Уравнения с целыми и дробными частями

Целая и дробная части числа

Разделы: Математика

Цели урока: познакомить учащихся с понятием целой и дробной части числа; сформулировать и доказать некоторые свойства целой части числа; познакомить учащихся с широким спектром применения целой и дробной части числа; совершенствовать умение решать уравнения и системы уравнений, содержащих целую и дробную части числа.

Оборудование: плакат “Кто смолоду делает и думает сам, тот и становится потом надёжнее, крепче, умнее” (В. Шукшин).
Проектор, магнитная доска, справочник по алгебре.

  1. Организационный момент.
  2. Проверка домашнего задания.
  3. Изучение нового материала.
  4. Решение задач по теме.
  5. Итоги урока.
  6. Домашнее задание.

I. Организационный момент: сообщение темы урока; постановка цели урока; сообщение этапов урока.

II. Проверка домашнего задания.

Ответить на вопросы учащихся по домашнему заданию. Решить задачи, вызвавшие затруднения при выполнении домашней работы.

III. Изучение нового материала.

Во многих задачах алгебры приходится рассматривать наибольшее целое число, не превосходящее данного числа. Такое целое число получило специальное название “целая часть числа”.

Целой частью действительного числа х называется наибольшее целое число, не превосходящее х. Целая часть числа х обозначается символом [x] или Е(х) (от французского Entier “антье” ─ “целый”). Например, [5] = 5, [ π ] = 3,

Из определения следует, что [x] ≤ х, так как целая часть не превосходит х.

С другой стороны, т.к. [x] – наибольшее целое число, удовлетворяющее неравенству, то [x] +1>х. Таким образом, [x] есть целое число, определяющееся неравенствами [x] ≤ х α = υ ─ [x] называют дробной частью числа х и обозначают <х>. Тогда имеем: 0 ≤ <х>0 ≤ α о [x+у] = [x] + [у].

Если 1≤ α т.е. α = 1 + α` , где 0 ≤ α` α` и

Это свойство распространяется на любое конечное число слагаемых:

Умение находить целую часть величины очень важно в приближенных вычислениях. В самом деле, если мы умеем находить целую часть величины х, то, приняв [x] или [x]+1 за приближенное значение величины х, мы сделаем погрешность, величина которой не больше единицы, так как

≤ х – [x] ≥ 0 , а во-вторых, в сумме, стоящей в середине полученного двойного неравенства, все слагаемые, начиная с третьего, равны 0, так что x .

Поскольку х – целое число, то остается проверить значения от 0 до 6. Решениями уравнения оказываются числа 0,4 и 5.

Задача 7. Решить систему уравнение

(Провести проверку с помощью проектора.)

Найти число корней уравнения

Преобразуем, неравенство к виду , откуда получим, что искомое количество целых чисел равно 5. Значит, число корней данного уравнения равно 5.

Задача 9. (Соросовская олимпиада).

а) провести проверку самостоятельных работ с помощью проектора;

б) ответить на вопросы:

  1. “Дайте определение целой и дробной части числа”;
  2. “При решении, каких задач используется целая и дробная часть числа?”;

в) выставление отметок.

VI. Домашнее задание.

Дополнительная задача (по желанию).

Некто измерил длину и ширину прямоугольника. Он умножил целую часть длины на целую часть ширины и получил 48; умножил целую часть длины на дробную часть ширины и получил 3,2; умножил дробную часть длины на целую часть ширины и получил 1,5. Определите площадь прямоугольника.

Решение целых и дробно рациональных уравнений

Давайте познакомимся с рациональными и дробными рациональными уравнениями, дадим их определение, приведем примеры, а также разберем наиболее распространенные типы задач.

Рациональное уравнение: определение и примеры

Знакомство с рациональными выражениями начинается в 8 классе школы. В это время на уроках алгебры учащиеся все чаще начинают встречать задания с уравнениями, которые содержат рациональные выражения в своих записях. Давайте освежим в памяти, что это такое.

Рациональное уравнение – это такое уравнение, в обеих частях которого содержатся рациональные выражения.

В различных пособиях можно встретить еще одну формулировку.

Рациональное уравнение – это такое уравнение, запись левой части которого содержит рациональное выражение, а правая – нуль.

Определения, которые мы привели для рациональных уравнений, являются равнозначными, так как говорят об одно и том же. Подтверждает правильность наших слов тот факт, что для любых рациональных выражений P и Q уравнения P = Q и P − Q = 0 будут равносильными выражениями.

А теперь обратимся к примерам.

x = 1 , 2 · x − 12 · x 2 · y · z 3 = 0 , x x 2 + 3 · x — 1 = 2 + 2 7 · x — a · ( x + 2 ) , 1 2 + 3 4 — 12 x — 1 = 3 .

Рациональные уравнения точно также, как и уравнения других видов, могут содержать любое количество переменных от 1 до нескольких. Для начала мы рассмотрим простые примеры, в которых уравнения будут содержать только одну переменную. А затем начнем постепенно усложнять задачу.

Рациональные уравнения делятся на две большие группы: целые и дробные. Посмотрим, какие уравнения будут относиться к каждой из групп.

Рациональное уравнение будет являться целым в том случае, если в записи левой и правой его частей содержатся целые рациональные выражения.

Рациональное уравнение будет являться дробным в том случае, если одна или обе его части содержат дробь.

Дробно рациональные уравнения в обязательном порядке содержат деление на переменную или же переменная имеется в знаменателе. В записи целых уравнений такого деления нет.

3 · x + 2 = 0 и ( x + y ) · ( 3 · x 2 − 1 ) + x = − y + 0 , 5 – целые рациональные уравнения. Здесь обе части уравнения представлены целыми выражениями.

1 x — 1 = x 3 и x : ( 5 · x 3 + y 2 ) = 3 : ( x − 1 ) : 5 – это дробно рациональные уравнения.

К числу целых рациональных уравнений можно отнести линейные и квадратные уравнения.

Решение целых уравнений

Решение таких уравнений обычно сводится к преобразованию их в равносильные алгебраические уравнения. Достичь этого можно путем проведения равносильных преобразований уравнений в соответствии со следующим алгоритмом:

  • сначала получим ноль в правой части уравнения, для этого на необходимо перенести выражение, которое находится в правой части уравнения, в его левую часть и поменять знак;
  • затем преобразуем выражение в левой части уравнения в многочлен стандартного вида.

Мы должны получить алгебраическое уравнение. Это уравнение будет равносильным по отношению к исходному уравнению. Легкие случаи позволяют нам для решения задачи свести целое уравнение с линейному или квадратному. В общем случае мы решаем алгебраическое уравнение степени n .

Необходимо найти корни целого уравнения 3 · ( x + 1 ) · ( x − 3 ) = x · ( 2 · x − 1 ) − 3 .

Решение

Проведем преобразование исходного выражения с целью получить равносильное ему алгебраическое уравнение. Для этого произведем перенос выражения, содержащегося в правой части уравнения, в левую часть и заменим знак на противоположный. В итоге получим: 3 · ( x + 1 ) · ( x − 3 ) − x · ( 2 · x − 1 ) + 3 = 0 .

Теперь проведем преобразование выражения, которое находится в левой части в многочлен стандартного вида и произведем необходимые действия с этим многочленом:

3 · ( x + 1 ) · ( x − 3 ) − x · ( 2 · x − 1 ) + 3 = ( 3 · x + 3 ) · ( x − 3 ) − 2 · x 2 + x + 3 = = 3 · x 2 − 9 · x + 3 · x − 9 − 2 · x 2 + x + 3 = x 2 − 5 · x − 6

У нас получилось свести решение исходного уравнения к решению квадратного уравнения вида x 2 − 5 · x − 6 = 0 . Дискриминант этого уравнения положительный: D = ( − 5 ) 2 − 4 · 1 · ( − 6 ) = 25 + 24 = 49 . Это значит, действительных корней будет два. Найдем их, воспользовавшись формулой корней квадратного уравнения:

x = — — 5 ± 49 2 · 1 ,

x 1 = 5 + 7 2 или x 2 = 5 — 7 2 ,

x 1 = 6 или x 2 = — 1

Проверим верность корней уравнения, которые мы нашли в ходе решения. Для этого числа, которые мы получили, подставим в исходное уравнение: 3 · ( 6 + 1 ) · ( 6 − 3 ) = 6 · ( 2 · 6 − 1 ) − 3 и 3 · ( − 1 + 1 ) · ( − 1 − 3 ) = ( − 1 ) · ( 2 · ( − 1 ) − 1 ) − 3 . В первом случае 63 = 63 , во втором 0 = 0 . Корни x = 6 и x = − 1 действительно являются корнями уравнения, данного в условии примера.

Ответ: 6 , − 1 .

Давайте разберем, что значит «степень целого уравнения». С этим термином мы будем часто встречаться в тех случаях, когда нам надо будет представить целое уравнение в виде алгебраического. Дадим определение понятию.

Степень целого уравнения – это степень алгебраического уравнения, равносильного исходному целому уравнению.

Если посмотреть на уравнения из примера, приведенного выше, можно установить: степень данного целого уравнения вторая.

Если бы наш курс ограничивался решением уравнений второй степени, то рассмотрение темы на этом можно было бы закончить. Но все не так просто. Решение уравнений третьей степени сопряжено с трудностями. А для уравнений выше четвертой степени и вовсе не существует общих формул корней. В связи с этим решение целых уравнений третьей, четвертой и других степеней требует от нас применения целого ряда других приемов и методов.

Чаще прочих используется подход к решению целых рациональных уравнений, который основан на методе разложения на множители. Алгоритм действий в этом случае следующий:

  • переносим выражение из правой части в левую с тем, чтобы в правой части записи остался нуль;
  • представляем выражение в левой части как произведение множителей, а затем переходим к совокупности нескольких более простых уравнений.

Пример 4

Найдите решение уравнения ( x 2 − 1 ) · ( x 2 − 10 · x + 13 ) = 2 · x · ( x 2 − 10 · x + 13 ) .

Решение

Переносим выражение из правой части записи в левую с противоположным знаком: ( x 2 − 1 ) · ( x 2 − 10 · x + 13 ) − 2 · x · ( x 2 − 10 · x + 13 ) = 0 . Преобразование левой части в многочлен стандартного вида нецелесообразно в связи с тем, что это даст нам алгебраическое уравнение четвертой степени: x 4 − 12 · x 3 + 32 · x 2 − 16 · x − 13 = 0 . Легкость преобразования не оправдывает всех сложностей с решением такого уравнения.

Намного проще пойти другим путем: вынесем за скобки общий множитель x 2 − 10 · x + 13 . Так мы придем к уравнению вида ( x 2 − 10 · x + 13 ) · ( x 2 − 2 · x − 1 ) = 0 . Теперь заменим полученное уравнение совокупностью двух квадратных уравнений x 2 − 10 · x + 13 = 0 и x 2 − 2 · x − 1 = 0 и найдем их корни через дискриминант: 5 + 2 · 3 , 5 — 2 · 3 , 1 + 2 , 1 — 2 .

Ответ: 5 + 2 · 3 , 5 — 2 · 3 , 1 + 2 , 1 — 2 .

Точно также мы можем использовать метод введения новой переменной. Этот метод позволяет нам переходить к равносильным уравнениям со степенями ниже, чем были степени в исходном целом уравнении.

Есть ли корни у уравнения ( x 2 + 3 · x + 1 ) 2 + 10 = − 2 · ( x 2 + 3 · x − 4 ) ?

Решение

Если мы сейчас попробуем свести целое рациональное уравнение к алгебраическому, то получим уравнение 4 степени, которое не имеет рациональных корней. Потому нам будет проще пойти другим путем: ввести новую переменную у, которая заменит в уравнении выражение x 2 + 3 · x .

Теперь мы будем работать с целым уравнением ( y + 1 ) 2 + 10 = − 2 · ( y − 4 ) . Перенесем правую часть уравнения в левую с противоположным знаком и проведем необходимые преобразования. Получим: y 2 + 4 · y + 3 = 0 . Найдем корни квадратного уравнения: y = − 1 и y = − 3 .

Теперь проведем обратную замену. Получим два уравнения x 2 + 3 · x = − 1 и x 2 + 3 · x = − 3 . Перепишем их как x 2 + 3 · x + 1 = 0 и x 2 + 3 · x + 3 = 0 . Используем формулу корней квадратного уравнения для того, чтобы найти корни первого уравнения из полученных: — 3 ± 5 2 . Дискриминант второго уравнения отрицательный. Это значит, что действительных корней у второго уравнения нет.

Ответ: — 3 ± 5 2

Целые уравнения высоких степеней попадаются в задачах достаточно часто. Пугаться их не нужно. Нужно быть готовым применить нестандартный метод их решения, в том числе и ряд искусственных преобразований.

Решение дробно рациональных уравнений

Начнем рассмотрение этой подтемы мы с алгоритма решения дробно рациональных уравнений вида p ( x ) q ( x ) = 0 , где p ( x ) и q ( x ) – целые рациональные выражения. Решение остальных дробно рациональных уравнений всегда можно свести к решению уравнений указанного вида.

В основу наиболее употребимого метода решения уравнений p ( x ) q ( x ) = 0 положено следующее утверждение: числовая дробь u v , где v – это число, которое отлично от нуля, равна нулю только в тех случаях, когда числитель дроби равен нулю. Следуя логике приведенного утверждения мы можем утверждать, что решение уравнения p ( x ) q ( x ) = 0 может быть сведено в выполнению двух условий: p ( x ) = 0 и q ( x ) ≠ 0 . На этом построен алгоритм решения дробных рациональных уравнений вида p ( x ) q ( x ) = 0 :

  • находим решение целого рационального уравнения p ( x ) = 0 ;
  • проверяем, выполняется ли для корней, найденных в ходе решения, условие q ( x ) ≠ 0 .

Если это условие выполняется, то найденный корень является корнем исходного уравнения. Если нет, то корень не является решением задачи.

Найдем корни уравнения 3 · x — 2 5 · x 2 — 2 = 0 .

Решение

Мы имеем дело с дробным рациональным уравнением вида p ( x ) q ( x ) = 0 , в котором p ( x ) = 3 · x − 2 , q ( x ) = 5 · x 2 − 2 = 0 . Приступим к решению линейного уравнения 3 · x − 2 = 0 . Корнем этого уравнения будет x = 2 3 .

Проведем проверку найденного корня, удовлетворяет ли он условию 5 · x 2 − 2 ≠ 0 . Для этого подставим числовое значение в выражение. Получим: 5 · 2 3 2 — 2 = 5 · 4 9 — 2 = 20 9 — 2 = 2 9 ≠ 0 .

Условие выполняется. Это значит, что x = 2 3 является корнем исходного уравнения.

Ответ: 2 3 .

Есть еще один вариант решения дробных рациональных уравнений p ( x ) q ( x ) = 0 . Вспомним, что это уравнение равносильно целому уравнению p ( x ) = 0 на области допустимых значений переменной x исходного уравнения. Это позволяет нам использовать следующий алгоритм в решении уравнений p ( x ) q ( x ) = 0 :

  • решаем уравнение p ( x ) = 0 ;
  • находим область допустимых значений переменной x ;
  • берем корни, которые лежат в области допустимых значений переменной x , в качестве искомых корней исходного дробного рационального уравнения.

Пример 7

Решите уравнение x 2 — 2 · x — 11 x 2 + 3 · x = 0 .

Решение

Для начала решим квадратное уравнение x 2 − 2 · x − 11 = 0 . Для вычисления его корней мы используем формулу корней для четного второго коэффициента. Получаем D 1 = ( − 1 ) 2 − 1 · ( − 11 ) = 12 , и x = 1 ± 2 3 .

Теперь мы можем найти ОДЗ переменной x для исходного уравнения. Это все числа, для которых x 2 + 3 · x ≠ 0 . Это то же самое, что x · ( x + 3 ) ≠ 0 , откуда x ≠ 0 , x ≠ − 3 .

Теперь проверим, входят ли полученные на первом этапе решения корни x = 1 ± 2 3 в область допустимых значений переменной x . Мы видим, что входят. Это значит, что исходное дробное рациональное уравнение имеет два корня x = 1 ± 2 3 .

Ответ​​: x = 1 ± 2 3

Второй описанный метод решения проще первого в случаях, когда легко находится область допустимых значений переменной x , а корни уравнения p ( x ) = 0 иррациональные. Например, 7 ± 4 · 26 9 . Корни могут быть и рациональными, но с большим числителем или знаменателем. Например, 127 1101 и − 31 59 . Это позволяет сэкономить время на проведении проверки условия q ( x ) ≠ 0 : намного проще исключить корни, которые не подходят, по ОДЗ.

В тех случаях, когда корни уравнения p ( x ) = 0 целые, целесообразнее использовать первый из описанных алгоритмов решения уравнений вида p ( x ) q ( x ) = 0 . Быстрее сразу находить корни целого уравнения p ( x ) = 0 , после чего проверять, выполняется ли для них условие q ( x ) ≠ 0 , а не находить ОДЗ, после чего решать уравнение p ( x ) = 0 на этой ОДЗ. Это связано с тем, что в таких случаях сделать проверку обычно проще, чем найти ОДЗ.

Найдите корни уравнения ( 2 · x — 1 ) · ( x — 6 ) · ( x 2 — 5 · x + 14 ) · ( x + 1 ) x 5 — 15 · x 4 + 57 · x 3 — 13 · x 2 + 26 · x + 112 = 0 .

Решение

Начнем с рассмотрения целого уравнения ( 2 · x − 1 ) · ( x − 6 ) · ( x 2 − 5 · x + 14 ) · ( x + 1 ) = 0 и нахождения его корней. Для этого применим метод решения уравнений через разложение на множители. Получается, что исходное уравнение равносильно совокупности четырех уравнений 2 · x − 1 = 0 , x − 6 = 0 , x 2 − 5 · x + 14 = 0 , x + 1 = 0 , из которых три линейных и одно квадратное. Находим корни: из первого уравнения x = 1 2 , из второго – x = 6 , из третьего – x = 7 , x = − 2 , из четвертого – x = − 1 .

Проведем проверку полученных корней. Определить ОДЗ в данном случае нам сложно, так как для этого придется провести решение алгебраического уравнения пятой степени. Проще будет проверить условие, по которому знаменатель дроби, которая находится в левой части уравнения, не должен обращаться в нуль.

По очереди подставим корни на место переменной х в выражение x 5 − 15 · x 4 + 57 · x 3 − 13 · x 2 + 26 · x + 112 и вычислим его значение:

1 2 5 − 15 · 1 2 4 + 57 · 1 2 3 − 13 · 1 2 2 + 26 · 1 2 + 112 = = 1 32 − 15 16 + 57 8 − 13 4 + 13 + 112 = 122 + 1 32 ≠ 0 ;

6 5 − 15 · 6 4 + 57 · 6 3 − 13 · 6 2 + 26 · 6 + 112 = 448 ≠ 0 ;

7 5 − 15 · 7 4 + 57 · 7 3 − 13 · 7 2 + 26 · 7 + 112 = 0 ;

( − 2 ) 5 − 15 · ( − 2 ) 4 + 57 · ( − 2 ) 3 − 13 · ( − 2 ) 2 + 26 · ( − 2 ) + 112 = − 720 ≠ 0 ;

( − 1 ) 5 − 15 · ( − 1 ) 4 + 57 · ( − 1 ) 3 − 13 · ( − 1 ) 2 + 26 · ( − 1 ) + 112 = 0 .

Проведенная проверка позволяет нам установить, что корнями исходного дробного рацинального уравнения являются 1 2 , 6 и − 2 .

Ответ: 1 2 , 6 , — 2

Найдите корни дробного рационального уравнения 5 · x 2 — 7 · x — 1 · x — 2 x 2 + 5 · x — 14 = 0 .

Решение

Начнем работу с уравнением ( 5 · x 2 − 7 · x − 1 ) · ( x − 2 ) = 0 . Найдем его корни. Нам проще представить это уравнение как совокупность квадратного и линейного уравнений 5 · x 2 − 7 · x − 1 = 0 и x − 2 = 0 .

Используем формулу корней квадратного уравнения для поиска корней. Получаем из первого уравнения два корня x = 7 ± 69 10 , а из второго x = 2 .

Подставлять значение корней в исходное уравнение для проверки условий нам будет достаточно сложно. Проще будет определить ОДЗ переменной x . В данном случае ОДЗ переменной x – это все числа, кроме тех, для которых выполняется условие x 2 + 5 · x − 14 = 0 . Получаем: x ∈ — ∞ , — 7 ∪ — 7 , 2 ∪ 2 , + ∞ .

Теперь проверим, принадлежат ли найденные нами корни к области допустимых значений переменной x .

Корни x = 7 ± 69 10 — принадлежат, поэтому, они являются корнями исходного уравнения, а x = 2 – не принадлежит, поэтому, это посторонний корень.

Ответ: x = 7 ± 69 10 .

Разберем отдельно случаи, когда в числителе дробного рационального уравнения вида p ( x ) q ( x ) = 0 находится число. В таких случаях, если в числителе находится число, отличное от нуля, то уравнение не будет иметь корней. Если это число будет равно нулю, то корнем уравнения будет любое число из ОДЗ.

Решите дробное рациональное уравнение — 3 , 2 x 3 + 27 = 0 .

Решение

Данное уравнение не будет иметь корней, так как в числителе дроби из левой части уравнения находится отличное от нуля число. Это значит, что ни при каких значениях x значение приведенной в условии задачи дроби не будет равняться нулю.

Ответ: нет корней.

Решите уравнение 0 x 4 + 5 · x 3 = 0 .

Решение

Так как в числителе дроби находится нуль, решением уравнения будет любое значение x из ОДЗ переменной x .

Теперь определим ОДЗ. Оно будет включать все значения x , при которых x 4 + 5 · x 3 ≠ 0 . Решениями уравнения x 4 + 5 · x 3 = 0 являются 0 и − 5 , так как, это уравнение равносильно уравнению x 3 · ( x + 5 ) = 0 , а оно в свою очередь равносильно совокупности двух уравнений x 3 = 0 и x + 5 = 0 , откуда и видны эти корни. Мы приходим к тому, что искомой областью допустимых значений являются любые x , кроме x = 0 и x = − 5 .

Получается, что дробное рациональное уравнение 0 x 4 + 5 · x 3 = 0 имеет бесконечное множество решений, которыми являются любые числа кроме нуля и — 5 .

Ответ: — ∞ , — 5 ∪ ( — 5 , 0 ∪ 0 , + ∞

Теперь поговорим о дробных рациональных уравнениях произвольного вида и методах их решения. Их можно записать как r ( x ) = s ( x ) , где r ( x ) и s ( x ) – рациональные выражения, причем хотя бы одно из них дробное. Решение таких уравнений сводится к решению уравнений вида p ( x ) q ( x ) = 0 .

Мы уже знаем, что мы можем получить равносильное уравнение при переносе выражения из правой части уравнения в левое с противоположным знаком. Это значит, что уравнение r ( x ) = s ( x ) равносильно уравнение r ( x ) − s ( x ) = 0 . Также мы уже разобрали способы преобразования рационального выражения в рациональную дробь. Благодаря этому мы без труда можем преобразовать уравнение r ( x ) − s ( x ) = 0 в тождественную ему рациональную дробь вида p ( x ) q ( x ) .

Так мы переходим от исходного дробного рационального уравнения r ( x ) = s ( x ) к уравнению вида p ( x ) q ( x ) = 0 , решать которые мы уже научились.

Следует учитывать, что при проведении переходов от r ( x ) − s ( x ) = 0 к p ( x ) q ( x ) = 0 , а затем к p ( x ) = 0 мы можем не учесть расширения области допустимых значений переменной x .

Вполне реальна ситуация, когда исходное уравнение r ( x ) = s ( x ) и уравнение p ( x ) = 0 в результате преобразований перестанут быть равносильными. Тогда решение уравнения p ( x ) = 0 может дать нам корни, которые будут посторонними для r ( x ) = s ( x ) . В связи с этим в каждом случае необходимо проводить проверку любым из описанных выше способов.

Чтобы облегчить вам работу по изучению темы, мы обобщили всю информацию в алгритм решения дробного рационального уравнения вида r ( x ) = s ( x ) :

  • переносим выражение из правой части с противоположным знаком и получаем справа нуль;
  • преобразуем исходное выражение в рациональную дробь p ( x ) q ( x ) , последовательно выполняя действия с дробями и многочленами;
  • решаем уравнение p ( x ) = 0 ;
  • выявляем посторонние корни путем проверки их принадлежности ОДЗ или методом подстановки в исходное уравнение.

Визуально цепочка действий будет выглядеть следующим образом:

r ( x ) = s ( x ) → r ( x ) — s ( x ) = 0 → p ( x ) q ( x ) = 0 → p ( x ) = 0 → о т с е и в а н и е п о с т о р о н н и х к о р н е й

Решите дробное рациональное уравнение x x + 1 = 1 x + 1 .

Решение

Перейдем к уравнению x x + 1 — 1 x + 1 = 0 . Преобразуем дробное рациональное выражение в левой части уравнения к виду p ( x ) q ( x ) .

Для этого нам придется привести рациональные дроби к общему знаменателю и упростить выражение:

x x + 1 — 1 x — 1 = x · x — 1 · ( x + 1 ) — 1 · x · ( x + 1 ) x · ( x + 1 ) = = x 2 — x — 1 — x 2 — x x · ( x + 1 ) = — 2 · x — 1 x · ( x + 1 )

Для того, чтобы найти корни уравнения — 2 · x — 1 x · ( x + 1 ) = 0 , нам необходимо решить уравнение − 2 · x − 1 = 0 . Получаем один корень x = — 1 2 .

Нам осталось выполнить проверку любым из методов. Рассмотрим их оба.

Подставим полученное значение в исходное уравнение. Получим — 1 2 — 1 2 + 1 = 1 — 1 2 + 1 . Мы пришли к верному числовому равенству − 1 = − 1 . Это значит, что x = − 1 2 является корнем исходного уравнения.

Теперь проведем проверку через ОДЗ. Определим область допустимых значений переменной x . Это будет все множество чисел, за исключением − 1 и 0 (при x = − 1 и x = 0 обращаются в нуль знаменатели дробей). Полученный нами корень x = − 1 2 принадлежит ОДЗ. Это значит, что он является корнем исходного уравнения.

Ответ: − 1 2 .

Найдите корни уравнения x 1 x + 3 — 1 x = — 2 3 · x .

Решение

Мы имеем дело с дробным рациональным уравнением. Следовательно, будем действовать по алгоритму.

Перенесем выражение из правой части в левую с противоположным знаком: x 1 x + 3 — 1 x + 2 3 · x = 0

Проведем необходимые преобразования: x 1 x + 3 — 1 x + 2 3 · x = x 3 + 2 · x 3 = 3 · x 3 = x .

Приходим к уравнению x = 0 . Корень этого уравнения – нуль.

Проверим, не является ли этот корень посторонним для исходного уравнения. Подставим значение в исходное уравнение: 0 1 0 + 3 — 1 0 = — 2 3 · 0 . Как видите, полученное уравнение не имеет смысла. Это значит, что 0 – это посторонний корень, а исходное дробное рациональное уравнение корней не имеет.

Ответ: нет корней.

Если мы не включили в алгоритм другие равносильные преобразования, то это вовсе не значит, что ими нельзя пользоваться. Алгоритм универсален, но он создан для того, чтобы помогать, а не ограничивать.

Решите уравнение 7 + 1 3 + 1 2 + 1 5 — x 2 = 7 7 24

Решение

Проще всего будет решить приведенное дробное рациональное уравнение согласно алгоритму. Но есть и другой путь. Рассмотрим его.

Отнимем от правой и левой частей 7 , получаем: 1 3 + 1 2 + 1 5 — x 2 = 7 24 .

Отсюда можно заключить, что выражение в знаменателе левой части должно быть равно числу, обратному числу из правой части, то есть, 3 + 1 2 + 1 5 — x 2 = 24 7 .

Вычтем из обеих частей 3 : 1 2 + 1 5 — x 2 = 3 7 . По аналогии 2 + 1 5 — x 2 = 7 3 , откуда 1 5 — x 2 = 1 3 , и дальше 5 — x 2 = 3 , x 2 = 2 , x = ± 2

Проведем проверку для того, чтобы установить, являются ли найденные корни корнями исходного уравнения.

Учебное пособие «Задачи, содержащие целую и дробную часть числа»
методическая разработка по алгебре (10 класс) по теме

Изучая алгебру 10 класса по учебнику А.Г.Мордковича и П.В. Семёнова, ученики впервые встретились с функцией целой части числа у = [х]. Некоторых она заинтересовала, но теоретических сведений, да и заданий, содержащих целую часть числа, оказалось очень мало. Чтобы поддержать интерес детей к предмету и возникла идея создания данного пособия.

Реализация программы курса рассчитана на 1 полугодие 10 класса для обучающихся физико – математического профиля.

Цель курса: расширить знания обучающихся о математических функциях и формировать умение использовать знания о функциях при решении уравнений и неравенств разной степени сложности. В представленном учебном пособии содержатся теоретические сведения справочного характера. Это сведения о функции целой части числа у = [х] и функции дробной части числа у = <х>, их графиках. Объясняются преобразования графиков, содержащих целую часть числа. Рассмотрены решения простейших уравнений и неравенств, содержащих целую или дробную частъ числа. А также методы решения квадратных, дробно – рациональных уравнений и неравенств, систем уравнений, содержащих целую или дробную часть числа.

В пособии приведены задания для самостоятельного решения.

Пособие включает в себя следующие пункты:

§1. Знакомство с функциями у = [х] и у =<х>.

§2. Уравнения, содержащие дробную или целую часть числа.

2.1 Простейшие уравнения.

2.2 Решение уравнений вида [f (х)] = g (х).

2.3 Графический способ решения уравнений.

2.4 Решение уравнений введением новой переменной.

2.5 Системы уравнений.

§3. Преобразование графиков функций, содержащих целую часть числа.

3.1 Построение графиков функций вида у = [f (х)]

3.2 Построение графиков функций вида у = f ([х]).

§4. Неравенства, содержащие целую или дробную часть числа.

§5. Целая и дробная часть числа в олимпиадных заданиях.

Ответы на задания для самостоятельного решения.

Пособие обеспечивает развитие представлений о функции и формирование прикладных навыков.

Адресовано учителям, решающим задачи профильного обучения.

Скачать:

ВложениеРазмер
uchebnoe_posobie_zadachisoderzhashchie_celuyu_ili_drobnuyu_chast_chisla.doc822.5 КБ

Предварительный просмотр:

Задачи, содержащие целую

или дробную часть числа

Вы приступаете к углубленному изучению темы «Целая и дробная части числа». Данное пособие позволит вам расширить свои знания о математических функциях при решении уравнений и неравенств разной степени сложности. В представленном пособии содержатся теоретические сведения справочного характера, объясняются преобразования графиков, содержащих целую или дробную часть числа, рассмотрены решения простейших уравнений. А также методы решения квадратных, дробно – рациональных уравнений и неравенств, систем уравнений. В пособии приведены задания для самостоятельного решения. Учебное пособие поможет вам систематизировать и обобщить полученные знания по теме «Целая и дробная части числа».

§1. Знакомство с функциями у = [х] и у=<х>………………………4

§2. Уравнения, содержащие целую или дробную часть числа…. 7

2.3 Графический способ решения уравнений………………10

  1. Решение уравнений введением новой переменной……11

§3. Преобразования графиков функций, содержащих целую

  1. 3.1 Построение графиков функций вида у = [f(х)]……………13
  2. 3.2 Построение графиков функций вида у = f([х])……………15

§4. Неравенства, содержащие целую или дробную часть числа. 17

§5. Целая или дробная часть числа в олимпиадных заданиях…. 20

Ответы на задания для самостоятельного решения……………. 23

§1. Знакомство с функциями у = [x]

История и определение целой и дробной части числа

Понятие целой части числа было введено немецким математиком Иоганном Карлом Фридрихом Гауссом(1771-1855), автором «Трудов по теории чисел». Также Гаусс продвинул теорию специальных функций, рядов, численные методы, решение задач математической физики, создал математическую теорию потенциала.

Обозначается целая часть действительного числа x символом [x] или E(x).

Символ [x] был введён К.Гауссом в 1808 г.

Функция же целой части числа была введена Адриеном Мари Лежандром ( 1752-1833). — французским математиком. Его работа «Опыт теории чисел», которая вышла в свет в 1798 году, является фундаментальным трудом, итогом арифметических достижений XVIII века. Именно в честь него функцию y = [x] называют французским словом «Антье» (фр. «entier» -целый) обозначают E(x).

Определение: целой частью числа х называется наибольшее целое число с, не превышающее х, т.е. если [х] = с, c ≤ x

По некоторым значениям функции можно построить её график. Он выглядит следующим образом:

Свойства функции y = [x]:

1. Область определения функции y = [x] есть множество всех действительных чисел R.

2. Область значений функции y = [x] есть множество всех целых чисел Z.

3. Функция y = [x] кусочно-постоянная, неубывающая.

4. Функция общего вида.

5. Функция не периодична.

6. Функция не ограничена.

7. Функция имеет точку разрыва.

9. y 0, при х 0,при х>0.

10.Функция не имеет точек экстремума.

11. У наиб. и У наим. не существует.

Возникает вопрос: «Если есть функция целой части числа, может, есть и функция дробной части числа?»

Определение: дробная часть числа (обозначается <х>) есть разность х — [х].

Построим график функции у = <х>. Он выглядит следующим образом:

Простейшие свойства функции y = :

1. Область определения функции y = есть множество всех действительных чисел R.

2. Область значений функции y = есть полуинтервал [0;1)

3.Функция общего вида.

5.Функция не прерывна.

6.у=0, при всех целых х.

7.у>0, при всех действительных х.

8.Функция монотонно возрастает на [n; n+1)

9. Функция не имеет точек экстемума.

Представление о том, как выглядят графики функций у = [х] и у = <х>поможет выполнить и некоторые задания.

ЗАДАНИЯДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

1) Построить графики функций:

2) Какими могут быть числа х и у, если:

3) Что можно сказать о величине разности х — у , если:

4) Что больше: [а] или <а>?

§2. Уравнения, содержащие целую или дробную часть числа

2.1. Простейшие уравнения

К простейшим уравнениям относятся уравнения вида [х] = а.

Уравнения такого вида решаются по определению:

Если а — дробное число, то такое уравнение не будет иметь корней.

Рассмотрим пример решения одного из таких уравнений:

[х + 1,3] = — 5. По определению такое уравнение преобразуется в неравенство:

Это и будет являться решением уравнения.

Рассмотрим ещё одно уравнение, относящееся к разряду простейших:

Для решения уравнений такого вида необходимо использовать свойство функции целого числа: Если р — целое число, то справедливо равенство

Доказательство: х = [х] +

х = k + а, где k = [х], а =

[ k + a ± p ] = [ k + a ] ± p = [х] ±p.

Решим предложенное уравнение, используя доказанное свойство: Получим [х] + 1 + [х] — 2 — [х] — 3 = 2. Приведём подобные слагаемые и получим простейшее уравнение [х] = 6. Его решением является полуинтервал х[6;7), который и будет решением данного уравнения.

Рассмотрим более сложное уравнение:

Преобразуем уравнение в неравенство: 1 ≤ х 2 -5х+6

х 2 — 5х + 6 ≥ 1 и решим её;

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

3) [x + 4] – [x + 1] = 2

2.2 Решение уравнений вида [f(x)]=g(x)

Уравнение вида [f(x)]=g(x) можно решить путем сведения их к уравнению

Рассмотрим пример 1 .

Заменим правую часть уравнения на новою переменную a и выразим отсюда x

11a = 16x + 16, 16x = 11a – 16,

Теперь решим уравнение относительно переменной а .

Раскроем знак целой части по определению и запишем с помощью системы неравенств:

Из промежутка выберем все целые значения a: 3;4;5;6;7 и проведем обратную замену:

Разделим каждое слагаемое числителя в скобке на знаменатель:

Из определения целой части числа следует, что (а+1) должно быть целым, значит и а – целое. Числа а, (а+1), (а+2) — три последовательных числа, значит одно из них обязательно делится на 2, а одно — на 3. Следовательно, произведение чисел делится нацело на 6.

То есть целое число. Значит

Решим это уравнение.

а + 1 = 0 или а 2 + 2а – 6 = 0

a = -1 ± (не являются целыми).

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ:

2.3. Графический способ решения уравнений

Решение. Решим это уравнение графически. Построим графики функций у = [х] и у = 2<х>. Найдём абсциссы точек их пересечения.

Ответ: х = 0; х = 1,5.

В некоторых случаях удобнее по графику найти ординаты точек пересечения графиков. Затем подставить полученное значение в одно из уравнений и найти искомые значения х.

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

Решите уравнения графически:

10) Сколько решений имеет уравнение 2 <х>= 1 — .

2.4. Решение уравнений введением новой переменной.

Рассмотрим первый пример:

Заменим <х>на а, 0 а

а 2 — 8а + 7 = 0, которое решим по теореме, обратной теореме Виета: Полученные корни а = 7 и а = 1 . Проведем обратную замену и получим два новых уравнения: <х>= 7 и <х>= 1. Оба эти уравнения не имеют корней. Следовательно, уравнение не имеет решений.

Ответ: решений нет.

Рассмотрим ещё один случай решения уравнения введением новой

3[х] 3 + 2[х] 2 + 5[х]-10 = 0

Проведём замену [х] = а, аz. и получим новое кубическое уравнение За 3 +2а 2 +5а-10=0. Первый корень этого уравнения найдём путём подбора: а=1 — корень уравнения. Делим наше уравнение на (а-1). Получаем квадратное уравнение 3а 2 + 5а +10=0. Это уравнение имеет отрицательный дискриминант, а значит, не имеет решений. То есть, а=1 — единственный корень уравнения. Проводим обратную замену: [х]=а=1. Полученное уравнение решаем по определению целой части числа: х[1 ;2).

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ:

10) 10[х] 3 -11[х] 2 -31[х]-10 = 0

2.5. Системы уравнений.

Рассмотрим систему уравнений:

Ее можно решить либо методом сложения, либо подстановкой. Остановимся на первом способе.

После сложения двух уравнений получаем 11[x] = 11. Отсюда

[x] = 1. Подставим это значение в первое уравнение системы и получаем

[x] = 1 и [y] = 2 – решения системы. То есть x [1;2), y [2;3).

Ответ: ( x [1;2), y [2;3)).

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ:

§3. Преобразования графиков функций, содержащих целую часть числа

3.1. Построение графиков функции вида y = [f(x)]

Пусть имеется график функции у = f(х). Чтобы построить график функции у = [f(x)], поступаем следующим образом:

  1. Проводим прямые у = n, n = 0; -1; +1; -2; +2; … и рассматриваем одну из полос, образованных прямыми у = n, у = n + 1.
  2. Отмечаем точки пересечения прямых у = n, у = n + 1 с графиком функции у = f(х). Эти точки принадлежат графику функции у = [f(x)], так как их ординаты целые числа (на рисунке это точки А, В, С, D).

  1. Для получения остальных точек графика функции у = [f(x)] в указанной полосе часть графика у = f(х), попавшую в полосу, проектируем параллельно оси Оу на прямую у = n. Поскольку любая точка М этой части графика функции у = f(х) имеет такую ординату , что n ≤ ] = n.
  2. В каждой другой полосе, где имеются точки графика функции у = f(х), построение проводится аналогично.

Построим график функции у = [х]. Для этого

  1. Проводим прямые у = n, n = 0; -1; +1; -2; +2; … и рассматриваем одну из полос, образованных прямыми у = n, у = n + 1.
  2. Отмечаем точки пересечения прямых у = n, у = n + 1 с графиком

функции у = [х]. Эти точки принадлежат графику функции у = [х],

так как их координаты целые числа.

  1. Для получения остальных точек графика функции у = [х] в указанной полосе часть графика у = х, попавшую в полосу, проецируем параллельно оси О у на прямую у = n, у = n + 1. Поскольку любая точка М этой части графика функции y = x, имеет такую ординату y 0 , что n 0 0 ] = n
  2. В каждой другой полосе, где имеются точки графика функции у = х, построение проводится аналогично.

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

Постройте графики функций:

  1. у = ;
  2. у = 2[sinx];
  3. y = [3 — 1] + 3;
  4. у = -[cosx] + 1;
  5. y = [|x|];
  6. y = [tgx];
  7. y = 2[|cosx|] – 4;
  8. y = 1,5[cosx] – 2;
  9. y = [ctgx + 2] -1

3.2. Построение графиков функции вида y = f([x])

Пусть дан график некоторой функции у = f(х). Построение графика функции у = f([х]) осуществляется следующим образом:

  1. Проводим прямые х = n, n = 0; -1; +1; -2; +2; …
  2. Рассмотрим одну из полос, образованных прямыми у = n и у = n + 1. Точки А и В пересечения графика функции у = f(х) с этими прямыми принадлежат графику функции у = f([х]), так как их абсциссы – целые числа.
  1. Для получения остальных точек графика функции у = f([х]) в указанной полосе часть графика функции у = f(х), попавшую в эту полосу, проектируем параллельно оси О у на прямую у = f(n).
  2. В каждой другой полосе, где имеются точки графика функции у = f(х), построение ведётся аналогично.

Рассмотрим построение графика функции у = . Для этого пунктиром построим график функции у = . Далее

  1. Проводим прямые х = n, n = 0; -1; +1; -2; +2; …
  2. Рассмотрим одну из полос, образованных прямыми у = n и у = n + 1. Точки пересечения графика функции у = с этими прямыми принадлежат графику функции у = , так как их абсциссы – целые

3. В каждой другой полосе, где имеются точки графика функции у = , построение ведётся аналогично.

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

Постройте графики функций:

§4. Неравенства, содержащие целую или дробную части числа

Назовём основными неравенствами с [х] и <х>следующие соотношения: [х] > b и <х>> b. Удобным методом их решения является графический метод. Поясним его на двух примерах.

Решение. Введём в рассмотрение две функции у = [х] и у = b и начертим их графики на одном и том же чертеже. Ясно, что тогда следует различать два случая: b – целое и b – нецелое.

Случай 1. b – целое

Из рисунка видно, что графики совпадают на [b; b + 1].

Следовательно, решением неравенства [х] ≥ b будет луч х ≥ b.

Случай 2. b – нецелое.

В этом случае графики функций у = [х] и у = b не пересекаются. Но часть графика у = [х], лежащая выше прямой, начинается в точке с координатами ([b] + 1; [b] + 1). Таким образом, решением неравенства [х] ≥ b будет луч х ≥ [b] + 1.

Остальные виды основных неравенств исследуются точно так же. Результаты этих исследований сведены ниже в таблицу.


источники:

http://zaochnik.com/spravochnik/matematika/systems/reshenie-tselyh-i-drobno-ratsionalnyh-uravnenij/

http://nsportal.ru/shkola/algebra/library/2012/12/29/uchebnoe-posobie-zadachi-soderzhashchie-tseluyu-i-drobnuyu-chast