Уравнения соотношения параметров для адиабатного процесса

Адиабатический процесс и уравнения адиабаты для идеального газа. Пример задачи

Адиабатический переход между двумя состояниями в газах не относится к числу изопроцессов, тем не менее, он играет важную роль не только в различных технологических процессах, но и в природе. В данной статье рассмотрим, что представляет собой этот процесс, а также приведем уравнения адиабаты идеального газа.

Кратко об идеальном газе

Идеальным называется такой газ, в котором нет взаимодействий между его частицами, и их размеры равны нулю. В природе, конечно же, не существует идеальных на сто процентов газов, поскольку все они состоят из имеющих размеры молекул и атомов, которые взаимодействуют друг с другом всегда как минимум с помощью ван-дер-ваальсовых сил. Тем не менее, описанная модель часто выполняется с достаточной для решения практических задач точностью для многих реальных газов.

Вам будет интересно: Атеизм и антиклерикализм — это. В чем отличие понятий

Главным уравнением идеального газа является закон Клапейрона-Менделеева. Он записывается в следующей форме:

Это уравнение устанавливает прямую пропорциональность между произведением давления P на объем V и количества вещества n на абсолютную температуру T. Величина R — газовая константа, которая играет роль коэффициента пропорциональности.

Что это адиабатический процесс?

Адиабатический процесс — это такой переход между состояниями газовой системы, при котором обмена энергией с внешней средой не происходит. При этом изменяются все три термодинамических характеристики системы (P, V, T), а количество вещества n остается постоянным.

Различают адиабатическое расширение и сжатие. Оба процесса происходят только за счет внутренней энергии системы. Так, в результате расширения давление и особенно температура системы сильно падают. Наоборот, адиабатическое сжатие приводит к положительному скачку температуры и давления.

Чтобы не происходил обмен теплом между окружающей средой и системой, последняя должна обладать теплоизолированными стенками. Кроме того, сокращение длительности протекания процесса значительно уменьшает тепловой поток от и к системе.

Уравнения Пуассона для адиабатического процесса

Первый закон термодинамики записывается в таком виде:

Иными словами, сообщенная системе теплота Q идет на выполнение системой работы A и на повышение ее энергии внутренней ΔU. Чтобы написать уравнение адиабаты, следует положить Q=0, что соответствует определению изучаемого процесса. Получаем:

При изохорном процессе в идеальном газе все тепло идет на повышение внутренней энергии. Этот факт позволяет записать равенство:

Где CV — изохорная теплоемкость. Работа A, в свою очередь, вычисляется так:

Где dV — малое изменение объема.

Помимо уравнения Клапейрона-Менделеева, для идеального газа справедливо следующее равенство:

Где CP — изобарная теплоемкость, которая всегда больше изохорной, так как она учитывает потери газа на расширение.

Анализируя записанные выше равенства и проводя интегрирование по температуре и объему, приходим к следующему уравнению адиабаты:

Здесь γ — это показатель адиабаты. Он равен отношению изобарной теплоемкости к изохорной. Это равенство называется уравнением Пуассона для процесса адиабатического. Применяя закон Клапейрона-Менделеева, можно записать еще два аналогичных выражения, только уже через параметры P-T и P-V:

График адиабаты можно привести в различных осях. Ниже он показан в осях P-V.

Цветные линии на графике соответствуют изотермам, черная кривая — это адиабата. Как видно, адиабата ведет себя более резко, чем любая из изотерм. Этот факт просто объяснить: для изотермы давление меняется обратно пропорционально объему, для изобаты же давление изменяется быстрее, поскольку показатель γ>1 для любой газовой системы.

Пример задачи

В природе в горной местности, когда воздушная масса движется вверх по склону, то ее давление падает, она увеличивается в объеме и охлаждается. Этот адиабатический процесс приводит к снижению точки росы и к образованию жидких и твердых осадков.

Предлагается решить следующую задачу: в процессе подъема воздушной массы по склону горы давление упало на 30 % по сравнению с давлением у подножия. Чему стала равна ее температура, если у подножия она составляла 25 oC?

Для решения задачи следует использовать следующее уравнение адиабаты:

Его лучше записать в таком виде:

Если P1 принять за 1 атмосферу, то P2 будет равно 0,7 атмосферы. Для воздуха показатель адиабаты равен 1,4, поскольку его можно считать двухатомным идеальным газом. Значение температуры T1 равно 298,15 К. Подставляя все эти числа в выражение выше, получаем T2 = 269,26 К, что соответствует -3,9 oC.

Адиабатный процесс. Изопроцессы в термодинамике

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На этом уроке мы будем работать с уже известными нам физическими понятиями, но в несколько иной области применения. А именно с изопроцессами в термодинамике. Мы рассмотрим, какие изменения в первый закон термодинамики (закон сохранения энергии в тепловых процессах) внесут протекания этих самых процессов при неизменном макроскопическом параметре газа. Также мы рассмотрим новый, ранее неизвестный процесс – адиабатный.

Адиабатный процесс

,

Зависимости между начальными и конечными параметрами процесса:

Между p и v: , (10.1)

между T и v: , (10.2)

между p и T: . (10.3)

Работу 1 кг газа находят по следующим формулам:

; (10.4)

; (10.5)

; (10.6)

. (10.7)

Для определения работы кг газа нужно в формулах (9.4), (9.5) и (9.7) заменить удельный объем v общим объемом V газа.

(10.8)

; (10.9)

. (10.10)

Формула (9.6) для M кг газа примет следующий вид:

;

Уравнение первого закона для адиабатного процесса имеет вид:

, (10.12)

следовательно, или , т.е. изменение внутренней энергии газа и работа адиабатного процесса равны по величине и противоположны по знаку.

Изменение внутренней энергии идеального газа в адиабатном процессе может быть также выражено уравнением:

. (10.13)

Задачи

10.1. 1 кг воздуха при начальной температуре t1=30 °С и давлении Р1=0.1 МПа сжимается адиабатно до конечного давления Р2=1 МПа.

Определить конечный объем, конечную температуру и затрачиваемую работу.

Из соотношения параметров в адиабатном процессе находим

Принимая к=1.4 , получаем

Т2=303∙10 0.4/1.4 =303∙10 0.286 =303N;

lgN=lg 10 0.286 =0.286lg10=0.286;

Значение величины (Р21) к-1/к для адиабатного сжатия при р2/p1=10 величина (Р21) к-1/к =1.931.

Затраченная работа по уравнению (9.6)

Конечный объем определяется из уравнения состояния

10.2. 1 кг воздуха при температуре t1=15°С и начальном давлении Р1=0.1 МПа адиабатно сжимается до 0.8 МПа.

Найти работу , конечный объем и конечную температуру.

Ответ: t2=248°С; v2=0.187 м 3 /кг; L=-167.2 кДж/кг.

10.3. Воздух при давлении Р1=0.45 МПа, расширяясь адиабатно до 0.12 МПа, охлаждается до t2=-45 °С.

Определить начальную температуру и работу, совершенную 1 кг воздуха.

10.4. 1 кг воздуха, занимающий объем v1=0.0887 м 3 /кг при Р1=1 МПа, расширяется до 10-кратного объема.

Получить конечное давление и работу, совершенную воздухом, в изотермическом и адиабатном процессах.

Ответ: 1). Т=const; Р2=0.1МПа ; L=204 кДж/кг; 2). dQ=0; p2=0.04 МПа; L=133.5 кДж/кг.

10.5. Воздух при температуре t1=25 °С адиабатно охлаждается до t2=-55 °С; давление при этом падает до 0.1 МПа.

Определить начальное давление и работу расширения 1 кг воздуха.

Ответ: Р1=0.3 МПа; L=57.4 кДж/кг.

10.6. Адиабатным сжатием повысили температуру воздуха в двигателе так, что она стала равной температуре воспламенения нефти, объем при этом уменьшился в 14 раз.

Определить конечную температуру и конечное давление воздуха, если Р1=0.1 МПа и t1=100 °С.

Конечную температуру определяем по формуле:

Конечное давление находим из уравнения (91)

10.7. Работа, затраченная на адиабатное сжатие 3 кг воздуха, составляет 471 кДж. Начальное состояние воздуха характеризуется параметрами: t1=15 °С; Р1=0.1 МПа.

Определить конечную температуру и изменение внутренней энергии.

Ответ: t2=234 °С ; DU=-471 кДж.

10.8. 1 м 3 воздуха при давлении 0,095 МПа и начальной температуре 10°С сжимается по адиабате до 0,38 МПа.

Определить температуру и объем воздуха в конце сжатия и работу, затраченную на сжатие.

Ответ: t2=148 °С, V2=0.373 м 3 , L=-117 кДж.

10.9. 1 кг воздуха при температуре t1=17°С сжимается адиабатно до объема, составляющего 1/5 начального, а затем расширяется изотермически до первоначального объема.

Определить работу, произведенную воздухом в результате обоих процессов.

Ответ: L= 67 кДж/кг.

Дата добавления: 2014-11-13 ; просмотров: 205 ; Нарушение авторских прав


источники:

http://interneturok.ru/lesson/physics/10-klass/osnovy-termodinamiki/adiabatnyy-protsess-izoprotsessy-v-termodinamike

http://lektsii.com/1-2792.html

Читайте также:
  1. B. C. Соловьёв о праве, государстве и историческом процессе.
  2. I. Повышение управляемости организации при внедрении процессного подхода.
  3. II. Начало процесса исторического развития общества.
  4. III. Технологическое проектирование строительных процессов.
  5. III.1.1) Формы уголовного процесса.
  6. IV.3.2) Виды легисакционного процесса.
  7. IV.4.1) Происхождение и смысл формулярного процесса.
  8. IV.4.3) Общий ход формулярного процесса.
  9. IV.5. Когниционный процесс
  10. VI. Педагогические технологии на основе эффективности управления и организации учебного процесса