Уравнения сводящиеся к квадратным это

Уравнения, сводящиеся к квадратным уравнениям:
трехчленные уравнения и уравнения
вида
(ax + b)(ax + b + c)(ax +
+ b
+ 2c)(ax + b + 3c) = d , левая часть которых равна произведению четырёх последовательных членов арифметической прогрессии

Существует ряд уравнений, которые удается решить при помощи сведения их к квадратным уравнениям.

К таким уравнениям, в частности, относятся уравнения следующих типов:

Трёхчленные уравнения
Уравнения 4-ой степени, левая часть которых равна произведению четырёх последовательных членов арифметической прогрессии
Возвратные (симметричные) уравнения 3-ей степени
Возвратные (симметричные) уравнения 4-ой степени
Обобщенные возвратные уравнения 4-ой степени

Замечание . Уравнения, носящие название «Биквадратные уравнения» , относятся к типу «Трехчленные уравнения» .

Трехчленные уравнения

Трёхчленными уравнениями называют уравнения вида

a f 2 (x)+ b f (x) + c = 0,(1)

а также уравнения вида

(2)

где a, b, c – заданные числа, а f (x) – некоторая функция.

Для того, чтобы решить трехчленное уравнения вида (1), обозначим

y = f (x),(3)

тогда уравнение (1) станет квадратным уравнением относительно переменной y :

ay 2 + by + c = 0 .(4)

Затем найдем корни уравнения (4), а после этого, подставив каждый из найденных корней в равенство (3), решим полученное уравнение относительно x .

Для того, чтобы решить трехчленное уравнение вида (2), сначала введем обозначение (3), а затем умножим полученное уравнение на знаменатель. В результате уравнение (2) примет вид (4), а схема решения уравнения (4) уже описана выше.

Покажем, как это осуществляется на примерах.

Пример 1 . Решить уравнение

(x 2 – 2x) 2 –
– 2(x 2 – 2x) – 3 = 0 .
(5)

Решение . Если обозначить

y = x 2 – 2x ,(6)

то уравнение (5) превратится в квадратное уравнение

y 2 – 2y – 3 = 0 .(7)

В первом случае из равенства (6) получаем:

Во втором случае из равенства (6) получаем:

Пример 2 . Решить уравнение

(8)

Решение . Если обозначить

,(9)

то уравнение (8) превратится в квадратное уравнение

которое эквивалентно уравнению

2y 2 – 3 y – 2 = 0 .(10)

В первом случае из равенства (9) получаем уравнение:

Во втором случае из равенства (9) получаем:

Ответ :

Пример 3 . Решить уравнение

Решение . Если обозначить

(12)

то уравнение (11) превратится в квадратное уравнение

которое эквивалентно уравнению

y 2 – 5y – 6 = 0 .(13)

В первом случае из равенства (12) получаем уравнение:

Во втором случае из равенства (12) получаем:

Ответ :

Пример 4 . Решить биквадратное уравнение

x 4 – x 2 – 12 = 0 .(14)

Решение . Если обозначить

y = x 2 ,(15)

то уравнение (14) превратится в квадратное уравнение

y 2 – y – 12 = 0 .(16)

В первом случае из равенства (15) получаем уравнение:

которое решений не имеет.

Во втором случае из равенства (15) получаем:

Пример 5 . Решить уравнение

Решение . Если обозначить

y = x 2 – 3x,(18)

уравнение (17) превращается в уравнение

которое при умножении на y принимает вид

y 2 + 2y – 8 = 0 .(19)

В первом случае из равенства (18) получаем квадратное уравнение:

которое решений не имеет.

Во втором случае из равенства (18) получаем:

Ответ :

Пример 6 . Решить уравнение

Решение . Если обозначить

,(21)

уравнение (20) превращается в уравнение

которое при умножении на y принимает вид

3y 2 – 2y – 1 = 0 .(22)

В первом случае из равенства (21) получаем уравнение

Во втором случае из равенства (21) получаем:

Уравнения 4-ой степени, левая часть которых равна произведению четырёх последовательных членов арифметической прогрессии

(ax + b)(ax + b +
+ c
)(ax +
+ b
+ 2c)(ax +
+ b
+ 3c) = d ,
(23)

где a, b, c, d – заданные числа, и заметим, что левая часть этого уравнения представляет собой произведение четырёх последовательных членов арифметической прогрессии, первый член которой равен ax+b , а разность равна c .

Схема решения уравнений вида (23) заключается в следующем.

y = ax + b.(24)

Тогда уравнение (23) примет вид:

y (y + c)(y +
+ 2c)(y + 3c) = d .
(25)

Перегруппируем сомножители в левой части уравнения (25) следующим образом:

[y (y + 3c)][(y +
+ c
)(y + 2c)] = d .
(26)

Если раскрыть круглые скобки внутри каждой квадратной скобки из левой части уравнения (26), то получим:

[y 2 + 3cy][y 2 +
+ 3cy + 2c 2 ] = d .
(27)

Если теперь в уравнении (27) обозначить

z = y 2 + 3cy ,(28)

то уравнение (27) станеи квадратным уравнением

z 2 + 2c 2 zd = 0 .(29)

Для того, чтобы найти корни уравнения (23), остаётся решить уравнение (29), затем для каждого корня уравнения (29) решить уравнение (28) относительно y , а затем в каждом из полученных случаев решить уравнение (24) относительно x .

Пример 7 . Решить уравнение

(2x + 3)(2x + 5)(2x +
+
7)(2x + 9) = 384 .
(30)

Решение .Если обозначить

y = 2x + 3,(31)

уравнение (30) превращается в уравнение

y (y + 2)(y +
+
4)(y + 6) = 384 .
(32)

Перегруппируем сомножители в левой части уравнения (32):

[y (y + 6)][(y +
+ 2)(y + 4)] = 384 .
(33)

Если раскрыть круглые скобки внутри каждой квадратной скобки из левой части уравнения (33), то уравнение (33) примет вид:

[y 2 + 6y][y 2 +
+ 6y + 8] = 384 .
(34)

Если теперь обозначить

z = y 2 + 6y ,(35)

то уравнение (34) станет квадратным уравнением

z 2 + 8 z – 384 = 0 .(36)

В первом случае из равенства (35) получаем уравнение:

которое корней не имеет.

Во втором случае из равенства (35) получаем:

В первом из этих случаев, из равенства (31) получаем:

Во втором случае из равенства (31) получаем:

Ответ :

Алгебра

Квадратные уравнения

План урока:

Определение квадратного уравнения

Изучая понятие многочленов, мы познакомились с квадратными трехчленами. Так называют полином 2-ой степени, содержащий только одну переменную. Если его приравнять к нулю, то получится квадратное уравнение. Дадим определение квадратному уравнению:

Приведем несколько конкретных примеров:

  • 5х 2 + 4х + 7 = 0
  • – 3х 2 + х – 1,5 = 0
  • 0,05х 2 + 99,568х – 47,21 = 0

Числа a, b и с называют коэффициентами квадратного уравнения. Отметим, что числа b и c могут равняться нулю, и в этом случае соответствующее слагаемое просто не записывается:

Эти уравнения именуют неполными.

Если же коэффициент а=0, то получается линейное уравнение, которое мы уже умеем решать:

Естественно, что для обозначения переменной может использоваться любая буква, а не только х:

  • у 2 + 3,5х – 93 = 0
  • – 32z 2 + 11z – 78 = 0

Для обозначения коэффициентов могут использоваться специальные термины:

  • а – старший коэффициент;
  • b– второй коэффициент;
  • с – свободный член.

Неполные квадратные уравнения можно очень легко решить. Сначала рассмотрим пример, в котором b = 0:

Перенесем вправо свободный коэффициент:

Далее поделим на старший коэффициент обе части равенства:

Понятно, что х равен квадратному корню из 9. Напомним, что у каждого положительного числа есть два квадратных корня! Один из них является положительным числом и называется арифметическим, а другой противоположен ему по знаку. Поэтому можно записать, что

Иногда используют более короткую запись:

Не любое квадратное уравнение, у которого нет второго коэффициента b, будет иметь решение. Рассмотрим уравнение

Будем решать его таким же путем, перенося свободный коэффициент c вправо и деля уравнение на старший коэффициент a:

Квадрат действительного числа не может быть отрицательным. Значит, данное уравнение не будет иметь корней.

Сформулируем общий алгоритм решения неполных квадратных уравнений такого типа:

Теперь изучим неполные уравнения, в которых нет свободного слагаемого с. Рассмотрим их на примере:

Слева вынесем переменную х за скобки:

Теперь слева находится произведение двух множителей, а справа – ноль. Очевидно, что произведение может равняться нулю лишь в том случае, когда один из составляющих его множителей (х или 7х + 21) является нулем.

Зная это, запишем:

х = 0 или 7х + 21 = 0

Получили корень х = 0 и ещё одно линейное уравнение, которое легко решить:

В результате имеем два корня: 0 и – 3

Опишем общий алгоритм решения этих неполных уравнений:

Решение квадратного уравнения

Найти решение квадратного уравнения, если оно полное, достаточно тяжело. Нам поможет формула квадрата суммы:

(а + b) 2 = a 2 + 2ab + b 2

Напомним, что с ее помощью можно разложить на множители некоторые квадратные полиномы:

х 2 + 8х + 16 = х 2 + 2•4•х + 4 2 = (х + 4) 2

Конечно, здесь нам повезло с квадратным трехчленом – его коэффициенты позволяли воспользоваться формулой квадрата суммы. Однако похожие преобразования можно выполнить и тогда, когда коэффициенты не такие удобные:

х 2 + 8х + 20 = х 2 + 8х + 16 + 4 =(х 2 + 8х + 16) + 4 = (х 2 + 2•4•х + 4 2 ) + 4 =

Здесь мы разложили число 20 на сумму 16 + 4, чтобы можно было часть выражения «свернуть» формулой квадрата суммы. Такой прием можно применить вообще к любому квадратному трехчлену:

4х 2 + 10х + 4 = (2х) 2 + 2•2х•2,5 + 2,5 2 – 2,5 2 + 4 = (2х + 2,5) 2 – 2,5 2 + 4 =

= (2х + 2,5) 2 – 6,25 + 4 = (2х + 2,5) 2 – 2,25

Здесь мы добавили к трехчлену слагаемое 2,5 2 и тут же его отняли. Оно было необходимо для получения формулы квадрата суммы.

Отметим, что подобное свертывание можно использовать для решения квадратного уравнения. Действительно, пусть дано уравнение

4х 2 + 10х + 4 = 0

Выше мы уже преобразовали трехчлен, стоящий слева. Произведем замену:

(2х + 2,5) 2 – 2,25 = 0

Имеем уравнение, очень похожее на неполное, где отсутствует коэффициент b. Попробуем его решить аналогичным путем:

Из этой записи мы получили два линейных уравнения:

2х + 2,5 = – 1,5 или 2х + 2,5 = 1,5

Решая их, находим два корня:

2х = – 1,5 – 2,5 или 2х = 1,5 – 2,5

2х = – 4 или 2х = – 1

х = – 2 или х = – 0,5

Аналогично можно решить и любое другое полное квадратное уравнение. Однако проще пользоваться специальными формулами, в которые надо подставлять значения коэффициентов a, b, с и получать корни квадратного уравнения. Выведем эти формулы.

Пусть есть уравнение

Поделим обе части уравнения на коэффициент а:

Далее надо выделить квадрат суммы, что бы потом свернуть его по формуле сокращенного умножения:

Далее обозначим числитель в правой части (b 2 – 4ac) буквой D. Эту величину называют дискриминантом квадратного уравнения.

Перепишем уравнение с учетом этой замены:

Далее рассмотрим три случая:

  1. D 2 – заведомо положительное число). Слева стоит квадрат выражения, а он никак не может оказаться отрицательным. В итоге имеем, что при отрицательном дискриминанте у уравнения отсутствуют корни.
  2. D = 0. При таком варианте справа получается ноль:

Квадрат только одного числа равен нулю – самого нуля, поэтому

Итак, при нулевом дискриминанте у уравнения есть только один корень.

  1. D> 0. В этом варианте дробь справа оказывается положительным числом, а потому у нее есть два квадратных корня. Решение будет выглядеть так:

Полученное выражение называют основной формулой корней квадратного уравнения.

Если дискриминант – положительное число, то уравнение существует два корня. Для вычисления первого из них надо в формуле квадратного уравнения вместо знака ± поставить минус, а для вычисления второго – знак плюс. Часто 1-ый корень обозначают как х1, а 2-ой – как х2. Заметим, что если D = 0, то при подстановке в основную формулу будет получаться один и тот же корень независимо от выбора знака плюс или минус.

Пример. Решите уравнение

2х 2 – 5х – 3 = 0

Решение. Выпишем коэффициенты уравнения

Вычислим значение дискриминанта:

D = b 2 – 4ас = (– 5) 2 – 4•2•(– 3) = 25 + 24 = 49

Так как он больше нуля, то должно получиться два корня. Их можно найти по основной формуле квадратного уравнения:

Пример. Найдите все корни уравнения

3х 2 + 6х + 5 = 0

Решение. Найдем дискриминант:

D = b 2 – 4ас = 6 2 – 4•3•5 = 36 – 60 = – 24

Дискриминант оказался отрицательным, значит, и корней у уравнения нет.

Ответ: нет корней.

Пример. Найдите значения х, при которых выполняется равенство

4х 2 – 12х + 9 = 0

Решение. Вычислим дискриминант:

D = (– 12) 2 – 4•4•9 = 144 – 144 = 0

Так как D = 0, существует лишь один корень:

Пример. Найдите значения у, при которых справедливо равенство

2у 2 + 4у + 9 = у 2 + 11у + 3

Решение. На первый взгляд это уравнение не похоже на изучавшие до этого квадратные уравнения. Однако слагаемые, записанные справа, можно перенести влево, после чего можно будет привести подобные слагаемые:

2у 2 + 4у + 9 = у 2 + 11у + 3

2у 2 + 4у+ 9–у 2 – 11у– 3 = 0

Получили классическое квадратное уравнение, для которого можно рассчитать дискриминант:
D = b 2 – 4ас = (– 7) 2 – 4•1•6 = 49 – 24 = 25

Найдем значения двух корней:

Уравнения, сводящиеся к квадратным

Так как любое квадратное уравнение решается довольно легко, то другие, более сложные уравнения, часто пытаются свести к квадратным. Сначала рассмотрим так называемые биквадратные уравнения. Пусть надо решить уравнение

2х 4 –26х 2 + 72 = 0

На первый взгляд в левой части стоит полином четвертой, а не второй степени, то есть это уравнение не является квадратным. Введем переменную t, равную х 2 :

Если это выражение возвести в квадрат, то получим

t 2 = (х 2 ) 2 = х 4

Теперь заменим в исходном уравнении х 4 на t 2 , а х 2 на t:

2t 2 –26t + 72 = 0

Получили квадратное уравнение, из которого можно найти значение t. Посчитаем дискриминант:

D = (– 26) 2 – 4•2•72 = 676 – 576 = 100

Можно найти два значения t:

Однако нам надо найти значение х, а не t. Вспомним, что мы проводили замену

Подставляя вместо t найденные корни 4 и 9, получим ещё два уравнения:

Первое имеет корни (– 2) и 2, а второе (– 3) и 3. Все эти 4 числа являются корнями исходного уравнения

2х 4 – 26х 2 + 72 = 0

Уравнения, которые можно свести к квадратному заменой переменных t = x 2 , называют биквадратными уравнениями.

Мы рассмотрели пример, в котором биквадратное уравнение имело 4 корня. Однако порою их может быть и меньше.

Пример. Укажите все корни уравнения

у 4 + 4у 2 – 5 = 0

Решение. Данное уравнение подходит под определение биквадратного, а потому произведем замену t = y 2 :

D = 4 2 – 4•1•(– 5) = 16 – (– 20) = 36

далее проводим обратную замену и получаем уравнения:

Первое из них не имеет решения, ведь квадрат числа – это неотрицательное число. Поэтому решать придется только второе уравнение:

Подстановка t = x 2 самая простая и очевидная, однако, порою нужно выполнять более сложные подстановки.

Пример. Найдите все z, для которых выполняется условие

(z – 2)(z – 3)(z – 4)(z – 5) = 24

Решение.Замена неочевидна, и всё же попробуем такой вариант:

Тогда содержимое каждой скобки примет вид:

z– 2 = z– 3,5 + 1,5 = t + 1,5

z– 3 = z– 3,5 + 0,5 = t + 0,5

z– 4 = z– 3,5 – 0,5 = t–0,5

z– 5 = z – 3,5 – 1,5 = t–1,5

Уравнение примет вид:

(t + 1,5)(t + 0,5)(t – 0,5)(t – 1,5) = 24

Поменяем местами скобки:

(t – 0,5)(t + 0,5)(t – 1,5)(t + 1,5) = 24

Можно заметить, что в соседние скобки можно переписать, используя формулу разности квадратов:

(t 2 – 0,5 2 )(t 2 – 1,5 2 ) = 24

Для удобства произведем ещё одну замену s = t 2 :

(s– 0,5 2 )(s– 1,5 2 ) = 24

Раскроем скобки в левой части:

s 2 – 2,25s– 0,25s + 0,5625 = 24

s 2 – 2,5s + 0,5625– 24 = 0

s 2 – 2,5s– 23,4375 = 0

Получили классическое квадратное уравнение, которое решается через дискриминант:

D = (– 2,5) 2 – 4•1•(– 23,4375) = 6,25 + 93,75 = 100

Произведем 1-ую обратную замену t 2 = s:

Первое уравнение решений не имеет, а у второго ровно 2 корня:

Пришло время второй замены z– 3,5 = t, из которой получаем два уравнения:

z– 3,5 = – 2,5 или z– 3,5 = 2,5

z= – 2,5 + 3,5 или z= 2,5 + 3,5

Задачи, решаемые с помощью квадратных уравнений

При рассмотрении задач, связанных с геометрией, свойствами чисел, движением тел, очень часто возникают квадратные уравнения.

Пример. Площадь прямоугольника составляет 126 см 2 , а одна из его сторон на 5 см длиннее другой. Каковы длины сторон этого прямоугольника?

Решение. Обозначим как k длину той стороны прямоугольника, которая меньше. Тогда протяженность второй стороны будет равна k + 5 см. Площадь прямоугольника – это произведение его сторон, а потому можно записать:

Решим это уравнение:

k 2 + 5k – 126 = 0

D = 5 2 – 4•1•(– 126) = 25 + 504 = 529

Первый корень равен (– 14). Однако ясно, что длина стороны прямоугольника не может измеряться отрицательным числом, поэтому этот корень надо отбросить. Остается только k = 9. То есть длина первой стороны равна 9 см. Вторая сторона равна k + 5, то есть 9 + 5 = 14 см.

Ответ: 9 и 14 см.

Пример. Сумма квадратов двух последовательных нечетных чисел составляет 290. Что это за числа?

Решение. Обозначим первое число как n. Нечетные числа чередуются с четными, поэтому следующим нечетным числом будет n + 2. Перепишем условие задачи в виде уравнения и найдем его корни:

n 2 + (n + 2) 2 = 290

n 2 + n 2 + 4n + 4 – 290 = 0

2n 2 + 4n – 286 = 0

D = 4 2 – 4•2•(– 286) = 16 + 2288 = 2304

Получили два решения. Если первое число равно – 13, то второе составит n + 2 = – 11. Если же n = 11, то второе число будет равно 13.

Ответ: – 13 и 11, либо 11 и 13.

Теорема Виета

Большое значения имеют уравнения, у которых старшим коэффициентом является единица. Математики называют их приведенными уравнениями.

Дадим несколько примеров приведенных квадратных уравнений:

  • х 2 + 6х + 29 = 0
  • у 2 – 7,54у + 87 = 0
  • z 2 + 21z + 112 = 0

Название «приведенное» возникло из-за того, что каждое квадратное уравнение можно сделать приведенным, если поделить его части на коэффициент перед х 2 . Пусть есть уравнение

Поделим на 4 обе его части:

х 2 + 1,25х + 1,5 = 0

Для приведенного уравнения сформулирована теорема Виета, которая указывает на взаимосвязь его корней и коэффициентов:

Доказать это очень легко. Если у уравнения

существует два корня, то они вычисляются по формулам:

Найдем их сумму:

Аналогично можно посчитать и их произведение:

Естественно, если у уравнения не существует корней (D 2 – 8х + 15 = 0; корни (х1 и х2) равны 3 и 5, в чем можно убедиться подстановкой:

Перемножим корни и получим 3•5 = 15 (свободный член), при сложении корней получается 3 + 5 = 8 (второй коэффициент без минуса);

  1. у 2 + 13у + 42= 0, корни (– 6) и (– 7), произведение корней 42, сумма корней – 13;
  2. х 2 + 2х – 8 = 0, корни (– 4) и 2, их сумма равна (– 2), а произведение (– 8).

Справедливо и утверждение, известное как обратная теорема Виета:

Возьмем числа 4 и 9. Их сумма равна 13, а произведение 36, поэтому они являются корнями уравнения:

х 2 – 13х + 36 = 0

в чем можно убедиться, подставив их вместо х.

Пример. Учитель математики перед уроком составляет квадратные уравнения, причем стремится к тому, чтобы у них были целые корни (чтобы детям было просто считать). Подскажите ему пример уравнения, чьи корни равны 3 и 8.

Решение. Перемножим и сложим числа 3 и 8:

Соответственно, уравнением с корнями 3 и 8 будет

х 2 – 11х + 24 = 0

Ответ: х 2 – 11х + 24 = 0

Разложение квадратного трехчлена на множители

При решении уравнения

мы находим его корни. Однако отдельно выделяют и такое понятие, как корень многочлена. Так называют значение переменной, которая обращает полином в ноль.

Понятно, что для нахождения корней полинома второй степени следует решить квадратное уравнение.

Сначала рассмотрим трехчлены, у которых коэффициент при х 2 а равен 1. Предположим, что нам удалось разложить его на произведение двух линейных полиномов:

х 2 + bх + с = (х –s)(х –k)

где s и k– какие-то произвольные числа.

Выражение справа является произведением, а потому обращается в ноль только тогда, когда нулю равен один из множителей:

х – s = 0 или х – k = 0

Так как при х = s или х = k в ноль обращается правая часть тождества, то также должна обращаться и левая часть. Получается, что числа s и k – это корни трехчлена х 2 + bх + с.

Убедимся в этом, раскрыв скобки в правой части тождества:

(х –s)(х –k) = х 2 –kx–sx + sk = х 2 – (k + s)х + sk

подставим это выражение в исходное равенство:

х 2 + bх + с = (х – s)(х — k) = х 2 – (k + s)х + sk

х 2 + bх + с = х 2 – (k + s)х + sk

Получается, произведение s и k дает свободный член, а их сумма в точности равна коэффициенту при х, взятому со знаком минус. Значит, по теореме Виета, они являются корнями уравнения!

Обозначим корни уравнения как х1 и х2. Если у трехчлена коэффициент а отличен от единицы, то эта формула (ее называют формулой разложения квадратного трехчлена на множители) примет несколько иной вид:

То есть справедливо утверждение:

А теперь и докажем его.

Пусть есть уравнение ах 2 + bx + c = 0 с корнями х1 и х2. Поделим его на а:

х 2 + (b/a)х + с/а = 0

по теореме Виета можно записать:

Умножив первое тождество на (– а), а второе наа, получим

Осталось подставить эти равенства в исходный многочлен:

Для чего же мы доказывали эту теорему? С ее помощью можно выполнить разложение квадратного трехчлена на множители. Проиллюстрируем это на примерах.

Пример. Разложите полином

2х 2 + 12х – 14

на множители.

Решение. Для начала следует решить уравнение 2х 2 + 12х – 14 = 0:

D = 12 2 – 4•2•(– 14) = 144 + 112 = 256

Найдя х1 и х2, можем выполнить и разложение:

2х 2 + 12х – 14 = 2(х – 1)(х – (– 7)) = 2(х – 1)(х + 7)

Ответ: 2(х – 1)(х + 7)

Пример. Упростите выражение

Решение. На первый взгляд кажется, что сокращать нечего. Однако и в числителе, и в знаменателе находятся квадратные трехчлены. Разложим их на множители, решив соответствующие уравнения:

D = 2 2 – 4•1•(– 15) = 4 + 60 = 64

h 2 – 2h– 15 = (h+ 5)(h– 3)

Теперь раскладываем второй полином:

D = (– 9) 2 – 4•1•18 = 81 – 72 = 9

Соответственно, можно записать:

h 2 – 9h +18 = (h– 3)(h– 6)

А теперь подставим в исходную дробь полученные выражения:

Отметим, что если у полинома второй степени нет корней, то и разложить его на множители не получится.

Дробно-рациональные уравнения

Периодически приходится сталкиваться с уравнениями, где переменные присутствуют в знаменателе какой-нибудь дроби. Их называют дробно-рациональными уравнениями. Обычно их можно свести к более простому виду, но при этом следует учитывать ту особенность, что корень уравнения не должен обращать знаменатель в ноль.

Пример. Найдите решение дробно-рационального уравнения

Решение. Для начала перенесем дробь из правой части в левую, а потом приведем дроби к общему знаменателю:

Умножим уравнение на величину (х – 2)(х + 3)

(х + 1)(х – 2) + 10х – 4(х + 3) = 0

х 2 – 2х + х – 2 + 10х – 4х – 12 = 0

D = 5 2 – 4•1•(– 14) = 25 + 56 = 81

Казалось бы, мы нашли два корня: 2 и (– 7). Однако в исходном уравнении в знаменателе стоит выражение (х – 2)(х – 3). При х = 2 оно обращается в нуль, то есть дробь потеряет смысл. Поэтому корень 2 следует отбросить, и остается лишь корень (– 7)

Как решать тригонометрические уравнения, сводящиеся к квадратным — примеры

Основные понятия по теме

Тригонометрическими уравнениями называют уравнения с неизвестной, которая расположена строго под знаком тригонометрической функции.

Квадратные тригонометрические уравнения являются такими уравнениями, которые имеют вид:

a sin 2 x + b sin x + c = 0

Здесь a отлично от нуля.

Тригонометрические уравнения, сводящиеся к квадратным, обладают следующими признаками:

  1. Наличие в уравнении тригонометрических функций от одного аргумента, либо таких, которые можно просто свести к одному аргументу.
  2. Присутствие в уравнении единственной тригонометрической функции, либо все функции можно свести к одной.

Правила решения тригонометрических уравнений сводящихся к квадратным

Рассмотрим случай, когда преобразованное уравнение записано таким образом:

a f 2 ( x ) + b f ( x ) + c = 0

При этом а отлично от нуля, f ( x ) является одной из функций sin x , cos x , tg x , ctg x .

Тогда данное уравнение путем замены f ( x ) = t сводится к квадратному уравнению.

Существует ряд правил, позволяющих решать тригонометрические уравнения, сводящиеся к квадратным. Данная информация будет полезна при выполнении самостоятельных работ и практических заданий в десятом классе.

sin 2 α + cos 2 α = 1 tg α · ctg α = 1 tg α = sin α cos α ctg α = cos α sin α 1 + tg 2 α = 1 cos 2 α 1 + ctg 2 α = 1 sin 2 α ▸

Формулы двойного угла:

sin 2 α = 2 sin α cos α cos 2 α = cos 2 α — sin 2 α sin α cos α = 1 2 sin 2 α cos 2 α = 2 cos 2 α — 1 cos 2 α = 1 — 2 sin 2 α tg 2 α = 2 tg α 1 — tg 2 α ctg 2 α = ctg 2 α — 1 2 ctg α ▸

Последовательность действий при решении тригонометрических уравнений, сводящихся к квадратным:

  • выражение одной тригонометрической функции с помощью другой путем применения основных тождеств;
  • выполнение подстановки;
  • преобразование уравнения;
  • введение обозначения, к примеру, sin x = y;
  • решение квадратного уравнения;
  • обратная замена;
  • решение тригонометрического уравнения.

Рассмотрим решение тригонометрического уравнения:

6 cos 2 x — 13 sin x — 13 = 0

cos 2 α = 1 — sin 2 α

В результате уравнение преобразуется таким образом:

6 sin 2 x + 13 sin x + 7 = 0

Заменим sin x на t. Зная, что ОДЗ синуса sin x ∈ [ — 1 ; 1 ] , запишем, t ∈ [ — 1 ; 1 ] . Тогда:

6 t 2 + 13 t + 7 = 0

Заметим, что t 1 не соответствует условиям. Выполним обратную замену и получим решение уравнения:

sin x = — 1 ⇒ x = — π 2 + 2 π n , n ∈ ℤ .

Разберем другой пример:

5 sin 2 x = cos 4 x — 3

Воспользуемся уравнением двойного угла для косинуса:

cos 2 α = 1 — 2 sin 2 α

cos 4 x = 1 — 2 sin 2 2 x

Подставим значения и преобразуем уравнение:

2 sin 2 2 x + 5 sin 2 x + 2 = 0

Заменим sin 2 x на t. Зная, что ОДЗ для синуса sin 2 x ∈ [ — 1 ; 1 ] , можно записать:

2 t 2 + 5 t + 2 = 0

Заметим, что t 1 является посторонним, так как не соответствует условию. Путем обратной замены получим:

sin 2 x = — 1 2 ⇒ x 1 = — π 12 + π n , x 2 = — 5 π 12 + π n , n ∈ ℤ .

Примеры решения задач с пояснениями

Найти корни уравнения:

tg x + 3 ctg x + 4 = 0

При tg x · ctg x = 1 имеем, что:

Заменим tg x на t. Зная, что ОДЗ тангенса tg x ∈ ℝ , запишем:

t + 3 t + 4 = 0 ⇒ t 2 + 4 t + 3 t = 0

Вспомним, что дробь может обладать нулевым значением при нулевом числителе и знаменателе, отличном от нуля. В результате:

Путем обратной замены получим:

Ответ: x = — arctg 3 + π n , x = — π 4 + π n , n ∈ ℤ .

Решить тригонометрическое уравнение на интервале ( — π ; π ) :

2 sin 2 x + 2 sin x — 2 = 0

Заменим sin x на t. В результате уравнение преобразуется:

2 t 2 + 2 t — 2 = 0

Определим дискриминант уравнения:

Таким образом, корни равны:

Исходя из того, что t = sin x ∈ [ — 1 ; 1 ] , можно сделать вывод о лишнем корне t 2 . В результате:

sin x = 2 2 ⇔ x = π 4 + 2 π n

x = 3 π 4 + 2 π m , n , m ∈ ℤ .

Выполним проверку корней на соответствие условиям задания:

— π π 4 + 2 π n π ⇔ — 5 8 n 3 8 ⇒ n = 0 ⇒ x = π 4 .

— π 3 π 4 + 2 π m π ⇔ — 7 8 m 1 8 ⇒ m = 0 ⇒ x = 3 π 4 .

Ответ: корни уравнения π 4 + 2 π n ; 3 π 4 + 2 π m ; n , m ∈ ℤ , из них соответствуют интервалу π 4 ; 3 π 4 .

Дано тригонометрическое уравнение, которое нужно решить на отрезке ( 0 ; π ) :

2 sin 2 x + 2 = 5 sin x

Заметим, что область допустимых значений определяет х как произвольное число. Перенесем члены в левую часть:

2 sin 2 x + 2 — 5 sin x = 0

Данное уравнение является квадратным по отношению к sin x . Заменим sin x на t. Тогда уравнение будет преобразовано таким образом:

2 t 2 — 5 t + 2 = 0

Исходя из того, что sin x ≤ 1 , sin x = 2 является лишним корнем. Таким образом:

Решениями sin x = a являются:

x = arcsin a + 2 π k

x = π — arcsin a + 2 π k

Здесь k ∈ ℤ . В результате, корнями уравнения sin x = 0 , 5 являются:

x = 5 π 6 + 2 π k

Определим, какие корни соответствуют интервалу:

0 π 6 + 2 π k π ⇔ — π 6 2 π k 5 π 6 ⇔ — 1 12 k 5 12

Заметим, что k ∈ ℤ . В таком случае из этих корней подходящими являются лишь те, что соответствуют условию k = 0:

Рассмотрим другие решения:

0 5 π 6 + 2 π k π ⇔ — 5 π 6 2 π k π 6 ⇔ — 5 12 k 1 12

Заметим, что k ∈ ℤ . В таком случае выберем решение при k = 0:

Ответ: корни уравнения π 6 + 2 π k , 5 π 6 + 2 π k , при k ∈ ℤ ; решения, соответствующие интервалу π 6 , 5 π 6 .

Решить уравнение на промежутке [ π ; 3 π ) :

ctg 2 x + 1 cos x — 11 π 2 — 1 = 0

Вспомним формулу приведения:

cos x — 11 π 2 = — sin x

Также пригодится формула:

ctg 2 x + 1 = 1 sin 2 x

1 sin 2 x — 1 — 1 sin x — 1 = 0 ⇔ 1 sin 2 x — 1 sin x — 2 = 0

Заменим 1 sin x на t. В результате:

Путем обратной замены получим:

sin x = — 1 ⇔ x = — π 2 + 2 π n , n ∈ ℤ sin x = 1 2 ⇔ x = π 6 + 2 π k ; x = 5 π 6 + 2 π m , k , m ∈ ℤ .

Определим подходящие решения:

Ответ: корни уравнения — π 2 + 2 π n ; π 6 + 2 π k ; 5 π 6 + 2 π m ; n , k , m ∈ ℤ , из них соответствуют интервалу 3 π 2 ; 13 π 6 ; 17 π 6 .

Определить корни уравнения на отрезке ( π ; 2 π ) :

cos ( 2 x ) + 3 2 sin x = 3

Область допустимых значений предусматривает произвольные значения для х. На первом этапе следует преобразовать уравнение с помощью формулы косинуса двойного угла и перенести члены уравнения в левую сторону:

1 — 2 sin 2 x + 3 2 sin x — 3 = 0 ⇔ 2 sin 2 x — 3 2 sin x + 2 = 0

Заметим, что в результате получено уравнение, которое является квадратным по отношению к sin x . Заменим sin x на t. В результате:

2 t 2 — 3 2 t + 2 = 0

t 1 , 2 = 3 2 ± 2 4

Исходя из того, что sin x ≤ 1 , делаем вывод о лишнем корне sin x = 2 . В результате:

Решения для уравнения sin x = a следующие:

x = arcsin a + 2 π k

x = π — arcsin a + 2 π k

Здесь k ∈ ℤ . В результате получим следующие решения для sin x = 2 2 :

x = 3 π 4 + 2 π k

Определим подходящие корни:

π π 4 + 2 π k 2 π ⇔ 3 π 4 2 π k 7 π 4 ⇔ 3 8 k 7 8

Заметим, что k ∈ ℤ . Тогда указанные корни не соответствуют интервалу ( π ; 2 π ) .

Определим корни, которые подходят к задаче:

π 3 π 4 + 2 π k 2 π ⇔ π 4 2 π k 5 π 4 ⇔ 1 8 k 5 8

Зная, что k ∈ ℤ , можно сделать вывод об отсутствии корней, которые соответствуют интервалу ( π ; 2 π ) .

Ответ: корни уравнения π 4 + 2 π k , 3 π 4 + 2 π k , где k ∈ ℤ , решения, соответствующие интервалу, отсутствуют.

Требуется найти решения тригонометрического уравнения:

3 tg 4 2 x — 10 tg 2 2 x + 3 = 0

Корни нужно записать в соответствии с интервалом — π 4 ; π 4

Область допустимых значений в данном случае:

Заменим tg 2 2 x на t, при t ⩾ 0 . Уравнение будет преобразовано таким образом:

3 t 2 — 10 t + 3 = 0

Путем обратной замены получим:

Можно сделать вывод о выполнении условия относительно области допустимых значений при найденных значениях х . Тогда остается отобрать нужные корни:

— π 4 π 6 + π 2 n 1 π 4 ⇒ — 5 6 n 1 1 6 ⇒ n 1 = 0 ⇒ x = π 6

Вычислим еще три решения, которые включены в заданный интервал:

x = — π 12 ; — π 6 ; π 12 .

Ответ: корнями уравнения являются ± π 6 + π 2 n , ± π 12 + π 2 m , n , m ∈ ℤ , из них соответствуют промежутку — π 6 ; — π 12 ; π 12 ; π 6 .


источники:

http://100urokov.ru/predmety/urok-4-kvadratnye-uravneniya

http://wika.tutoronline.ru/algebra/class/10/kak-reshat-trigonometricheskie-uravneniya-svodyashhiesya-k-kvadratnym—primery