Уравнения сил для электромагнитных систем

Электромагнитные колебания

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: свободные электромагнитные колебания, колебательный контур, вынужденные электромагнитные колебания, резонанс, гармонические электромагнитные колебания.

Электромагнитные колебания — это периодические изменения заряда, силы тока и напряжения, происходящие в электрической цепи. Простейшей системой для наблюдения электромагнитных колебаний служит колебательный контур.

Колебательный контур

Колебательный контур — это замкнутый контур, образованный последовательно соединёнными конденсатором и катушкой.

Зарядим конденсатор, подключим к нему катушку и замкнём цепь. Начнут происходить свободные электромагнитные колебания — периодические изменения заряда на конденсаторе и тока в катушке. Свободными, напомним, эти колебания называются потому, что они совершаются без какого-либо внешнего воздействия — только за счёт энергии, запасённой в контуре.

Период колебаний в контуре обозначим, как всегда, через . Сопротивление катушки будем считать равным нулю.

Рассмотрим подробно все важные стадии процесса колебаний. Для большей наглядности будем проводить аналогию с колебаниями горизонтального пружинного маятника.

Начальный момент: . Заряд конденсатора равен , ток через катушку отсутствует (рис. 1 ). Конденсатор сейчас начнёт разряжаться.

Несмотря на то, что сопротивление катушки равно нулю, ток не возрастёт мгновенно. Как только ток начнёт увеличиваться, в катушке возникнет ЭДС самоиндукции, препятствующая возрастанию тока.

Аналогия. Маятник оттянут вправо на величину и в начальный момент отпущен. Начальная скорость маятника равна нулю.

Первая четверть периода : . Конденсатор разряжается, его заряд в данный момент равен . Ток через катушку нарастает (рис. 2 ).

Увеличение тока происходит постепенно: вихревое электрическое поле катушки препятствует нарастанию тока и направлено против тока.

Аналогия . Маятник движется влево к положению равновесия; скорость маятника постепенно увеличивается. Деформация пружины (она же — координата маятника) уменьшается.

Конец первой четверти : . Конденсатор полностью разрядился. Сила тока достигла максимального значения (рис. 3 ). Сейчас начнётся перезарядка конденсатора.

Напряжение на катушке равно нулю, но ток не исчезнет мгновенно. Как только ток начнёт уменьшаться, в катушке возникнет ЭДС самоиндукции, препятствующая убыванию тока.

Аналогия. Маятник проходит положение равновесия. Его скорость достигает максимального значения . Деформация пружины равна нулю.

Вторая четверть: . Конденсатор перезаряжается — на его обкладках появляется заряд противоположного знака по сравнению с тем, что был вначале (рис. 4 ).

Сила тока убывает постепенно: вихревое электрическое поле катушки, поддерживая убывающий ток, сонаправлено с током.

Аналогия. Маятник продолжает двигаться влево — от положения равновесия к правой крайней точке. Скорость его постепенно убывает, деформация пружины увеличивается.

Конец второй четверти . Конденсатор полностью перезарядился, его заряд опять равен (но полярность другая). Сила тока равна нулю (рис. 5 ). Сейчас начнётся обратная перезарядка конденсатора.

Аналогия. Маятник достиг крайней правой точки. Скорость маятника равна нулю. Деформация пружины максимальна и равна .

Третья четверть: . Началась вторая половина периода колебаний; процессы пошли в обратном направлении. Конденсатор разряжается (рис. 6 ).

Аналогия. Маятник двигается обратно: от правой крайней точки к положению равновесия.

Конец третьей четверти: . Конденсатор полностью разрядился. Ток максимален и снова равен , но на сей раз имеет другое направление (рис. 7 ).

Аналогия. Маятник снова проходит положение равновесия с максимальной скоростью , но на сей раз в обратном направлении.

Четвёртая четверть: . Ток убывает, конденсатор заряжается (рис. 8 ).

Аналогия. Маятник продолжает двигаться вправо — от положения равновесия к крайней левой точке.

Конец четвёртой четверти и всего периода: . Обратная перезарядка конденсатора завершена, ток равен нулю (рис. 9 ).

Данный момент идентичен моменту , а данный рисунок — рисунку 1 . Совершилось одно полное колебание. Сейчас начнётся следующее колебание, в течение которого процессы будут происходить точно так же, как описано выше.

Аналогия. Маятник вернулся в исходное положение.

Рассмотренные электромагнитные колебания являются незатухающими — они будут продолжаться бесконечно долго. Ведь мы предположили, что сопротивление катушки равно нулю!

Точно так же будут незатухающими колебания пружинного маятника при отсутствии трения.

В реальности катушка обладает некоторым сопротивлением. Поэтому колебания в реальном колебательном контуре будут затухающими. Так, спустя одно полное колебание заряд на конденсаторе окажется меньше исходного значения. Со временем колебания и вовсе исчезнут: вся энергия, запасённая изначально в контуре, выделится в виде тепла на сопротивлении катушки и соединительных проводов.

Точно так же будут затухающими колебания реального пружинного маятника: вся энергия маятника постепенно превратится в тепло из-за неизбежного наличия трения.

Энергетические превращения в колебательном контуре

Продолжаем рассматривать незатухающие колебания в контуре, считая сопротивление катушки нулевым. Конденсатор имеет ёмкость , индуктивность катушки равна .

Поскольку тепловых потерь нет, энергия из контура не уходит: она постоянно перераспределяется между конденсатором и катушкой.

Возьмём момент времени, когда заряд конденсатора максимален и равен , а ток отсутствует. Энергия магнитного поля катушки в этот момент равна нулю. Вся энергия контура сосредоточена в конденсаторе:

Теперь, наоборот, рассмотрим момент, когда ток максимален и равен , а конденсатор разряжен. Энергия конденсатора равна нулю. Вся энергия контура запасена в катушке:

В произвольный момент времени, когда заряд конденсатора равен и через катушку течёт ток , энергия контура равна:

Соотношение (1) применяется при решении многих задач.

Электромеханические аналогии

В предыдущем листке про самоиндукцию мы отметили аналогию между индуктивностью и массой. Теперь мы можем установить ещё несколько соответствий между электродинамическими и механическими величинами.

Для пружинного маятника мы имеем соотношение, аналогичное (1) :

Здесь, как вы уже поняли, — жёсткость пружины, — масса маятника, и — текущие значения координаты и скорости маятника, и — их наибольшие значения.

Сопоставляя друг с другом равенства (1) и (2) , мы видим следующие соответствия:

Опираясь на эти электромеханические аналогии, мы можем предвидеть формулу для периода электромагнитных колебаний в колебательном контуре.

В самом деле, период колебаний пружинного маятника, как мы знаем, равен:

B соответствии с аналогиями (5) и (6) заменяем здесь массу на индуктивность , а жёсткость на обратную ёмкость . Получим:

Электромеханические аналогии не подводят: формула (7) даёт верное выражение для периода колебаний в колебательном контуре. Она называется формулой Томсона. Мы вскоре приведём её более строгий вывод.

Гармонический закон колебаний в контуре

Напомним, что колебания называются гармоническими, если колеблющаяся величина меняется со временем по закону синуса или косинуса. Если вы успели забыть эти вещи, обязательно повторите листок «Механические колебания».

Колебания заряда на конденсаторе и силы тока в контуре оказываются гармоническими. Мы сейчас это докажем. Но прежде нам надо установить правила выбора знака для заряда конденсатора и для силы тока — ведь при колебаниях эти величины будут принимать как положительные, так и отрицательные значения.

Сначала мы выбираем положительное направление обхода контура. Выбор роли не играет; пусть это будет направление против часовой стрелки (рис. 10 ).

Рис. 10. Положительное направление обхода

Сила тока считается положительной 0)’ alt='(I > 0)’ /> , если ток течёт в положительном направлении. В противном случае сила тока будет отрицательной .

Заряд конденсатора — это заряд той его пластины, на которую течёт положительный ток (т. е. той пластины, на которую указывает стрелка направления обхода). В данном случае — заряд левой пластины конденсатора.

При таком выборе знаков тока и заряда справедливо соотношение: (при ином выборе знаков могло случиться ). Действительно, знаки обеих частей совпадают: если 0′ alt=’I > 0′ /> , то заряд левой пластины возрастает, и потому 0′ alt=’\dot > 0′ /> .

Величины и меняются со временем, но энергия контура остаётся неизменной:

Стало быть, производная энергии по времени обращается в нуль: . Берём производную по времени от обеих частей соотношения (8) ; не забываем, что слева дифференцируются сложные функции (Если — функция от , то по правилу дифференцирования сложной функции производная от квадрата нашей функции будет равна: ):

Подставляя сюда и , получим:

Но сила тока не является функцией, тождественно равной нулю; поэтому

Перепишем это в виде:

Мы получили дифференциальное уравнение гармонических колебаний вида , где . Это доказывает, что заряд конденсатора колеблется по гармоническому закону (т.е. по закону синуса или косинуса). Циклическая частота этих колебаний равна:

Эта величина называется ещё собственной частотой контура; именно с этой частотой в контуре совершаются свободные (или, как ещё говорят, собственные колебания). Период колебаний равен:

Мы снова пришли к формуле Томсона.

Гармоническая зависимость заряда от времени в общем случае имеет вид:

Циклическая частота находится по формуле (10) ; амплитуда и начальная фаза определяются из начальных условий.

Мы рассмотрим ситуацию, подробно изученную в начале этого листка. Пусть при заряд конденсатора максимален и равен (как на рис. 1 ); ток в контуре отсутствует. Тогда начальная фаза , так что заряд меняется по закону косинуса с амплитудой :

Найдём закон изменения силы тока. Для этого дифференцируем по времени соотношение (12) , опять-таки не забывая о правиле нахождения производной сложной функции:

Мы видим, что и сила тока меняется по гармоническому закону, на сей раз — по закону синуса:

Амплитуда силы тока равна:

Наличие «минуса» в законе изменения тока (13) понять не сложно. Возьмём, к примеру, интервал времени (рис. 2 ).

Ток течёт в отрицательном направлении: . Поскольку , фаза колебаний находится в первой четверти: . Синус в первой четверти положителен; стало быть, синус в (13) будет положительным на рассматриваемом интервале времени. Поэтому для обеспечения отрицательности тока действительно необходим знак «минус» в формуле (13) .

А теперь посмотрите на рис. 8 . Ток течёт в положительном направлении. Как же работает наш «минус» в этом случае? Разберитесь-ка, в чём тут дело!

Изобразим графики колебаний заряда и тока, т.е. графики функций (12) и (13) . Для наглядности представим эти графики в одних координатных осях (рис. 11 ).

Рис. 11. Графики колебаний заряда и тока

Обратите внимание: нули заряда приходятся на максимумы или минимумы тока; и наоборот, нули тока соответствуют максимумам или минимумам заряда.

Используя формулу приведения

запишем закон изменения тока (13) в виде:

Сопоставляя это выражение с законом изменения заряда , мы видим, что фаза тока, равная , больше фазы заряда на величину . В таком случае говорят, что ток опережает по фазе заряд на ; или сдвиг фаз между током и зарядом равен ; или разность фаз между током и зарядом равна .

Опережение током заряда по фазе на графически проявляется в том, что график тока сдвинут влево на относительно графика заряда. Сила тока достигает, например, своего максимума на четверть периода раньше, чем достигает максимума заряд (а четверть периода как раз и соответствует разности фаз ).

Вынужденные электромагнитные колебания

Как вы помните, вынужденные колебания возникают в системе под действием периодической вынуждающей силы. Частота вынужденных колебаний совпадает с частотой вынуждающей силы.

Вынужденные электромагнитные колебания будут совершаться в контуре, поключённом к источнику синусоидального напряжения (рис. 12 ).

Рис. 12. Вынужденные колебания

Если напряжение источника меняется по закону:

то в контуре происходят колебания заряда и тока с циклической частотой (и с периодом, соответственно, ). Источник переменного напряжения как бы «навязывает» контуру свою частоту колебаний, заставляя забыть о собственной частоте .

Амплитуда вынужденных колебаний заряда и тока зависит от частоты : амплитуда тем больше,чем ближе к собственной частоте контура .При наступает резонанс — резкое возрастание амплитуды колебаний. Мы поговорим о резонансе более подробно в следующем листке, посвящённом переменному току.

Уравнения Максвелла — формулы и физический смысл

Основная идея

Если в замкнутом контуре меняется магнитный поток, то по нему течёт электрический ток. В итоге возникает электродвижущая сила магнитной индукции. Происходит это из-за изменения магнитного поля. Предположим, имеется магнит, у которого поток с течением времени увеличивается. Если в поле поместить замкнутый проводник кольцевого типа, то по правилу Ленца в нём возникнет индукционный ток, противоположный магнитной силе через контур.

Ток — это направленное движение заряженных частиц. Сила, заставляющая их перемещаться, называется электрическим полем. Появляется она при изменении магнитного потока. Отсюда можно сделать вывод, что электрическое поле существует всегда там, где есть изменяющееся магнитное, при этом оно имеет замкнутую форму. Этот вид силы и называли вихревым полем. Когда вектор магнитной силы возрастает, то увеличивается и вихревое поле, а если убывает, то, соответственно, оно уменьшается.

Джеймс Клерк Максвелл предположил, что если меняющееся магнитное поле порождает электрическое, то этот процесс может быть и обратным. Его идея заключалась в том, что если имеется проводник с током, то вокруг него существует стационарное магнитное поле. На длине этого проводника он выбрал произвольные три точки равноудалённые от него на расстояние r.

В этих точках поле будет одинаковое. Максвелл предположил, что если проводник разорвать, то для того чтобы ток продолжал движение, нужно сохранить заряды. То есть фактически использовать конденсатор. По мнению Максвелла, тогда в точке разрыва поле будет такое же, как и вокруг проводника. Между обкладками возникнет электрическая сила, так как на них происходит сохранение (накопление) зарядов. Учитывая это, физик пришёл к выводу, что изменяющееся электрическое поле приводит к возникновению магнитного потока.

Так как на обкладках имеется заряд, то сила тока будет равняться I = dq / dt. Заряд можно связать с напряжением на обкладках конденсатора и электроёмкостью: q = C * U. Ёмкость же в вакууме определяется как E0 * S/ d, а напряжение — как E * d.

Подставив значения в формулу, Максвелл получил выражение: dq / dt = E0 * S * dE / dt. Так как ток между обкладками не течёт, а перенос происходит полем, физик предложил ввести понятие фиктивный ток смещения. Плотность этого тока можно найти по формуле: j = E0 * dE / dt. Это позволило упростить вычисления магнитной силы. Ток смещения и вихревое поле стали основой для создания системы уравнений.

Физическая суть

Электромагнитное поле представляет собой материю, с помощью которой заряженные элементарные частицы взаимодействуют между собой. В вакууме явление характеризуется напряжённостью E и магнитной индукцией B. Эти параметры определяют силы, воздействующие на подвижные и неподвижные заряды. Кроме них, значение электромагнитного поля определяется скалярным и векторным потенциалами и двумя дополнительными величинами: индукцией D и напряжённостью магнитных линий H.

Открытие в 1831 году Фарадеем закона электромагнитной индукции, устанавливающего зависимость между зарядом и намагниченностью у токоведущих тел, помогло Максвеллу сформулировать ряд уравнений, после названных его именем. Главное его исследование заключалось в исследовании тока смещения, равного по магнитному действию электрическому току.

Сформулировав свою систему, физик смог связать электрическое и магнитное поле с зарядом и током. Физический смысл уравнений Максвелла заключается в том, что электромагнитное поле рассматривалось им как самостоятельный объект, в котором передача энергии происходит колебанием от точки к точке с конечной скоростью. При этом в вакууме она определяется скоростью света.

С точки зрения математики, для описания процессов учёный использовал векторный анализ, выраженный через инвариантную форму, использующую кватернионы Гамильтона. Написанные им уравнения неохотно принимались учёным советом Лондонского Королевского общества. Это происходило из-за того, что они не были похожи ни на одно из описаний известных ранее.

Тем не менее система Максвелла получила признание и стала фундаментальной в области электродинамики. При этом её справедливость получила подтверждение не только в микромире, ни и в области квантовой физики.

Основным следствием открытия стало понятие о скорости распространения электромагнитных волн и создании теории света. По сути, эта система теории волн в науке об электромагнетизме играет роль сопоставимую с законами Ньютона в области механики или с теоремами в электродинамике.

Дифференциальная запись

Открытие в проводящих телах тока смещения позволило Максвеллу вывести четыре уравнения, на основе которых была создана теория электромагнитных явлений. Обычно в физике математическая запись процессов не зависит от системы единиц, но в термодинамике это не так. Всё дело в том, что при записи в различных системах изменяются коэффициенты (постоянные).

Например, в системе единиц, используемой в описании квантовой теории поля, скорость света и электромагнитная константа равна единице. Поэтому уравнения не будут иметь ни одной постоянной. Для записи используют две системы: СГС — симметричная гауссова, и СИ — Международная система единиц.

В этих двух стандартах система уравнений Максвелла может быть описана словесно и математически следующим образом:

  1. В качестве источника электрической индукции выступает заряженная частица. В СГС: ∇ * D = 4*p* ρ; в СИ: ∇ * D = 4* ρ.
  2. В электромагнитном поле магнитных зарядов нет. В обеих системах формула выглядит одинакового: ∇ * B = 0.
  3. При изменении величины магнитной индукции возникает электрическое вихревое поле. В СГС: ∇ * E = — δ B / c * δ t; в СИ: ∇ * E = — δ B / δ t.
  4. Вихревое магнитное поле появляется из-за изменений электрической индукции и тока. В СГС: ∇ * H = 4 pj / c + δ D / c * δ t; в СИ: ∇ * H = j + δ D / δ t.

Это классические четыре закона описывающие природу и условия возникновения электромагнитного поля. Первая гипотеза связывает напряжённость с индукцией и является выражением теоремы электромагнитной индукции. Вторая доказывает отсутствие объектов, генерирующих магнитное поле. Третья устанавливает зависимость между током смещения и проводимостью, создающейся в магнитном поле. Четвёртая объясняет, что источником вектора электрической индукции служит сторонний заряд.

Указанные уравнения представляют собой запись в дифференциальной форме. При этом каждое из них эквивалентно скалярным уравнениям. В этой форме они имеют следующий вид:

  1. (δEy / δx) — (δEx / δy) = — δBx / δt;
  2. (δBx / δx) — (δEy / δy) + (δBz / δz) = 0;
  3. (δHy / δx) — (δHx / δy) = jz + δDx / δt;
  4. (δDx / δx) — (δDy / δy) + (δDz / δz) = ρ.

Для того чтобы воспользоваться этими постулатами для расчёта полей, нужно уравнения дополнить граничными правилами объединяющим электрическую индукцию (D), плотность электрического тока (j), напряжённость (E). Эти положения имеют вид: D = e0*e*E; B = m0*m*H; j = δ*E. Совокупность этих соотношений позволяет сделать вывод об основе электродинамики сред, находящихся в спокойном состоянии.

Интегральная форма

Запись уравнений Максвелла в интегральной и дифференциальной форме позволяет рассчитать электромагнитное поле в любой среде. Первые два уравнения, включающие интегралы, получаются путём преобразования дифференциальных форм по произвольной поверхности и применения теоремы Стокса, ограничивающей поверхность. Вторые же два путём интегрирования по произвольному объёму с дальнейшим их упрощением по теореме Остроградского — Гаусса, по ограниченной поверхности в замкнутом объёме.

Выглядят они следующим образом:

  1. ∫ D * ds = 4 pQ. Это закон Гаусса устанавливающий, что поток электрической индукции сквозь ограниченную поверхность зависит от величины свободного заряда, существующего в объёме формирующимся этой поверхностью.
  2. ∫ B * ds = 0. Теорема для магнитного поля сообщающая, что сила линий магнитной индукции через ограниченную поверхность равна нулю.
  3. ∫ E * dl = — d / dt*c ∫ B * ds. Свойство Фарадея обозначающее, что поток магнитной индукции, проходя через замкнутую поверхность пропорционален вращению электрического поля в контуре ограничивающим поверхность.
  4. ∫ H * dl = 4pI / c + (d / dt) ∫ D * ds. Правило циркуляции магнитного поля. Электрический ток свободных частиц и колебания электромагнитной индукции зависят от размера и движения магнитного потока, ограниченного контуром l.

В этих уравнениях буквой S обозначается замкнутое пространство двухмерной поверхности определяющей границы объёма V или контура l. При этом Q является электрическим зарядом, находящимся в замкнутом объёме площадью S и равным: Q = ∫p * dV, а I — электрическим током, протекающим сквозь S и определяющимся из уравнения: I = ∫j * ds.

Нужно отметить, что вектор потока по ограниченной поверхности считается направленным из объёма. Вращение же находится согласно правилу правого винта по незамкнутой площади. В уравнениях величины E, B, D и H являются равнозначными значениями, определяющимися в результате решения системы.

Значение уравнений

Система уравнений Максвелла для электромагнитного поля объясняет все электромагнитные явления. Её применяют при полном анализе полей при известных распределениях токов и заряженных частиц. Часто уравнения называют материальными, подчёркивая индивидуальные свойства занимающей пространство среды: D = e * e0 * E, B = m * m0 * H, J = E .

Формулы физика подтверждают существование электромагнитных волн. Иначе говоря, предпологают возможность электрического поля излучать энергию вне зависимости от присутствия электрических зарядов и токов. Из всего многообразия применения уравнений можно выделить основные четыре:

  1. Нахождение характеристик электрического и магнитного поля по известному распределению заряженных частиц и токов. То есть это теория электромагнитного поля (ЭМП) примирительная к любой системе зарядов и токов. Она обобщает электрические и магнитные явления.
  2. Изучение макроскопических полей. Уравнения Максвелла применимы к макрозарядам и макротокам. Их можно использовать в среде, где расстояния от источника излучения до зафиксированной точки намного превышает периоды внутренних явлений.
  3. Теоремы Максвелла раскрывают внутренний механизм процессов в среде, описываемых тремя фундаментальными характеристиками: ε, μ и σ.
  4. Используя теорию, являющуюся близкодейственной, можно описать электрические и магнитные взаимодействия, возникающие в электромагнитном поле распространяющимся с ограниченной скоростью.

Система включает в себя все основные законы электрического и магнитного поля с учётом такого важного параметра, как электромагнитная индукция. Теоретическое исследование физика позволило утверждать, что свет представляет собой электромагнитные волны и существования токов смещения в магнитном поле. То есть изменение ЭМП без движения электрических зарядов. Благодаря этому стало возможным находить полный ток.

Максвеллом было найдено четыре важных закономерности, заключающиеся в том, что электрический заряд образует электрическое поле, колебания магнитных волн порождает электрические вихри, магнитных зарядов быть не может, изменение индукции приводит к появлению вихревого магнитного потока. Эти теоретические суждения после были подтверждены экспериментально и позволили получить картину распространения свободной энергии электромагнитной волны в пространстве.

Уравнения сил для электромагнитных систем

Основные уравнения классической электродинамики (система уравнений Максвелла) по праву являются общепризнанными уравнениями и широко применяются в физике, радиофизике и электронике. Однако эти уравнения не были получены из общих физических законов, что не позволяло считать их абсолютно точными, допускало различного рода манипуляции с ними. Тем не менее, эти уравнения точные и выводятся из общих принципов физики и основ векторной алгебры [1, 2].

1. Вывод закона электромагнитной индукции Фарадея

Закон электромагнитной индукции Фарадея можно получить из уравнения для электромагнитных сил, действующих на точечный электрический заряд [1, 2]:

,(1)

где e – заряд электрона, E – вектор напряженности электрического поля, r – радиальный вектор, соединяющий ось источника магнитной индукции B с электрически заряженной частицей и лежащий в плоскости, ортогональной оси симметрии магнитного поля.

Рассмотрим случай, когда магнитная часть силы FЕМ равна и направлена противоположно ее электрической части:

.(2)

Такая ситуация возникает в проводнике с электрическим током высокой частоты, когда сила, действующая на электрон со стороны первичного электрического поля изменяется настолько быстро, что оказывается в противофазе с силой инерции электронов.

Сократим заряд в равенстве (2) и применим к обеим частям этого равенства операцию «ротор»:

.(3)

Пусть, например, ось z совпадает с направлением аксиального вектора B, тогда радиус-вектор будет иметь вид: r=xi+yj, где i и j – единичные векторы в направлениях осей координат x и y, соответственно. Радиальный векторr не имеет третьей составляющей вдоль оси z, поэтому второе слагаемое в (3) равно –2(∂B/∂t). Первое же слагаемое в уравнении (3) равно ∂B/∂t. В результате, после преобразования правой части последнего равенства, получаем:

.(4)

То есть из электромагнитного силового уравнения (1) в том случае, когда сила, действующая на электрон со стороны магнитного поля, полностью уравновешивается силой со стороны электрического поля, следует закон электромагнитной индукции Фарадея (4), − одно из основных уравнений электродинамики.

Уравнения (2) – (4) не зависят от того, имеется или отсутствует электрон в данной точке пространства. В результате такой независимости электрического и магнитного полей от электрического заряда уравнение (4) отражает пространственно-временные свойства самих изменяющихся полей, представимых в виде единого электромагнитного поля. При этом закон Фарадея (4) не только представляет собой закон электромагнитной индукции, но является и основным законом взаимного преобразования электрического и магнитного полей, − неотъемлемым свойством электромагнитного поля.

2. Вывод уравнения Максвелла

Прежде, чем приступить к выводу уравнения Максвелла, необходимо дополнить векторную алгебру еще одним векторным оператором.

2.1. Определение векторного оператора, выполняющего действие, обратное векторному преобразованию дифференциального векторного оператора «ротор»

Дифференциальный векторный оператор «ротор» выполняет операцию преобразования векторов в пространстве и операцию дифференцирования, то есть является сложным оператором, осуществляющим сразу два вида действий. Это прямо следует из его определения [3]:

,

где а – вектор, i, j, k – единичные векторы в направлении осей прямоугольной (декартовой) системы координат x, y и z, соответственно. При этом оператор, обратный оператору «ротор», в векторном анализе не определен, хотя каждое из выполняемых им преобразований, в принципе, обратимо.

Геометрическая иллюстрация пространственного преобразования вектора а в вектор rot(a), осуществляемая оператором «ротор», показана на Рис. 1.

Рис. 1. Геометрическое представление вектора а и векторного поля, образованного оператором «ротор».

2.2. Определение 1. Если два взаимосвязанных векторных поля, представленные векторами а и b, имеют производные по пространственным переменным x, y, z (в виде rotaи rotb)и производные по времени, ¶ а/ ¶ t и ¶ b/ ¶ t, причем производная вектора а по времени ортогональна производным по пространственным переменным вектора b, и наоборот, производная по времени вектора b ортогональна производным по пространственным переменным вектораа, то существует векторный оператор, осуществляющий пространственное преобразование векторного поля, не затрагивающее операцию дифференцирования, который условно назовем оператором «rerot», (противоположно закрученный или «реверсивный ротор») такой, что:

и ; (5)

и . (5*)

2.3. Свойства векторного оператора «реверсивный ротор»

2.3.1. Векторный оператор «реверсивный ротор» действует только на производные вектора.

2.3.2. Векторный оператор «реверсивный ротор» располагается перед производной вектора, на которую он действует.

2.3.3. Константы и числовые коэффициенты при производных вектора могут быть вынесены за пределы действия векторных операторов:

;

,

2.3.4. Векторный оператор «реверсивный ротор» действует на каждое из слагаемых уравнения, содержащего сумму векторных производных:

,

2.3.5. Результат действия векторного оператора «реверсивный ротор» на ноль есть ноль:

.

При этом результат действия векторного оператора «реверсивный ротор» на другие константы, в том числе на вектор, согласно пункту 2.3.1, не определен.

2.4. Пример применения оператора «реверсивный ротор»

Применим оператор «реверсивный ротор» к уравнению, содержащему взаимосвязанные векторы a и b:

.((*))

, откуда следует:

.((**))

Если теперь еще раз применить оператор «реверсивный ротор» к вновь образованному равенству (**), то получим:

или

, или окончательно:

.((*))

Последовательное двойное (или любое четное) применение оператора «реверсивный ротор» приводит к исходному равенству. Этим самым векторный оператор «реверсивный ротор» осуществляет не только взаимное преобразование дифференциальных уравнений взаимосвязанных векторных полей, но и устанавливает эквивалентность этих уравнений.

Геометрически это выглядит так. Оператор «ротор» дифференцирует и как бы закручивает прямолинейное векторное поле, делая его вихревым и ортогональным исходному векторному полю. Векторный оператор «реверсивный ротор» выполняет векторное преобразование, которое как бы раскручивает вихревое поле, закрученное оператором «ротор», превращая его в изменяющееся невихревое поле, представленное производной вектора по времени. Поскольку интегрирование не производится, производная вектора по времени соответствует изменению величины вектора. В результате имеем изменение вектора, величина которого изменяется в единственном направлении, ортогональном пространственным переменным оператора «ротор». И наоборот, векторный оператор «реверсивный ротор» закручивает невихревое изменяющееся векторное поле, представленное производной вектора по времени, превращая его в вихревое пространственное векторное поле, ортогональное исходной производной вектора по времени. Так как направление «кручения» оператора «реверсивный ротор» противоположно направлению вращения, осуществляемому оператором «ротор», то знак вновь образованного вихревого поля выбирается противоположным (отрицательным). То есть векторный оператор «реверсивный ротор» выполняет действие, обратное пространственному преобразованию оператора «ротор» на всем «пространстве» производных векторных полей. В то же время векторный оператор «реверсивный ротор» сам не дифференцирует вектор, на производную которого он действует. Этим самым осуществляется тождественное обратимое векторное преобразование.

Если ввести в векторный анализ интегральный векторный оператор, восстанавливающий не производную вектора, а сам вектор из ротора вектора (условно назовем такой оператор обратным ротором, или «rot -1 »), то такой оператор наряду с обратным векторным преобразованием одновременно должен производить операцию интегрирования.

Однако, в силу неоднозначности математической операции интегрирования, полностью обратный «ротору» оператор rot -1 не осуществляет однозначное обратное векторное преобразование.

2.5. Применение векторного оператора «реверсивный ротор» к физическим полям

При применении векторного оператора «реверсивный ротор» к физическим векторным полям необходимо учитывать изменение размерности правой и левой частей уравнения из-за перестановки переменных x, y, z и t при преобразовании. Обозначим размерность координат – метр (L), а времени – секунда (T).

Определение 2. Для физических векторных полей векторный оператор «реверсивный ротор», определяется следующим образом:

и ;(6)

и . (6*)

Обозначая размерное отношение L/T, как константу v, имеющую размерность скорости, [м/с], уравнения (6.4) и (6.4*) можно представить в виде:

и ;(7)
и .(7*)

2.6. Применение оператора «реверсивный ротор» к физическим полям

Применим векторный оператор «реверсивный ротор», определенный уравнениями (7), (7*), к уравнению (4), связывающему реальные физические поля E и B в электродинамике:

;

, что преобразуется к виду:

(8)
>.

Электродинамическая постоянная «v» не зависит ни от величины полей, ни от скорости их изменения и, как следует из волнового уравнения, соответствует скорости распространения волны электромагнитного взаимодействия, c » 2.99792458 Ч 10 8 м/c, которая называется также скоростью света в вакууме.

То есть с помощью векторного преобразования «реверсивный ротор» из уравнения (4), представляющего собой закон электромагнитной индукции Фарадея, естественным образом вытекает одно из основных уравнений электродинамики — уравнение Максвелла (8), которое не следует ни из эксперимента, ни из известных физических законов. Уравнения (4) и (8) являются взаимосвязанными, трансформируемыми друг в друга при помощи векторного преобразования, что соответствует их физической эквивалентности. Поэтому справедливость одного из этих уравнений, установленная в виде физического закона (в данном случае — это закон электромагнитной индукции Фарадея (4)) является достаточным условием для утверждения о справедливости второго уравнения (уравнения Максвелла (8)) в качестве эквивалентного физического закона.

2.7. Трансформация векторных полей

Если исходить из определения оператора «ротор», то действие векторного оператора «обратный ротор», казалось бы, можно представить в виде, показанном на Рис. 2, где предполагается некоторая тождественность векторных полей до и после векторного преобразования дифференциальным векторным оператором «ротор».

Проверим это предположение. Применим оператор «реверсивный ротор» к уравнению:

.

, откуда следует:

.

Полученное равенство изменяет направление векторов в исходном определении дифференциального векторного оператора «ротор», что недопустимо.

Поэтому .

Применение векторного оператора «реверсивный ротор» к производным одного и того же векторного поля показывает принципиальное различие между векторным полем до применения, и векторным полем после применения оператора «ротор». Это означает необходимость представлять поле вектора а и поле вектора rot(а) как трансформируемые друг в друга, но различные векторные поля.

Исходное векторное поле, представленное вектором а, будем считать первичным (причиной), а поле, образованное векторным преобразованием оператора «ротор», будем считать вторичным полем (следствием действия оператора «ротор») и обозначим его, как поле векторов b.

Рис. 2. Результат отождествления векторных полей до и после векторного преобразования «ротор». Направление полей не соответствует исходному определению оператора «ротор», показанному на Рис. 1, — «правый винт» превращается в «левый винт».

Тогда обратное преобразование векторных полей, не затрагивающее операции дифференцирования, во введенных таким образом обозначениях будет иметь вид, показанный на Рис. 3.

Рис. 3. Определение векторного преобразования, обратного операции «ротор», не затрагивающего операции дифференцирования. Разделение векторных полей выполнено по признаку причинно-следственных отношений. Исходное поле представлено вектором а (причина), а поле, образованное операцией «ротор», представлено вектором b (следствие).

В электродинамике в некоторых простейших случаях переход к вращающейся системе отсчета, внутри которой исчезает вращение, приводит к отсутствию сил со стороны магнитного поля, и силовое воздействие может быть представлено только силой со стороны электрического поля. Но из этого никак не следует вывод, что магнитного поля нет или оно всегда может быть заменено электрическим полем. Частный случай векторного поля, взятого в отдельной изолированной системе отсчета, относится только к данной выбранной системе, в которой осуществляется ограниченное по степеням свободы движение электрического заряда.

Поскольку в пространстве существуют и прямолинейные векторные поля, и вращающиеся замкнутые векторные поля, а находиться в двух системах отсчета одновременно невозможно, то в общем случае выбором системы координат нельзя свести одно поле к другому. Источник этих полей один – это электрические заряды. Электрические заряды создают вокруг себя электрическое поле (всесторонне направленное векторное поле), а движение электрических зарядов создает магнитное поле (замкнутое круговое векторное поле). При этом, естественно, прямолинейное движение электрических зарядов создает вокруг них круговое магнитное поле, а круговое движение электрических зарядов (равно как вращение электрически заряженных частиц вокруг собственной оси) создает прямолинейное в пространстве магнитное поле, заключенное в объеме, ограниченном радиусом вращения.

2.8. Скорость распространения электромагнитного взаимодействия

Скорость преобразования векторных полей друг в друга не зависит ни от величины полей, ни от скорости их изменения и, как следует из волнового уравнения, соответствует скорости распространения волны электромагнитного взаимодействия в свободном пространстве (вакууме),c » 2.99792458 Ч 10 8 м/c, и эта величина по праву называется электродинамической постоянной.

Таким образом, изменение электрического и магнитного полей, осуществляемое в трехмерном пространстве, имеет свойство взаимного преобразования векторов, и это свойство в электродинамике осуществляется посредством закона электромагнитной индукции Фарадея. Если считать такое преобразование прямым, то обратное преобразование векторных полей осуществляется при помощи уравнения, полученного Максвеллом интуитивным путем, и которое можно получить при помощи векторного оператора «реверсивный ротор». Взаимное преобразование электрического и магнитного полей, которое осуществляется без источников электрического заряда, представляет собой один из особых видов волнового движения — поперечную электромагнитную волну, которая переносит электромагнитную энергию в свободном пространстве с абсолютной скоростью преобразования полей. Но при этом источником энергии электромагнитной волны всегда являются ускоренно движущиеся электрические заряды.

3. Уравнения источников электромагнитных полей.

Оставшиеся два из четырех основных уравнений системы уравнений Максвелла лишь устанавливают факт наличия в природе электрических зарядов, создающих электрическое поле (теорема Гаусса, которая прямо следует из закона Кулона):

,

и факт отсутствия в природе магнитных зарядов:

.

Литература

  1. Сокол-Кутыловский О.Л. Гравитационные и электромагнитные силы. Екатеринбург, 2005.
  2. Сокол-Кутыловский О.Л. Русская физика. Екатеринбург, 2006.
  3. Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся ВТУЗОВ (под редакцией Г. Гроше и В. Циглера), М., «Наука», 1980.


источники:

http://nauka.club/fizika/uravneniya-maksvella.html

http://www.trinitas.ru/rus/doc/0016/001b/00161290.htm