Уравнения содержащие переменную под знаком модуля 9 класс

Способы решения уравнений содержащих модуль

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Способы решения уравнений содержащих модуль.

1. Основные способы, используемые при решении уравнений, содержащих модуль.

Напомним основные понятия, используемые в данной теме.

Уравнением с одной переменной называют равенство, содержащее переменную.

Корнями уравнения называются значения переменной, при которых уравнение обращается в верное равенство.

Решить уравнение – значит, найти все его корни или доказать, что корней нет.

Уравнением с модулем называют равенство, содержащее переменную под знаком модуля.

При решении уравнений, содержащих знак абсолютной величины, мы будем основываться на определении модуля числа и свойствах абсолютной величины числа.

Свойства модуля

Существует несколько способов решения уравнений с модулем. Рассмотрим каждый из них.

1 СПОСОБ. МЕТОД ПОСЛЕДОВАТЕЛЬНОГО РАСКРЫТИЯ МОДУЛЯ.

Пример 1. Решим уравнение |х-5|=4.
Исходя из определения модуля, произведем следующие рассуждения. Если выражение, стоящее под знаком модуля неотрицательно, то есть х-5≥0, то уравнение примет вид х-5=4. Если значение выражения под знаком модуля отрицательно, то по определению оно будет равно – (х-5)=4 или х-5= -4. Решая полученные уравнения, находим: х1=9, х2=1.
Ответ: 9; 1.
Решим этим же способом уравнение, содержащее «модуль в модуле».

Пример 2. Решим уравнение ||2х-1|-4|=6.

Рассуждая аналогично, рассмотрим два случая.
1). |2х-1|-4=6, |2х-1|=10. Используя еще раз определение модуля, получим: 2х-1=10 либо 2х-1= -10. Откуда х1=5,5, х2= -4,5.
2). |2х-1|-4= -6, |2х-1|= -2. Понятно, что в этом случае уравнение не имеет решений, так как по определению модуль всегда неотрицателен.
Ответ: 5,5; -4,5.

2 СПОСОБ. МЕТОД ИНТЕРВАЛОВ.


Метод интервалов – это метод разбиения числовой прямой на промежутки, в которых по определению модуля знак абсолютной величины можно будет снять. Для каждого из промежутков необходимо решить уравнение и сделать вывод относительно получившихся корней. Корни, удовлетворяющие промежуткам, и дадут окончательный ответ.

Пример 3. Решим уравнение |х+3|+|х-1|=6.
Найдем корни (нули) каждого выражения, содержащегося под знаком модуля: х+3=0, х= -3; х-1=0, х=1. Эти значения х разбивают числовую прямую на три промежутка:
-3 1
Решим уравнение отдельно в каждом из получившихся промежутков. В первом промежутке (х

Пример 4. |2-х|=2х+1.
Прежде всего, следует установить область допустимых значений. Возникает естественный вопрос, почему в предыдущих примерах не было необходимости этого делать. В этом уравнении в правой части стоит выражение с переменной, которое может быть отрицательным. Таким образом, область допустимых значений – это промежуток [-½; +∞). Найдем нуль выражения, стоящего под знаком модуля: 2-х=0, х=2.
В первом промежутке: 2-х=2х+1, х=⅓. Это значение принадлежит ОДЗ, значит, является корнем уравнения.
Во втором промежутке: -2+х=2х+1, х= -3. -3 не принадлежит ОДЗ, а следовательно не является корнем уравнения. Ответ: ⅓.

3 СПОСОБ. ГРАФИЧЕСКИЙ МЕТОД.

Суть данного метода заключается в использовании графиков функций для нахождения корней уравнения. Этот метод реже других применяют для решения уравнений, содержащих модуль, так как, во-первых, он занимает достаточно много времени и не всегда рационален, а, во-вторых, результаты, полученные при построении графиков, не всегда являются точными.

Преобразуем уравнение: 1 + |x| = 0.5

Графиком функции являются лучи — биссектрисы 1-го и 2-го координатных углов. Графиком функции является прямая, параллельная оси OX и проходящая через точку -0,5 на оси OY.

Графики не пересекаются, значит, уравнение не имеет решений.

Ответ: нет решений.

Пример 5. |х+1|=2. Построим графики функций у=|х+1| и у=2.
Для построения графика у=|х+1|, построим график функции у=х+1, а затем отразим часть прямой, лежащую ниже оси ОХ. Абсциссы точек пересечения графиков и есть корни уравнения: х 1 =1, х 2 = -3. Ответ: 1; -3.

Пример 6. |х 2 -1|=|4-х 2 |.
Построим графики функций у=|х 2 -1| и у=|4-х 2 |. Для этого построим графики функций у= х 2 -1 и у=4-х 2 , а затем отобразим часть графиков, лежащую ниже оси ОХ.
х 1 ≈1,6; х 2 ≈-1,6.

4 СПОСОБ. МЕТОД РЕШЕНИЯ ПРИ ПОМОЩИ ЗАВИСИМОСТЕЙ МЕЖДУ ЧИСЛАМИ А И В, ИХ МОДУЛЯМИ И КВАДРАТАМИ ЭТИХ ЧИСЕЛ.

| а |=| в | а=в или а=-в;

а 2 2 а=в или а=-в; (1)

| а |=| в | а 2 2 (2)

Пример 7 . Решим уравнение |х 2 -8х+5|=|х 2 -5|.

Учитывая соотношение (1), получим:

х 2 -8х+5= х 2 -5 или х 2 -8х+5= -х 2 +5

Таким образом, корни исходного уравнения: х 1 =1,25; х 2 =0; х 3 =4.

В силу соотношения (2) получаем: (х+3) 2 =(х-5) 2 ;

х 2 +6х+9= х 2 -10х+25;

Пример 9 . (1-3х) 2 =(х-2) 2 .

Учитывая соотношение (2), получаем: |1-3х|=|х-2|, откуда из соотношения (1), имеем:

1-3х=х-2 или 1-3х= -х+2

5 СПОСОБ. ИСПОЛЬЗОВАНИЕ ГЕОМЕТРИЧЕСКОЙ ИНТЕРПРЕТАЦИИ МОДУЛЯ.

Опорная информация: геометрический смысл модуля разности величин – это расстояние между ними. Например, геометрический смысл выражения |х-а| — длина отрезка координатной оси, соединяющей точки с абсциссами а и х. Перевод алгебраической задачи на геометрический язык часто позволяет избежать громоздких решений.

Исходя из геометрической интерпретации модуля, левая часть уравнения представляет собой сумму расстояний от некоторой точки с абсциссой х до двух фиксированных точек с абсциссами 2 и 3. Тогда очевидно, что все точки с абсциссами, принадлежащими отрезку [2;3] обладают требуемым свойством, а точки, расположенные вне этого отрезка – нет. Отсюда, множеством решений уравнения является отрезок [2;3].

Рассуждая аналогично, получим, что разность расстояний до точек с абсциссами 2 и 3 равна 1 только для точек, расположенных на координатной оси правее числа 3. Следовательно, решением данного уравнения будет являться луч, выходящий из точки 3, и направленный в положительном направлении оси ОХ.

Обобщением вышеприведенных уравнений 10 и 11 являются следующие равносильные переходы:

|х-а|+|х-в|=в-а, где в ≥ а а ≤ х ≤ в

|х-а|-|х-в|=в-а, где в ≥ а х ≥ в

Проанализировав представленные способы решения уравнений, содержащих модуль, можно сделать вывод, что ни один из них не является универсальным и для получения наилучших результатов необходимо добиваться того, чтобы ученик овладел возможно большим количеством методов решения, оставляя право выбора решения за собой.

Решим аналитически и графически уравнение |x — 2| = 3.

А) Аналитическое решение

Рассуждать будем, исходя из определения модуля. Если выражение, находящееся под модулем

неотрицательно, т. е. x — 2 0, тогда оно «выйдет» из под знака модуля со знаком «плюс» и уравнение примет вид: x — 2 = 3. Если значения выражения под знаком модуля отрицательно, тогда, по определению, оно будет равно: или x — 2=-3

Таким образом, получаем, либо x — 2 = 3, либо x — 2 = -3. Решая полученные уравнения, находим:

Ответ:

Теперь можно сделать вывод: если модуль некоторого выражения равен действительному положительному числу a, тогда выражение под модулем равно либо a, либо .

Одним из способов решения уравнений, содержащих модуль, является графический способ. Суть этого способа заключается в том, чтобы построить графики данных функций. В случае, если графики пересекутся, точки пересечений данных графиков будут являться корнями нашего уравнения. В случае, если графики не пересекутся, мы сможем сделать вывод, что уравнение корней не имеет. Этот способ, вероятно, реже других применяют для решения уравнений, содержащих модуль, так как, во-первых, он занимает достаточно много времени и не всегда рационален, а, во-вторых, результаты, полученные при построении графиков, не всегда являются точными.

Другой способ решения уравнений, содержащих модуль — это способ разбиения числовой прямой на промежутки. В этом случае нам нужно разбить числовую прямую так, что по определению модуля, знак абсолютной величины на данных промежутках можно будет снять. Затем, для каждого из промежутков мы должны будем решить данное уравнение и сделать вывод, относительно получившихся корней (удовлетворяют они нашему промежутку или нет). Корни, удовлетворяющие промежутки и дадут окончательный ответ.

Установим, при каких значениях x, модуль равен нулю:

Получим два промежутка, на каждом из которых решим уравнение:

Получим две смешанных системы:

(1) (2)

Решим каждую систему:

(1) (удовлетворяет данному промежутку)

(2)

Ответ:

Для решения уравнения графическим способом, надо построить графики функций и

Для построения графика функции , построим график функции — это прямая, пересекающая ось OX в точке (2; 0), а ось OY в точке а затем часть прямой, лежащую ниже оси OX зеркально отразить в оси OX.

Графиком функции является прямая, параллельная оси OX и проходящая через точку (0; 3) на оси OY.

Абсциссы точек пересечения графиков функций дадут решения уравнения.

Прямая графика функции y=3 пересеклась с графиком функции y=|x – 2| в точках с координатами (-1; 3) и (5; 3), следовательно, решениями уравнения будут абсциссы точек:

Ответ:

Практика обучения учащихся способам решения уравнений, содержащих модули, позволила выявить достоинства и недостатки каждого способа, которые для удобства сведены в таблицу.

Метод последовательного раскрытия модулей

1). Объявляя условие раскрытия одного модуля, можно пользоваться им для раскрытия других модуле тем самым, выигрывая время в решении задачи.

2). Последовательность действий, направленных на поиск ответа, позволяет контролировать и проверять промежуточные результаты.

Необходимость раскрытия модуля, что для некоторых заданий приводит к потере темпа в получении ответа.

Самый эффективный способ, так как сопровождается относительно небольшим объемом работы.

В силу необходимости нахождения концов интервалов может возникнуть ситуация, когда соответствующее уравнение либо вызывает серьезные затруднения при определении корней, либо недоступно ученику на данном этапе обучения.

Данный способ имеет очень широкое применение в других темах школьного курса математики.

Ответ определяется приблизительно.

Метод решения при помощи зависимостей между числами, их модулями и квадратами этих чисел

В некоторых случаях применение данного способа позволяет решать уравнения определенного вида на более раннем этапе.

В некоторых случаях выбор данного способа приводит к громоздкому решению, а иногда решение сводится к уравнению, недоступному для ученика на данном этапе обучения.

Геометрическая интерпретация модуля

Перевод алгебраической задачи на геометрический язык часто позволяет избежать громоздких решений.

Применение данного способа ограничивается уравнениями определенного вида.

Проанализировав достоинства и недостатки каждого из указанных способов, можно с уверенностью сказать, что на мотивационном этапе формирования умения решать уравнения с модулем ученикам следует показывать все, доступные на данном этапе обучения способы решения, и, главное, на конкретных примерах доказывать, что первый этап решения – выбор самого эффективного способа.

Рассмотрим пример |(х-1)(х-3)|=х-3.

Это уравнение можно решить тремя способами.
а) последовательное раскрытие модуля:
Если (х-1)(х-3) ≥ 0, то Если (х-1)(х-3) 2 -4х+3=х-3, х 2 -4х+3= -х+3,
х 2 -5х+6=0, х 2 -3х=0,
х 1 =3, х 2 =2. х 1 =0, х 2 =3.
2 – не удовлетворяет условию. 0, 3 — не удовлетворяет условию.
Ответ: 3.
б) метод интервалов: найдем концы интервалов, решив уравнение (х-1)(х-3)=0, откуда х 1 =1, х 2 =3.

(х-1)(х-3)=х-3, -(х-1)(х-3)=х-3, (х-1)(х-3)=х-3,
х 1 =2, х 2 =3. х 1 =0, х 2 =3. х 1 =2, х 2 =3.
2 (-∞; 1), 0 [1; 3). 2 [3; +∞).
3 (-∞; 1).
Ответ: 3.
в) графический метод: для решения уравнения построим в одной системе координат графики функций у=|х 2 -4х+3| и у=-3.
Построим у=|х 2 -4х+3|. Для этого сначала рассмотрим функцию у=х 2 -4х+3, графиком которой является парабола, ветви направлены вверх. Вершина параболы в точке (2; -1). Строим график и отображаем часть параболы, которая лежит ниже оси ОХ в верхнюю полуплоскость. Далее в этой же системе координат строим график у=х-3. Графики функций пересеклись в точке с абсциссой 3.
Ответ: 3.

Таким образом, можно сделать следующий вывод: систематическое использование различных способов для решения уравнений, содержащих абсолютную величину, приводит не только к повышению интереса к математике, повышению творческой активности школьников, но и повышает уверенность детей в собственных силах, так как у них имеется возможность выбора того способа решения, который наиболее эффективен в каждом конкретном случае.

ТЕСТОВЫЕ ЗАДАНИЯ по теме «Решение уравнений с модулем».
1. Какие числа являются решениями уравнения |х+3|= -4?
а) -7; б) -7; 1; в) нет корней; г) 1.
2. Решите уравнение |х+3|=7:
а) 7; б) -7; в) 0; 7; г) 7; -7.
3. Определите координаты точки пересечения графиков функций у=|2х+1| и у=0:
а) (0;0); б) (-0,5;0); в) (0;-0,5); г) (0,5;0).
4. Решите уравнение |х+3|+|х-1|=6:
а) 3; -2; б) 4; -2; в) -4; 2; г) 2; -3.
5. Сколько точек пересечения имеют графики функций у=||5,5х-4|+2| и у=3?
а) 1; б) 2; в) 3; г) 4.
6. Решите уравнение |3х-7|=1-х:
а) 2; 3; б) -2; 3; в) -3; 2; г) -2; -3.
7. Сколько решений имеет уравнение (2,5х-5)2=(0,5х-6)2:
а) 1; б) 2; в) 3; г) 4.

СИСТЕМА КАРТОЧЕК-ЗАДАНИЙ по теме «Решение уравнений с модулем».
1. ЗАДАНИЯ С УКАЗАНИЯМИ ИЛИ АЛГОРИТМИЧЕСКИМИ ПРЕДПИСАНИЯМИ И ОБРАЗОМ ВЫПОЛНЕНИЯ.
УКАЗАНИЯ ОБРАЗЕЦ ЗАДАНИЕ
Если |х-а|+|х-в|=в-а, где в ≥ а, то
а ≤ х ≤ в
|х-1|+|х-2|=1,
1 ≤ х ≤ 2.
Ответ: [1; 2]
а) |х-4|+|х-5|=1,
б) |х|-|х-1|=1,
в) |х-6|+|х-8|=2,
г) |х-0,5|-|х-4,5|=4.

Если |х-а|-|х-в|=в-а, где в ≥ а, то
х ≥ в
|х-1|-|х-2|=1,
х ≥ 2.
Ответ: [2; +∞).

АЛГОРИТМ ОБРАЗЕЦ ЗАДАНИЯ
1. Отметить все нули подмодульных выражений на числовой прямой. Они разобьют числовую прямую на промежутки, в которых все подмодульные выражения имеют постоянный знак.
2. Из каждого промежутка взять произвольное число и подсчетом определить знак подмодульного выражения, по знаку раскрыть модули.
3. Решить уравнения и выбрать решения, принадлежащие данному промежутку. |х+1|+|х+2|=1.
Решение.
Подмодульные выражения х+1 и х+2 обращаются в нуль при х= -1, х= -2.

1) -3 (-∞; -2]
-х-1-х-2=1; х= -2;
-2 (-∞; -2].
2) -1,5 (-2; -1)
-х-1+х+2=1; 1=1; х — любое число из промежутка (-2; -1).
3) 0 [-1; +∞)
х+1+х+2=1; х= -1;
-1 [-1; +∞).
Ответ: [-2; -1].
1) |14-х|+|х+1|=7;
2) |х|-|х+2|=2;
3) |х2-4|=|2х-1|;
4) | х2-6х+5|+|3-х|=3

2. ЗАДАНИЯ «НАЙДИ ОШИБКУ».
1.
Решить уравнение: |х2-8х+5|=| х2-5|.
Решение.
|х2-8х+5|=| х2-5|
х2-8х+5= х2-5, или х2-8х+5=5- х2,
-8х+10=0, 2 х2-8х=0,
х=1,25. х(2х-8)=0,
х=0, или 2х-8=0,
2х=8,
х=0,25.
Ответ: 1,25; 0,25. ВЕРНОЕ РЕШЕНИЕ

2.
Решить уравнение х2-6х+|х-4|+8=0.
Решение.
Если х-4 ≥ 0, то Если х-4 Решить уравнение |х-1|-2|х+3|+х+7=0.
Решение.
Решим уравнение методом интервалов, для этого найдем концы интервалов, решив уравнения
х-1=0 и х+3=0
х=1 х= -3.
-х+1-2(-х-3)+х+7=0; -х+1-2х-6+х+7=0; х-1-2х-6+х+7=0;
2х+14=0; -2х+2=0; 0=0.
х= -7. х=1. х — любое число.
Ответ: х – любое число. ВЕРНОЕ РЕШЕНИЕ

3. ЗАДАНИЯ С СОПУТСТВУЮЩИМИ УКАЗАНИЯМИ И ИНСТРУКЦИЯМИ.
1.
Решить уравнение |х-2|+|2х-7|=3.

Решение.
Решим уравнение методом интервалов.
1) Найдите нули подмодульных выражений, решив уравнения:
х-2=0 и 2х-7=0.
х1=… х2=…
2) Отметьте полученные значения на координатном луче.

3) Решите исходное уравнение на каждом из интервалов, предварительно определив знак подмодульного выражения. Учитывая знак, раскрыть модули.

4) Проверьте, принадлежат ли найденные корни указанным промежуткам.
Ответ: …………………………………………………….

2.
Решить уравнение ||х-3|-х+1|=6.
Решение.
1) Раскройте внешний модуль, используя определение: |а|=а, если а ≥ 0 и
|а|= -а, если а 4. ЗАДАНИЯ С ПРИМЕНЕНИЕМ КЛАССИФИКАЦИИ.
1.
Выпишите уравнения, которые решаются с помощью зависимостей между величинами, их модулями и квадратами величин. Решите эти уравнения.
1) ||х|+3|=3;
2) |х|+|х+4|=х-1;
3) |х+2|=|3-х|;
4) |х+3|+|х-1|=7;
5) (2х-3)2=(3,5х-1)2;
6) |х2-4х+5|=|х2-9|;
7) |11х-7|= -3;
8) |х-2|+|х-1|=1;
9) х2-х-2=|5х-3|;

2.
Выпишите уравнения, которые решаются с использованием геометрической интерпретации модуля. Решите эти уравнения.
1) |х|-|х-8|=2;
2) |х 2 -2х-3|=3х-3;
3) |2х-|2х-|2х-3|||=0;
4) |х-1|-2|х+4|+х+11=0;
5) |х-3|+|х-4|=1;
6) (5х-4) 2 =(2х-1) 2 ;
7) |2,5х-11|= -2;
8) |х-7|-|х-9|=2.

5. ЗАДАНИЯ С ВЫПОЛНЕНИЕМ НЕКОТОРОЙ ЧАСТИ.
1.
Решить уравнение (х 2 -5х+6)2-5•| х 2 -5х+6|+6=0.
Решение.
Пусть | х 2 -5х+6|=t, тогда, учитывая, что (х 2 -5х+6)2=| х 2 -5х+6|2, получим уравнение: t 2 -5t+6=0. Решением этого уравнения являются числа ……. поэтому исходное уравнение равносильно совокупности двух уравнений:
| х 2 -5х+6|=… или | х 2 -5х+6|=…
…………………………………………………………………………………
…………………………………………………………………………………
…………………………………………………………………………………
…………………………………………………………………………………

ПРОВЕРОЧНАЯ РАБОТА по теме «Решение уравнений с модулем»
1. Решите уравнение |х-3|=7.
2. Решите графически уравнение |2х+1|=3.
3. Решите уравнение методом интервалов |х+1|+|х-1|=3.
4. Решите уравнение методом последовательного раскрытия модулей |-х+2|=2х+1.
5. Решите уравнение (2х+3) 2 =(х-1) 2 .
6. Решите уравнение самым удобным способом |х 2 +6х+2|=3|х+2|.
7. При каком значении а уравнение можно решить, используя геометрическую интерпретацию модуля: |х-а|+|х-9|=1?

Уравнения содержащие переменную под знаком модуля 9 класс

Уравнения, содержащие переменную под знаком модуля

При решении таких уравнений применяют чаще всего следующие методы: а) раскрытие модуля; b) возведение обеих частей уравнения в квадрат; с) разбиение на промежутки.

Пример 2.4.1. Решить уравнение

Решение

а) Так как по определению

то исходное уравнение равносильно следующей совокупности двух смешанных систем:

Из первой системы этой совокупности находим x = 2, а из второй x = –1.

b) Так как обе части исходного уравнения – выражения одинаковых знаков, то оно равносильно следующему уравнению:

Решая последнее уравнение, находим те же корни.

Пример 2.4.2. Решить уравнение

Решение

Нанесем на числовую прямую значения x, которые обращают в нуль выражения, находящиеся под знаком модуля, т.е. x = –4 и x = 3. Числовая прямая при этом

разобьется на следующие промежутки:

На каждом из этих промежутков будем решать уравнение, эквивалентное исходному, но не содержащее знака абсолютной величины, т.е. решим равносильную исходному уравнению следующую совокупность смешанных систем:

Решений первая и третья системы не имеют, а вторая система имеет решение x = 0. Объединяя решения этих трех систем, получаем решение исходного уравнения: x = 0.

Разработка урока по теме «Решение уравнений, содержащих переменную под знаком модуля»
план-конспект урока по алгебре (9 класс) на тему

Разработка урока алгебры для 9 класса. Тема урока «Решение уравнений, содержащих переменную под знаком модуля.»

Тип урока — урок рефлексии.

Скачать:

ВложениеРазмер
reshenie_uravneniy_s_modulem.docx33.47 КБ

Предварительный просмотр:

Разработка урока по теме

«Решение уравнений, содержащих переменную под знаком модуля».

Предмет преподавания: алгебра (9 класс).

Тема: «Решение уравнений, содержащих переменную под знаком модуля».

Тип урока : урок рефлексии.

Участники : учащиеся 9 класса.

создать условия, в которых учащиеся могли бы самостоятельно планировать и анализировать собственные действия, находить выход из любой ситуации, реально оценивать свои возможности и знания.

воспитывать познавательный интерес к предмету, любовь к поисковым решениям, культуру поведения при фронтальной, групповой и индивидуальной работе.

Деятельностные : формирование у учащихся способностей к рефлексии коррекционно-контрольного типа и реализации коррекционной нормы (фиксирование собственных затруднений в деятельности, выявление их причин, построение и реализация проекта выхода из затруднения.)

Содержательные : закрепление и коррекция изученных алгоритмов решение уравнений, содержащих переменную под знаком модуля.

Планируемый результат обучения, в том числе и формирование УУД.

Познавательные УУД : умение ориентироваться в своей системе знаний: отличать новое от уже известного с помощью учителя; фиксировать и преодолевать затруднения в собственных действиях.

Коммуникативные УУД : умение оформлять свои мысли в устной форме; слушать и понимать речь других; совместно договариваться о правилах поведения и общения в школе и следовать им.

Регулятивные УУД : умение определять и формулировать цель на уроке с помощью учителя; проговаривать последовательность действий на уроке; работать по коллективно составленному плану; планировать своё действие в соответствии с поставленной задачей; вносить необходимые коррективы в действие после его завершения на основе его оценки и учёта характера сделанных ошибок; высказывать своё предположение.

Основные понятия: определение модуля числа, алгоритмы решения уравнений, содержащих переменную под знаком модуля.

1.Этап мотивации (самоопределения) к коррекционной деятельности.

Сегодняшний урок мне бы хотелось начать с высказывания: «Учить новое, повторяя, и повторять, изучая новое». Слайд №1.

Как вы понимаете эти слова?

Как вы считаете, можно ли добиться успеха в изучении математике не возвращаясь к изученным темам?

Какие их них вы считаете самыми сложными?

Повторению одной из них мы посвятим сегодняшний урок. Чтобы понять какую тему вы сегодня повторяете, ответьте на вопрос:

Права ли я? Слайд №2.

  1. Да
  2. Нет,
  3. Да
  4. Нет,
  5. Нет,
  6. Нет,
  7. Да
  8. Нет,
  9. Нет,
  1. Проверка.

Сформулируйте тему урока. «Решение уравнений, содержащих переменную под знаком модуля».

2. Этап актуализации и пробного учебного действия.

Самостоятельная работа №1. Слайд №3.

  1. 0; 1
  2. 1; 3;
  3. 1; 4
  1. Проверка. Слайд №4

Выполните самопроверку. (Правильно +, неправильно – ). Поднимите руку: всё правильно; 4 правильных; 3 правильных; 2 правильных ит.д.

Что необходимо повторить? (Определение модуля, основные виды уравнений с модулем и алгоритмы для их решения)

Шпаргалка. Слайд №5.

3.Этап локализации индивидуальных затруднений.

Предлагаю составить алгоритм исправления ошибок ( какие вопросы надо задать себе чтобы найти ошибки?) Слайд №6

1) Правильно ли вы определили вид уравнения?

2) Правильно ли вы применили алгоритм решения?

3) Правильно ли вы решили полученные уравнения?

4) Правильно ли вы решили неравенство?

5) Сделали вы отбор корней при решении системы?

Используя этот алгоритм, найдите свои ошибки. Определите, где вы допустили ошибку, где у вас возникли затруднения. Почему это случилось?

Если у вас все ответы правильные, то вы то же выполняете проверку по алгоритму(для исключения ситуации, когда ответ верный, а решение – нет или оно отсутствует.) По окончании проверки(если алгоритм выполнен правильно) вы получаете творческое задание.

  1. -3;1.
  2. 1,5; .
  3. – 1; — 6.
  4. 1; 9.
  5. 0; 2.
  1. . Выполнить самопроверку .

4.Этап целеполагания и построения проекта коррекции выявленных затруднений.

Сформулируйте цель нашего урока: повторить основные виды уравнений, содержащих переменную под знаком модуля и алгоритмы для их решения и научиться правильно их применять. Слайд №7

Составим план дальнейших действий.(проект)Слайд №8

  1. Ещё раз повторить определение модуля, основные виды уравнений с модулем и алгоритмы для их решения.
  2. Выполнить подробную проверку, используя образец.
  3. Решить аналогичные задания.

Физкультминутка. (Слайд №9)

И.п.о.с. 1 руки на пояс,

2 руки вверх, подняться на носки,

3 – 4 руки через стороны вниз,

5 выпад правой вперед, руки вперед,

7 выпад левой вперед, руки вперед,

8 и.п., 9 прогиб назад,

11 наклон влево, руки вверх,

12 и.п., 13 наклон вправо, руки вверх,

5.Этап реализации построенного проекта.

Ещё раз воспользуемся шпаргалкой.

Возьмите образец и сего помощью выполните проверку. Сравните с результатами своей проверки.

6.Этап обобщения затруднений во внешней речи. Слайд №10

Давайте обсудим, какие у вас возникли затруднения: не смогли определить вид уравнения; неправильно применили алгоритм решения; допустили ошибки при решении уравнений и неравенства; не сделали отбор корней при решении системы.

Выясним их причины: не поняли, когда проходили первый раз; забыли алгоритмы решения; пропустили уроки.

7.Этап самостоятельной работы с самопроверкой по эталону.

Предлагаю выполнить самостоятельную работу №2.(Решать только те задания, в которых вы допустили ошибки не только в ответе, но и при решении)

  1. ;
  1. Проверка.

При проверке использовать алгоритм исправления ошибок.

8.Этап включения в систему знаний и повторения.

Если вы не допустили ошибок, можете выполнять творческое задание.(№1, №2) Образец решения на доске выполняют ученики, не допустившие ошибок в самостоятельной работе №1.

9. Этап рефлексии деятельности на уроке.

Ребята, как считаете мы достигли поставленных целей? Тогда продолжите фразы(Слайд №11)


источники:

http://mmf.kubsu.ru/index.php/spravochnik/peremennaya-pod-modulem/19-reshenie-uravnenij-soderzhashchikh-peremennuyu-pod-znakom-modulya

http://nsportal.ru/shkola/algebra/library/2018/10/11/razrabotka-uroka-po-teme-reshenie-uravneniy-soderzhashchih