Уравнения с разными основаниями и степенями онлайн

Решить уравнение со степенями онлайн

Калькулятор поможет вам решить уравнения, где есть любые степени. Всё что нужно – это ввести нужные значения и вы получите довольно-таки развёрнутое решение. В дальнейшем вы сможете решать такие уравнения без помощи калькулятора.

Калькулятор

Инструкция

Примечание: π записывается как pi; корень квадратный как sqrt().

Шаг 1. Введите заданное уравнение в поле.

Шаг 2. Нажмите кнопку “Решить”.

Шаг 3. Получите развёрнутый ответ.

Вводить можно любые цифры при помощи клавиатуры. А чтобы показать степень, применяется знак – ^.

Уравнение со степенями

Уравнение со степенями – это уравнение, в котором над число стоит определённая степень. Если у вас квадратное уравнение, его можно решить через дискриминант. Чем больше степеней в уравнении, тем сложнее оно решается. Однако, так кажется только на первый взгляд. Кубическое уравнение можно решать по формуле Виета. Калькулятор справится с этими уравнениями быстро и легко.

Средняя оценка 1.7 / 5. Количество оценок: 16

Решение показательных уравнений онлайн

Показательным называется уравнение в котором неизвестная переменная находится в степени, например:

Для решения таких уравнений применяются различные подходы, одним из которых является логарифмирование. Например, прологарифмируем обе части, приведенного выше уравнения:

Приведенный выше пример является простейшим. Наш калькулятор, построенный на системе Wolfram Alpha способен решить практически любые показательные уравнения с подробным решением.

Показательные уравнения. Как решать показательные уравнения?

Показательное уравнение – это уравнение c переменной в показателе степени.

Как решать показательные уравнения

При решении любое показательное уравнение мы стремимся привести к виду \(a^=a^\), а затем сделать переход к равенству показателей, то есть:

Важно! Из той же логики следуют два требования для такого перехода:
число в основании степени слева и справа должно быть одинаковым;
степени слева и справа должны быть «чистыми», то есть не должно быть никаких коэффициентов , умножений, делений и т.д.

В этом показательном уравнении переход к \(x+2= 8-x\) невозможен, так как в основаниях разные числа

Здесь переход к \(x+3x=2x\) также невозможен, так как слева стоит сумма.

И в этом случае перейти к \(5-x=7x\) нельзя, ведь справа есть минус.

Мы знаем, что \(27 = 3^3\). С учетом этого преобразуем уравнение.

Теперь вспомним, что: \(a^<-n>=\frac<1>\). Эту формулу можно использовать и в обратную сторону: \(\frac<1> =a^<-n>\). Тогда \(\frac<1><3>=\frac<1> <3^1>=3^<-1>\).

Применив свойство \((a^b )^c=a^\) к правой части, получим: \((3^ <-1>)^<2x>=3^<(-1)·2x>=3^<-2x>\).

И вот теперь у нас основания равны и нет никаких мешающих коэффициентов и т.д. Значит, можем делать переход.

Решаем получившееся линейное уравнение и пишем ответ.

Воспользуемся свойством степени \(a^b \cdot a^c=a^\) в обратном направлении.

\(2^x \cdot 2^3+2^x \cdot 2^2-2^x \cdot 2^1=160\)

Теперь в левой части выносим за скобку общий множитель \(2^x\) …

…и вычисляем содержимое в скобке.

Делим на \(10\) обе части уравнения…

…и дорешиваем до ответа.

Иногда одних только свойств степеней оказывается недостаточно, и приходиться применять стандартные приемы для решения более сложных уравнений – замену переменной , расщепление уравнения и т.д.

Вновь пользуемся свойством степени \(a^b \cdot a^c=a^\) в обратном направлении.

Теперь вспоминаем, что \(4=2^2\).

Смотрим внимательно на уравнение, и видим, что тут напрашивается замена \(t=2^x\).

Однако мы нашли значения \(t\), а нам нужны \(x\). Возвращаемся к иксам, делая обратную замену.

Преобразовываем второе уравнение, используя свойство отрицательной степени…

…и дорешиваем до ответа.

Остается вопрос — как понять, когда какой метод применять? Это приходит с опытом. А пока вы его не наработали, пользуйтесь общей рекомендацией для решения сложных задач – «не знаешь, что делать – делай, что можешь». То есть, ищите как вы можете преобразовать уравнение в принципе, и пробуйте это делать – вдруг чего и выйдет? Главное при этом делать только математически обоснованные преобразования.

Показательные уравнения, не имеющие решений

Разберем еще две ситуации, которые часто ставят в тупик учеников:
— положительное число в степени равно нулю, например, \(2^x=0\);
— положительное число в степени равно отрицательному числу, например, \(2^x=-4\).

Давайте попробуем решить перебором. Если икс — положительное число, то с ростом икса вся степень \(2^x\) будет только расти:

И так далее. Очевидно, что дальше увеличивать икс нет смысла, будет только «хуже» (т.е. мы будем удаляться от нуля и минус четверки).
Может быть нам поможет \(x=0\)? Проверяем:

Тоже мимо. Остаются отрицательные иксы. Вспомнив свойство \(a^<-n>=\frac<1>\), проверяем:

Несмотря на то, что число с каждым шагом становится меньше, до нуля оно не дойдет никогда. Так что и отрицательная степень нас не спасла. Приходим к логичному выводу:

Положительное число в любой степени останется положительным числом.

Таким образом, оба уравнения выше не имеют решений.

Показательные уравнения с разными основаниями

В практике порой встречаются показательные уравнения с разными основаниями, не сводимыми к друг к другу, и при этом с одинаковыми показателями степени. Выглядят они так: \(a^=b^\), где \(a\) и \(b\) – положительные числа.

Такие уравнения легко можно решить делением на любую из частей уравнения (обычно делят на правую часть, то есть на \(b^\). Так делить можно, потому что положительное число в любой степени положительно (то есть, мы не делим на ноль). Получаем:

Дальше решаем с помощью свойств степени.

Здесь у нас не получиться ни пятерку превратить в тройку, ни наоборот (по крайней мере, без использования логарифмов ). А значит мы не можем прийти к виду \(a^=a^\). При этом показатели одинаковы.
Давайте поделим уравнение на правую часть, то есть на \(3^\) (мы можем это делать, так как знаем, что тройка ни в какой степени не будет нулем).

Казалось бы, лучше не стало. Но вспомните еще одно свойство степени: \(a^0=1\), иначе говоря: «любое число в нулевой степени равно \(1\)». Верно и обратное: «единица может быть представлена как любое число в нулевой степени». Используем это, делая основание справа таким же как слева.

Вуаля! Избавляемся от оснований.

Иногда «одинаковость» показателей степени не очевидна, но умелое использование свойств степени решает этот вопрос.

Уравнение выглядит совсем печально… Мало того, что основания нельзя свести к одинаковому числу (семерка ни в какой степени не будет равна \(\frac<1><3>\)), так еще и показатели разные… Однако давайте в показателе левой степени вынесем за скобку двойку.

Аллилуйя! Показатели стали одинаковы!
Действуя по уже знакомой нам схеме, решаем до ответа.


источники:

http://mathforyou.net/online/equation/exponential/

http://cos-cos.ru/math/145/