Уравнения связи векторов для магнитного поля

2.6. Электромагнитные волны

Любой колебательный контур излучает энергию. Изменяющееся электрическое поле возбуждает в окружающем пространстве переменное магнитное поле, и наоборот. Математические уравнения, описывающие связь магнитного и электрического полей, были выведены Максвеллом и носят его имя. Запишем уравнения Максвелла в дифференциальной форме для случая, когда отсутствуют электрические заряды () и токи (j = 0):

Величины и — электрическая и магнитная постоянные, соответственно, которые связаны со скоростью света в вакууме соотношением

Постоянные и характеризуют электрические и магнитные свойства среды, которую мы будем считать однородной и изотропной.

В отсутствие зарядов и токов невозможно существование статических электрического и магнитного полей. Однако переменное электрическое поле возбуждает магнитное поле, и наоборот, переменное магнитное поле создает электрическое поле. Поэтому имеются решения уравнений Максвелла в вакууме, в отсутствие зарядов и токов, где электрические и магнитные поля оказываются неразрывно связанными друг с другом. В теории Максвелла впервые были объединены два фундаментальных взаимодействия, ранее считавшихся независимыми. Поэтому мы говорим теперь об электромагнитном поле.

Колебательный процесс в контуре сопровождается изменением окружающего его поля. Изменения, происходящие в окружающем пространстве, распространяются от точки к точке с определенной скоростью, то есть колебательный контур излучает в окружающее его пространство энергию электромагнитного поля.

Электромагнитная волна — это распространяющееся в пространстве электромагнитное поле, в котором напряженность электрического и индукция магнитного полей изменяются по периодическому закону.

При строго гармоническом изменении во времени векторов и электромагнитная волна называется монохроматической.

Получим из уравнений Максвелла волновые уравнения для векторов и .

Волновое уравнение для электромагнитных волн

Как уже отмечалось в предыдущей части курса, ротор (rot) и дивергенция (div) — это некоторые операции дифференцирования, производимые по определенным правилам над векторами. Ниже мы познакомимся с ними поближе.

Возьмем ротор от обеих частей уравнения

При этом воспользуемся доказываемой в курсе математики формулой:

где — введенный выше лапласиан. Первое слагаемое в правой части равно нулю в силу другого уравнения Максвелла:

Получаем в итоге:

Выразим rotB через электрическое поле с помощью уравнения Максвелла:

и используем это выражение в правой части (2.93). В результате приходим к уравнению:

и вводя показатель преломления среды

запишем уравнение для вектора напряженности электрического поля в виде:

Сравнивая с (2.69), убеждаемся, что мы получили волновое уравнение, где vфазовая скорость света в среде:

Взяв ротор от обеих частей уравнения Максвелла

и действуя аналогичным образом, придем к волновому уравнению для магнитного поля:

Полученные волновые уравнения для и означают, что электромагнитное поле может существовать в виде электромагнитных волн, фазовая скорость которых равна

В отсутствие среды (при ) скорость электромагнитных волн совпадает со скоростью света в вакууме.

Основные свойства электромагнитных волн

Рассмотрим плоскую монохроматическую электромагнитную волну, распространяющуюся вдоль оси х:

Возможность существования таких решений следует из полученных волновых уравнений. Однако напряженности электрического и магнитного полей не являются независимыми друг от друга. Связь между ними можно установить, подставляя решения (2.99) в уравнения Максвелла. Дифференциальную операцию rot, применяемую к некоторому векторному полю А можно символически записать как детерминант:

Подставляя сюда выражения (2.99), зависящие только от координаты x, находим:

Дифференцирование плоских волн по времени дает:

Тогда из уравнений Максвелла следует:

Отсюда следует, во-первых, что электрическое и магнитное поля колеблются в фазе:

Далее, ни у , ни у нет компонент параллельных оси х:

Иными словами и в изотропной среде,

электромагнитные волны поперечны: колебания векторов электрического и магнитного полей происходят в плоскости, ортогональной направлению распространения волны.

Тогда можно выбрать координатные оси так, чтобы вектор был направлен вдоль оси у (рис. 2.27):

Рис. 2.27. Колебания электрического и магнитного полей в плоской электромагнитной волне

В этом случае уравнения (2.103) приобретают вид:

Отсюда следует, что вектор направлен вдоль оси z:

Иначе говоря, векторы электрического и магнитного поля ортогональны друг другу и оба — направлению распространения волны. С учетом этого факта уравнения (2.104) еще более упрощаются:

Отсюда вытекает обычная связь волнового вектора, частоты и скорости:

а также связь амплитуд колебаний полей:

Отметим, что связь (2.107) имеет место не только для максимальных значений (амплитуд) модулей векторов напряженности электрического и магнитного поля волны, но и для текущих — в любой момент времени.

Итак, из уравнений Максвелла следует, что электромагнитные волны распространяются в вакууме со скоростью света. В свое время этот вывод произвел огромное впечатление. Стало ясно, что не только электричество и магнетизм являются разными проявлениями одного и того же взаимодействия. Все световые явления, оптика, также стали предметом теории электромагнетизма. Различия в восприятии человеком электромагнитных волн связаны с их частотой или длиной волны.

Шкала электромагнитных волн представляет собой непрерывную последовательность частот (и длин волн) электромагнитного излучения. Теория электромагнитных волн Максвелла позволяет установить, что в природе существуют электромагнитные волны различных длин, образованные различными вибраторами (источниками). В зависимости от способов получения электромагнитных волн их разделяют на несколько диапазонов частот (или длин волн).

На рис. 2.28 представлена шкала электромагнитных волн.

Рис. 2.28. Шкала электромагнитных волн

Видно, что диапазоны волн различных типов перекрывают друг друга. Следовательно, волны таких длин можно получить различными способами. Принципиальных различий между ними нет, поскольку все они являются электромагнитными волнами, порожденными колеблющимися заряженными частицами.

Уравнения Максвелла приводят также к выводу о поперечности электромагнитных волн в вакууме (и в изотропной среде): векторы напряженности электрического и магнитного полей ортогональны друг другу и направлению распространения волны.

http://www.femto.com.ua/articles/part_1/0560.html – Волновое уравнение. Материал из Физической Энциклопедии.

http://elementy.ru/trefil/24 – Уравнения Максвелла. Материал из «Элементов».

http://telecomclub.org/?q=node/1750 – Уравнения Максвелла и их физический смысл.

http://principact.ru/content/view/188/115/ – Кратко об уравнениях максвелла для электромагнитного поля.

Эффект Доплера для электромагнитных волн

Пусть в некоторой инерциальной системе отсчета К распространяется плоская электромагнитная волна. Фаза волны имеет вид:

Наблюдатель в другой инерциальной системе отсчета К’, движущейся относительно первой со скоростью V вдоль оси x, также наблюдает эту волну, но пользуется другими координатами и временем: t’, r’. Связь между системами отсчета дается преобразованиями Лоренца:

Подставим эти выражения в выражение для фазы , чтобы получить фазу волны в движущейся системе отсчета:

Это выражение можно записать как

где и — циклическая частота и волновой вектор относительно движущейся системы отсчета. Сравнивая с (2.110), находим преобразования Лоренца для частоты и волнового вектора:

Для электромагнитной волны в вакууме

Пусть направление распространения волны составляет в первой системе отсчета угол с осью х:

Тогда выражение для частоты волны в движущейся системе отсчета принимает вид:

Это и есть формула Доплера для электромагнитных волн.

Если , то наблюдатель удаляется от источника излучения и воспринимаемая им частота волны уменьшается:

Если , то наблюдатель приближается к источнику и частота излучения для него увеличивается:

При скоростях V 2 (солнечная постоянная). Найдем среднюю амплитуду колебаний E0 вектора электрической напряженности в солнечном излучении. Вычислим амплитуды колебаний напряженности магнитного поля H0 и вектора магнитной индукции B0 в волне.

Ответ находим сразу из уравнений (3.127), где полагаем :

Электромагнитные волны поглощаются и отражаются телами, следовательно, они должны оказывать на тела давление. Рассмотрим плоскую электромагнитную волну, падающую нормально на плоскую проводящую поверхность. В этом случае электрическое поле волны возбуждает в теле ток, пропорциональный Е. Магнитное поле волны по закону Ампера будет действовать на ток с силой, направление которой совпадает с направлением распространения волны. В 1899 г. в исключительно тонких экспериментах П.И. Лебедев доказал существование светового давления. Можно показать, что волна, несущая энергию W, обладает и импульсом:

Пусть электромагнитная волна падает в вакууме по нормали на площадь А и полностью поглощается ею. Предположим, что за время площадка получила от волны энергию . Тогда переданный площадке импульс равен

На площадку действует со стороны волны сила

Давление Р, оказываемое волной, равно

Если средняя плотность энергии в волне равна , то на площадь А за время попадет энергия из объема и

Отсюда находим давление электромагнитной волны (света):

Если площадка идеально отражает всю падающую на нее энергию, то давление будет в два раза большим, что объясняется очень просто: одинаковый вклад в давление в этом случае дают как падающая, так и отраженная волны, в случае полностью поглощающей поверхности отраженной волны просто нет.

Пример 3. Найдем давление Р солнечного света на Землю. Используем значение солнечной постоянной из предыдущего примера. Искомое давление равно:

Пример 4. Найдем давление Р лазерного пучка на поглощающую мишень. Выходная мощность лазера N = 4.6 Вт, диаметр пучка d = 2.6 мм.

Вектор напряженности магнитного поля

Вы будете перенаправлены на Автор24

Вектор напряжённости магнитного поля как вспомогательный вектор для описания поля в магнетиках

Когда мы рассматриваем магнитное поле в вакууме при отсутствии магнетиков, магнитное поле порождается токами проводимости и выполняется равенство:

где $\overrightarrow$ — вектор плотности токов проводимости.

В магнетиках поле возникает благодаря токам проводимости и молекулярным токам ($\overrightarrow$), что необходимо учитывать. Для молекулярных токов имеет место векторное равенство:

где $\overrightarrow$ — объемная плотность молекулярных токов, $\overrightarrow$ — вектор намагниченности. Так, при наличии магнетиков выражение (1) с учетом равенства (2) примет вид:

Выразим ток проводимости из уравнения (3), получим:

Определение вектора напряженности магнитного поля

Вектором напряженности магнитного поля называют вектор, равный:

Напряженность магнитного поля не является чисто полевой величиной, так как включает вектор $\overrightarrow,\ $который является характеристикой намагниченности среды. По своему значению $\overrightarrow$ является вспомогательным вектором и играет роль подобную вектору электрического смещения $\overrightarrow\ $в электричестве.

Основные уравнения для вектора напряженности

Из определения вектора $\overrightarrow$ и уравнения (4), следует весьма удобное уравнение для вычисления поля в магнетиках:

Закон полного тока при наличии магнетиков имеет вид:

Формула (7) выражает теорему о циркуляции вектора напряженности магнитного поля, которая гласит:

«Циркуляция вектора напряженности магнитного поля по некоторому контуру равна алгебраической сумме макроскопических токов, которые охвачены заданным контуром».

В вакууме $\overrightarrow=0$, тогда:

Напряженность поля прямолинейного бесконечного проводника в вакууме определяется формулой:

где $b$ — расстояние от проводника до точки, где рассматривается поле. Из формулы (9) определяется размерность напряженности магнитного поля. Основная единица напряженности в системе СИ — ампер деленный на метр ($\frac<А><м>$).

Связь и вектора напряженности магнитного поля с намагниченностью и вектором магнитной индукции

Обычно вектор намагниченности ($\overrightarrow$) связывают с вектором напряженности в каждой точке магнетика:

где $\varkappa $ — магнитная восприимчивость, безразмерная величина. Для неферромагнитных веществ и в не больших полях $\varkappa $ не зависит от напряженности. В анизотропных средах $\varkappa $ является тензором и направления $\overrightarrow$ и $\overrightarrow$ не совпадают.

Помимо магнитной восприимчивости в магнетиках используют другую безразмерную физическую величину, которая характеризует магнитные свойства вещества — это относительная магнитная проницаемость (или просто магнитная проницаемость ($\mu $)) вещества. Причем:

\[\mu =1+\varkappa \ \left(11\right).\]

Тогда между индукцией магнитного поля в магнетике и напряженностью магнитного поля существует следующая связь:

Формула (12) показывает, что в изотропных средах векторы $\overrightarrow$ и $\overrightarrow$ имею одинаковое направление, однако по модулю напряженность поля в $\mu <\mu >_0$ раз меньше.

Готовые работы на аналогичную тему

Задание: По оси бесконечного прямого круглого цилиндра радиуса R течет ток силы I. Магнитная проницаемость вещества цилиндра равна $\mu $. Вне цилиндра вакуум ($<\mu >_v=1$). Найдите формулу для вычисления напряженности во всех точках пространства.

Пусть ток течет в направлении оси Z. Линиями напряженности такого цилиндра являются концентрические окружности с центрами, которые лежат на оси цилиндра.

В качестве контура интегрирования (L) возьмем окружность радиусом r, центр окружности лежит на оси цилиндра, плоскость окружности перпендикулярна току. По закону полного тока для напряженности магнитного поля имеем:

Из (1.1) выразим напряженность поле, получим:

где $H_<\varphi >$ — напряжённость магнитного поля, касательная к окружности. В таком случае индукция магнитного поля равна:

На границе цилиндра индукция магнитного поля терпит разрыв.

Задание: Найдите намагниченность меди и магнитную индукцию поля, если удельная магнитная восприимчивость вещества $<\varkappa >_u=-1,1\cdot <10>^<-9>\frac<м^3><кг>.$ Напряженность магнитного поля равна $<10>^6\frac<А><м>$.

Магнитная восприимчивость ($\varkappa $) связана с удельной магнитной восприимчивостью ($<\varkappa >_u$) соотношением:

где $\rho =8930\frac<кг><м^3>$ — массовая плотность меди.

Намагниченность имеет связь с напряженностью магнитного поля, которая имеет вид (считаем медь изотропной):

\[J=\varkappa H=\rho <\varkappa >_uH\ \left(2.2\right).\]

Индукция магнитного поля, также связана с напряженностью:

Так как все величины даны в СИ, проведем вычисления:

\[J=8930\cdot \left(-1,1\cdot <10>^<-9>\right)<10>^6=-9,823\left(\frac<А><м>\right).\] \[B=4\pi \cdot <10>^<-7>\left(9,823+<10>^6\right)=1,26\ \left(Тл\right).\]

Ответ: $J=-9,823\frac<А><м>,\ B=1,26\ Тл.$

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 10 02 2022

Векторы электрического и магнитного полей. Материальные уравнения

Электрическое поле – особая форма материи, оказывающая силовое воздействие на электрические заряды. Магнитное поле – особая форма материи, оказывающая силовое воздействие на движущиеся электрические заряды. Электрическое и магнитное поля характеризуют с помощью силовых векторов.

Напряженность электрического поля Е определяют как силу, с которой электрическое поле действует на точечный положительный единичный заряд:

(1.1)

Магнитная индукция определяется как сила, действующая со стороны магнитного поля на заряд единичной величины, движущийся с единичной скоростью:

(1.2)

Напряженность электрического поля в различных средах различна. Это объясняется следующим образом. Под действием электрического поля вещество создает собственное поле (поляризуется). Собственное поле вещества накладывается на внешнее, изменяя его.

Для характеристики поляризации вводят вектор поляризованности . При не очень сильном внешнем поле величину вектора поляризованности можно считать пропорциональной напряженности электрического поля:

= ε0χ (1.3)

Входящий в формулу (1.3) безразмерный параметр χ характеризует среду и называется диэлектрической восприимчивостью среды.

При рассмотрении многих процессов удобно ввести вектор D, характеризующий независимое от свойств среды внешнее электрическое поле:

. (1.3)

С учетом (1.2) формулу (1.3) можно представить в виде

, (1.4)

где ε = 1 + χ – относительная диэлектрическая проницаемость. Вектор принято называть вектором электрического смещения (электрической индукции). Иногда в литературе вводят абсолютную диэлектрическую проницаемость среды εА = .

Величина вектора зависит от свойств среды, поскольку под действием магнитного поля вещество намагничивается. В результате появляется дополнительное магнитное поле, которое налагается на первичное (явление, аналогичное поляризации вещества).

Намагниченность среды характеризуется вектором намагниченности . При рассмотрении многих процессов удобно вместо вектора ввести вектор , характеризующий независимое от свойств среды внешнее магнитное поле:

(1.5)

где μ0 = 4π ∙ 10 -7 Гн/м – постоянная величина, называемая магнитной постоянной. Вектор принято называть вектором напряженности магнитного поля.

При не очень сильном внешнем магнитном поле можно считать, что вектор пропорционален вектору .

(1.6)

Безразмерный коэффициент называют магнитной восприимчивостью среды.

Подставляя формулу (1.6) в (1.5), получаем

(1.7)

где μ = 1 + χm – абсолютная магнитная проницаемость среды. Иногда в литературе вводят абсолютную магнитную проницаемость среды μА = .

Под действием электрического поля в среде, обладающей проводимостью, возникает электрический ток (ток проводимости), распределение которого удобно характеризовать вектором плотности тока проводимости

(1.8)

где – единичный вектор, показывающий направление тока (движения положительных зарядов) в рассматриваемой точке, Δs – плоская площадка, содержащая рассматриваемую точку, расположенная перпендикулярно вектору , ΔI – сила тока проводимости, протекающего через Δs.

Вектор связан с вектором соотношением

= σ , (1.9)

которое представляет собой закон Ома в дифференциальной форме. Коэффициент пропорциональности σ называют удельной проводимостью среды.

Система, состоящая из уравнений (1.4), (1.7), (1.9):

(1.10)

имеет большое значение при изучении электромагнитных явлений, их часто называют материальными уравнениями, поскольку они характеризуют среду.


источники:

http://spravochnick.ru/fizika/magnetiki/vektor_napryazhennosti_magnitnogo_polya/

http://helpiks.org/5-101594.html