$.

Выполним преобразование в числителе первой дроби-произведем умножение многочленов. Вспомним , что для этого необходимо умножить первое слагаемое первого многочлена умножить на каждое слагаемое второго многочлена, затем второе слагаемое первого многочлена умножить на каждое слагаемое второго многочлена и результаты сложить

\[\left(2x+3\right)\left(х+3\right)=2х\cdot х+2х\cdot 3+3\cdot х+3\cdot 3=<2х>^2+6х+3х+9\]

Приведем подобные слагаемые в полученном выражении

\[\left(2x+3\right)\left(х+3\right)=2х\cdot х+2х\cdot 3+3\cdot х+3\cdot 3=<2х>^2+6х+3х+9=\] \[<=2х>^2+9х+9\]

Выполним аналогично преобразование в числителе второй дроби-произведем умножение многочленов

$\left(x-5\right)\left(2х-1\right)=х\cdot 2х-х\cdot 1-5\cdot 2х+5\cdot 1=<2х>^2-х-10х+5=<2х>^2-11х+5$

Тогда уравнение примет вид:

Теперь дроби с одинаковым знаменателем, значит можно производить вычитание. Вспомним, что при вычитании дробей с одинаковым знаменателем из числителя первой дроби необходимо вычесть числитель второй дроби, знаменатель оставить прежним

Преобразуем выражение в числителе. Для того, чтобы раскрыть скобки, перед которыми стоит знак «-» надо изменить все знаки перед слагаемыми , стоящими в скобках на противоположные

Приведем подобные слагаемые

Тогда дробь примет вид

3.Дробь равна $0$, если ее числитель равен 0. Поэтому мы приравниваем числитель дроби к $0$.

Решим линейное уравнение:

4.Проведем выборку корней. Это значит, что необходимо проверить, не обращаются ли знаменатели исходных дробей в $0$ при найденных корнях.

Поставим условие, что знаменатели не равны $0$

Значит допустимы все значения переменных, кроме $-3$ и $0,5$.

Найденный нами корень является допустимым значением, значит его смело можно считать корнем уравнения. Если бы найденный корень был бы не допустимым значением, то такой корень был бы посторонним и ,конечно, не был бы включен в ответ.

Ответ:$-0,2.$

Теперь можем составить алгоритм решения уравнения, которое содержит переменную в знаменателе

Алгоритм решения уравнения, которое содержит переменную в знаменателе

Перенести все элементы из правой части уравнения в левую. Для получения тождественного уравнения необходимо изменить все знаки, стоящие перед выражениями в правой части на противоположные

Если в левой части мы получим выражение с разными знаменателями, то приводим их к общему, используя основное свойство дроби. Выполнить преобразования, используя тождественные преобразования и получить итоговую дробь равную $0$.

Приравнять числитель к $0$ и найти корни получившегося уравнения.

Проведем выборку корней, т.е. найти допустимые значения переменных, которые не обращают знаменатель в $0$.

2 способ. Используем основное свойство пропорции

Основным свойством пропорции является то, что произведение крайних членов пропорции равно произведению средних членов.

Используем данное свойство для решения этого задания

1.Найдем и приравняем произведение крайних и средних членов пропорции.

Решив полученное уравнение, мы найдем корни исходного

2.Найдем допустимые значения переменной .

Из предыдущего решения (1 способ) мы уже нашли , что допустимы любые значения, кроме $-3$ и $0,5$.

Тогда, установив что найденный корень является допустимым значением, мы выяснили, что $-0,2$ будет являться корнем.

Ответ:$-0,2.$

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 12 05 2021

Решение уравнений с дробями

О чем эта статья:

5 класс, 6 класс, 7 класс

Понятие дроби

Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

Дробь — это рациональное число, представленное в виде a/b, где a — числитель дроби, b — знаменатель. Есть два формата записи:

  • обыкновенный вид — ½ или a/b,
  • десятичный вид — 0,5.

Дробь — это одна из форм деления, записываемая с помощью дробной черты. Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление.

Дроби бывают двух видов:

  1. Числовые — состоят из чисел. Например, 2/7 или (1,8 − 0,3)/5.
  2. Алгебраические — состоят из переменных. Например, (x + y)/(x − y). Значение дроби зависит от данных значений букв.

Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.

Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3/5.

Основные свойства дробей

Дробь не имеет значения, если делитель равен нулю.

Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.

Дроби a/b и c/d называют равными, если a × d = b × c.

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой и возводить в степень.

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере:

  • Возьмем выражение 4 + 5 = 9. Это верное равенство, потому что 4+5 действительно 9. Если бы вместо 9 стояло любое другое число — мы бы сказали, что числовое равенство неверное.
  • Уравнением можно назвать выражение 4 + x = 9, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Решить уравнение значит найти все его корни или убедиться, что корней нет.

Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = −b : а;
  • если а равно нулю, а b не равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Понятие дробного уравнения

Дробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так:

Такие уравнения еще называют дробно-рациональными. В них всегда есть хотя бы одна дробь с переменной в знаменателе.

Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры:

На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное.

Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение.

Как решать уравнения с дробями

1. Метод пропорции

Чтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает.

Итак, у нас есть линейное уравнение с дробями:

В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь.

После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели.

2. Метод избавления от дробей

Возьмем то же самое уравнение, но попробуем решить его по-другому.

В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать:

  • подобрать число, которое можно разделить на каждый из знаменателей без остатка;
  • умножить на это число каждый член уравнения.

Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля!

Вот так просто мы получили тот же ответ, что и в прошлый раз.

Что еще важно учитывать при решении

  • если значение переменной обращает знаменатель в 0, значит это неверное значение;
  • делить и умножать уравнение на 0 нельзя.

Универсальный алгоритм решения

Определить область допустимых значений.

Найти общий знаменатель.

Умножить каждый член уравнения на общий знаменатель и сократить полученные дроби. Знаменатели при этом пропадут.

Раскрыть скобки, если нужно и привести подобные слагаемые.

Решить полученное уравнение.

Сравнить полученные корни с областью допустимых значений.

Записать ответ, который прошел проверку.

Курсы по математике от Skysmart помогут закрепить материал и разобраться в сложных темах.

Примеры решения дробных уравнений

Чтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек.

Пример 1. Решить дробное уравнение: 1/x + 2 = 5.

  1. Вспомним правило х ≠ 0. Это значит, что область допустимых значений: х — любое число, кроме нуля.
  2. Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Решим обычное уравнение.

Пример 2. Найти корень уравнения

  1. Область допустимых значений: х ≠ −2.
  2. Умножим обе части уравнения на выражение, которое сократит оба знаменателя: 2(х+2)
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Переведем новый множитель в числитель..

Сократим левую часть на (х+2), а правую на 2.

Пример 3. Решить дробное уравнение:

    Найти общий знаменатель:

Умножим обе части уравнения на общий знаменатель. Сократим. Получилось:

Выполним возможные преобразования. Получилось квадратное уравнение:

Решим полученное квадратное уравнение:

Получили два возможных корня:

Если x = −3, то знаменатель равен нулю:

Если x = 3 — знаменатель тоже равен нулю.

  • Вывод: числа −3 и 3 не являются корнями уравнения, значит у данного уравнения нет решения.
  • Приведение алгебраических дробей к общему знаменателю

    Приведение алгебраических дробей к общему знаменателю выполняется по тем же правилам, что и приведение обыкновенных дробей к общему знаменателю. Следовательно, чтобы привести алгебраические дроби к общему знаменателю, нужно:

    • найти общий знаменатель для данных дробей;
    • найти дополнительный множитель для каждой дроби;
    • умножить числитель каждой дроби на её дополнительный множитель;
    • записать дроби с найденными новыми числителями и общим знаменателем.

    Чтобы найти наименьший общий знаменатель для дробей, надо разложить знаменатель каждой дроби на множители и взять каждый множитель в наибольшей встречающейся степени.

    Пример 1. Привести дроби к общему знаменателю:

    2b,cиa.
    3a 22b6ab

    Решение: Разложим знаменатели дробей на множители:

    Выпишем множители первого знаменателя и добавим к ним недостающие множители из второго и третьего знаменателя:

    Мы нашли наименьший общий знаменатель для данных дробей. Теперь, чтобы привести дроби к общему знаменателю, нам надо найти для каждой дроби дополнительный множитель. Для этого нужно разделить общий знаменатель на знаменатель каждой дроби:

    Умножаем числитель каждой дроби на её дополнительный множитель:

    Осталось записать дроби с найденными новыми числителями и их общим знаменателем:

    4b 2,3a 2 cиa 2.
    6a 2 b6a 2 b6a 2 b

    Пример 2. Привести дроби к общему знаменателю:

    3aи4.
    a — 2a 2 — 4

    Решение: Разложим на множители знаменатель второй дроби, используя формулу разности квадратов:

    Получившееся произведение и будет общим знаменателем для данных дробей. Значит, для приведения дробей к общему знаменателю, нам нужно только умножить числитель первой дроби на сумму чисел (a + 2).

    В результате у нас получилось:

    3a 2 + 6aи4.
    (a + 2)(a — 2)(a + 2)(a — 2)

    Произведение суммы и разности чисел a и 2 можно обратно свернуть в квадрат разности для более краткой записи дробей:


    источники:

    http://skysmart.ru/articles/mathematic/reshenie-uravnenij-s-drobyami

    http://izamorfix.ru/matematika/algebra/obsch_znam.html