Уравнения связывающего линейные и фазные токи

Трехфазные симметричные цепи

Содержание:

Трехфазные симметричные цепи:

Основными приемниками электрической энергии как по количеству, так и по установленной мощности являются электродвигатели, применяемые для приведения в движение рабочих машин. Трехфазные асинхронные двигатели — наиболее простые, надежные и дешевые. Повсеместное применение их обусловило бурное развитие трехфазных систем — производства, передачи и распределения электрической энергии. Для этой цели применяются трехфазные генераторы, трансформаторы, линии передачи, распределительные сети.

Общие сведения о трехфазных системах

Многофазная система электрических цепей представляет собой совокупность электрических цепей, в которых действуют синусоидальные э. д. с. одинаковой частоты, сдвинутые относительно друг друга по фазе и создаваемые одним источником энергии. Соответствующая этому определению система из трех цепей называется трехфазной.

Трехфазная система э. д .с.

В трехфазном генераторе, в котором имеются три самостоятельные обмотки, сдвинутые относительно друг друга в пространстве на 120°, образуется трехфазная симметричная система э. д .с. Схематично это показано на рис. 20.1 применительно к генератору с одной парой полюсов на статоре и обмотками на роторе. Однако нужно заметить, что в реальных генераторах обмотка переменного тока неподвижна (расположена на статоре), а магнитные полюса вращаются (расположены на роторе). Такая конструкция генератора лучше, а принцип его работы не меняется.

Если число витков в обмотках одинаково, то при вращении ротора во всех обмотках наводятся э. д. с. одинаковой величины. Начальные фазы этих э. д. с. сдвинуты относительно друг друга на 120° в соответствии с пространственным расположением обмоток.

Трехфазная симметричная система э. д. с. — это совокупность трех э. д. с., имеющих одинаковую частоту и амплитуду, сдвинутых по фазе относительно друг друга на углы 120°.

Признаком нессимметрии трехфазной системы э. д. с. является неравенство амплитуд или неравенство углов сдвига фаз между каждой парой э. д. с.
На рис. 20.1 обмотки показаны в начальном положении (t = 0). При вращении ротора против часовой стрелки уравнения э. д. с. можно записать в следующем виде:


Рис. 20.2. Графики и векторная диаграмма симметричной системы э. д. с.

Несвязанная трехфазная система электрических цепей

На схемах замещения обмотки трехфазного генератора обозначают, как показано на рис. 20.3, а, и условно принимают направление э. д .с. от конца к началу обмотки положительным.

Если каждую обмотку трехфазного генератора соединить со своим приемником, образуются три независимые цепи, каждая со своим током. Одна такая цепь с ее элементами (обмотка генератора, приемник, соединительные провода) в практике называется фазой. Термин «фаза» употреблен в своем подлинном значении, которое остается в силе и для трехфазных цепей.
В несвязанной трехфазной системе генератор с приемником энергии соединяется шестью проводами. Большое число соединительных проводов — основной недостаток несвязанных систем, которые поэтому и не применяются. Сокращение числа соединительных проводов достигается в связанных системах, где обмотки генератора, как и отдельные фазы приемника, электрически связаны между собой и образуют трехфазные цепи.

Рис. 20.3. Несвязанная трехфазная система электрических цепей

Для этой цели выдающимся русским ученым М. О. Доливо-Добровольским (1862—1919) предложены две схемы соединения: звездой и треугольником, которые применяются и в настоящее время.

Трехфазная цепь называется симметричной, если комплексы сопротивлений всех ее фаз одинаковы. Когда в такой цепи действует симметричная система э. д. с., то токи в фазах равны по величине и сдвинуты по фазе на угол 120°, т. е. получается симметричная трехфазная система токов (рис. 20.3, б).

Нужно отметить, что приемник электрической энергии (электродвигатели, электролампы и т. п.) с генераторами, установленными на электростанциях, обычно непосредственно не связаны.

На пути электроэнергии от генератора к приемникам установлены трансформаторы, с помощью которых в электрической сети неоднократно изменяется напряжение. Для указанных приемников источником электрической энергии чаще всего служат трехфазные трансформаторы, которые по отношению к генераторам сами являются приемниками энергии. Поэтому далее все рассуждения будем относить к -трехфазному источнику, подразумевая при этом генератор или трансформатор.

Соединение звездой при симметричной нагрузке

На рис. 20.4 показана связанная система при соединении фаз источника энергии и приемника звездой. Такую систему легко получить из несвязанной системы.

Рис. 20.4. Связанные трехфазные системы электрических цепей при соединении звездой

Концы обмоток источника X, Y, Z соединяются в общую точку N, называемую нулевой точкой или нейтралью. Провода, соединяющие начала А, В и С обмоток источника с приемником (линейные провода), сохраняются; три провода, присоединенные к концам обмоток, заменяются одним. Благодаря этому в приемнике также образуется нулевая точка N’ (нейтраль). Нулевые точки источника энергии и приемника могут быть связаны проводом, который называется нулевым или нейтральным (рис. 20.4, а). В этом случае получается связанная четырехпроводная трехфазная система электрических цепей.
Далее будет показано, что в симметричных трехфазных цепях можно отказаться от нулевого провода, так как ток в нем равен нулю. В этом случае связь между источником и приемником, соединенными звездой, можно осуществлять по трехпроводной схеме (рис. 20.4, б).

Фазные напряжения

Разность потенциалов между линейными зажимами и нейтралью называется фазным напряжением (, , ).

Фазные напряжения источника есть напряжения между началами и концами фаз, они отличаются от э. д. с. на величину падения напряжения в обмотках. Если сопротивлением обмоток можно пренебречь, то фазные напряжения источника равны соответствующим э. д. с. В симметричной системе они изображаются, так же как и э. д. с., тремя равными по величине векторами, сдвинутыми по фазе на 120° (рис. 20.5, а).

Рис. 20.5. Векторные диаграммы напряжений при соединении обмоток источника звездой

В четырехпроводной и симметричной трехпроводной цепях фазные напряжения в приемнике меньше, чем в источнике, на величину падения напряжения в соединительных проводах. Если сопротивлением проводов можно пренебречь, то фазные напряжения в приемнике считаются такими же, как в источнике.

Линейные напряжения

Разность потенциалов между каждой парой линейных проводов называется линейным напряжением (, , ).

Если принять потенциал нулевой точки N источника энергии равным нулю, то потенциалы его линейных зажимов:

Линейные напряжения:



Переходя к действующим величинам, напишем выражения в комплексной форме:

Потенциалы линейных зажимов (или линейных проводов) в каждое мгновение отличаются друг от друга из-за наличия сдвига фаз между фазными напряжениями. Следовательно, линейные напряжения не равны нулю. Их можно определить аналитически по уравнениям (20.3) или графически с помощью векторной диаграммы рис. 20.5.

Из векторной диаграммы видно, что при симметричной системе фазных напряжений система линейных напряжений тоже симметрична: равны по величине и сдвинуты относительно друг друга на 120°. Вместе с тем при прямой последовательности фаз звезда векторов линейных напряжений опережает на 30° звезду векторов фазных напряжений.

Векторную диаграмму удобно выполнить топографической, тогда каждой точке цепи соответствует определенная точка на диаграмме (рис. 20.5, б). Вектор, проведенный между двумя точками топографической диаграммы, выражает по величине и фазе напряжение между одноименными точками цепи.
Действующая величина линейных напряжений легко определяется по векторной диаграмме из треугольника, образованного векторами двух фазных и одного линейного напряжения, например ANB:

Обозначая все фазные напряжения Uф, а линейные напряжения Uл получим общее соотношение между линейными и фазными напряжениями в симметричной системе

Фазные и линейные токи

В связанной системе (см. рис. 20.4, а), так же как и в несвязанной, каждая фаза представляет собой замкнутую цепь.

В соответствии с положительным направлением э. д. с. в обмотках источника положительное направление токов в линейных проводах — от источника к приемнику, а в нулевом проводе — от приемника к источнику.

В трехфазных цепях различают фазные и линейные токи.
Токи в фазах источника и приемника называют фазными (на рис. 20.4 i’A, i’B, i’С; общее обозначение iф). Токи в линейных проводах называют линейными (iA, iB, iС; общее обозначение iл).

При соединении звездой в точках перехода из источника в линию и из линии в приемник нет разветвлений, поэтому фазные и линейные токи одинаковы между собой в каждой фазе:

Задача 20.3.

В каждой фазе трехфазного генератора наводится э. д. с. Е = 127 В. Начертить схему, построить векторную диаграмму и определить линейные напряжения при холостом ходе, если в общую точку соединены зажимы: а) X, Y, Z; б) X, Y, C; в) X, B, Z; г) X, B, C; д)A, B, C. Буквами A, B, C обозначены начала, а X, Y, Z — концы обмоток.

Рис. 20.6. К задаче 20.3

Рис. 20.7. К задаче 20.3

Решение. Схема генератора и векторная диаграмма при соединении в общую точку зажимов X, Y, Z показаны на рис. 20.6. Из векторной диаграммы видно, что линейные напряжения одинаковы:

При соединении в общую точку зажимов X, Y, C (рис. 20.7) фаза С включена началом в нулевой точке, поэтому вектор фазного напряжения этой фазы изображен на векторной диаграмме в положении, повернутом на 180° к нормальному, и обозначен UZ. Из векторной диаграммы следует: UAB = 220 В; UBZ = 127; UZA = 127 В.

Соединение треугольником при симметричной нагрузке

При соединении треугольником из трех обмоток источника образуется замкнутый на себя контур (рис. 20.8, а). Точно так же замкнутый контур создается из трех фаз приемника.

Общие точки двух фаз источника и двух фаз приемника соединяются между собой линейными проводами. Так образуется связанная трехфазная трехпроводная система, в которой каждая обмотка источника соединена с соответствующей фазой приемника парой линейных проводов, каждый из которых обеспечивает такую связь в двух смежных фазах.

Рис. 20.8. Связанная трехфазная система электрических цепей при соединении треугольником

Фазные и линейные напряжения

Соединение нескольких обмоток источника в замкнутый контур возможно лишь в том случае, если сумма всех э. д. с. этого контура равна нулю.
Это требование выполняется при таком порядке соединения, когда конец предыдущей обмотки соединяется с началом следующей. Например, конец X фазы А соединен с началом фазы В в общей точке ХВ, конец Y фазы В соединен с началом фазы С в общей точке YС и конец Z фазы С соединен с началом фазы А в общей точке ZА.

Симметричная система э. д. с., действующих в контуре, имеет сумму, равную нулю (рис. 20.8, б):

В этом случае при холостом ходе источника ток в его обмотках отсутствует.
При несимметрии системы э. д. с. их сумма не равна нулю, поэтому уже при холостом ходе в обмотках источника образуется ток, который может быть большим даже при малой несимметрии, так как сопротивление обмоток незначительно.


Рис. 20.9. Неправильное соединение треугольником обмоток источника


Рис. 20.10. Векторные диаграммы напряжений при соединении обмоток источника треугольником.

При неправильном включении обмоток, когда две соседние фазы соединены началами или концами (рис. 20.9), сумма э. д. с. в контуре равна удвоенной величине э. д. с. фазы.
Из схемы соединения треугольником видно, что фазные и линейные напряжения совпадают, так как конец одной фазы соединен с началом другой:

Векторную диаграмму напряжений можно построить в виде звезды или в виде замкнутого треугольника векторов (рис. 20.10). В последнем случае диаграмма является топографической.

Фазные и линейные токи

Каждая фаза приемника присоединении треугольником находится под линейным напряжением. Этим обусловлено наличие в приемнике фазных токов iAB, iBC, iСA, положительное направление которых на схеме рис. 20.8 выбрано соответственно положительному направлению э. д. с. в фазах источника.

Точки А’, В’, С’ приемника, так же как и точки А, В, С источника, являются электрическими узлами, поэтому фазные токи отличаются от линейных iA, iB, iС. Для узловых точек А, В, С можно написать уравнения в комплексной форме по первому закону Кирхгофа:

При симметричной нагрузке токи во всех фазах одинаковы. Звезда векторов линейных токов сдвинута относительно звезды фазных токов на 30° против вращения векторов, если последовательность фаз — прямая (рис. 20.11, а).
Действующая величина линейных токов определяется по векторной диаграмме из равнобедренного треугольника, образованного векторами двух фазных и одного линейного токов, например из треугольника ANC (рис. 20.11, б):

Рис. 20.11. Векторные диаграммы токов при соединении приемников треугольником

Обозначив все фазные токи Iф, а линейные токи Iл, получим общее соотношение между линейными и фазными токами в симметричной цепи:

Расчет симметричных трехфазных цепей

Формулы (20.4) и (20.8), как уже отмечено, справедливы только для симметричных систем напряжений и токов.

Трехфазные электродвигатели имеют три одинаковые фазы обмотки, и создаваемая ими электрическая нагрузка симметрична. Нессимметрию создают однофазные приемники, например лампы электрического освещения и другие бытовые электроприемники. Если при проектировании осветительную нагрузку разделить между фазами поровну, то в процессе эксплуатации нагрузка, как правило, будет несимметричной из-за неодновременности включения ламп.

При большом числе однофазных приемников нессимметрия нагрузки, связанная с неодновременностью их включения, невелика, поэтому линии с напряжением 3; 6 кВ и выше, предназначенные для электроснабжения промышленных предприятий или определенного района (фидерные линии), выполняют трехпроводными независимо от схемы соединения групп приемников (звездой или треугольником).

Цель расчета состоит в определении токов в фазах приемника и проводах линии, а также мощности приемника в целом и в каждой фазе. Может быть поставлена и обратная задача.

Соединение звездой

В симметричной цепи комплексы сопротивлений фаз приемника одинаковы и между зажимами приемника действует симметричная система линейных напряжений при любой схеме соединения источника (звездой или треугольником).

Поэтому на расчетной схеме источник (генератор или трансформатор) не показывают и говорят, что приемник включен в трехфазную сеть (см. рис. 21.3, о). (20.8)
В симметричной цепи достаточно провести расчет одной фазы, так как токи и мощности во всех фазах одинаковы.
При известном линейном напряжении Uл фазное напряжение

Фазный ток, равный линейному,

Соединение треугольником

При соединении треугольником фазное напряжение
Ток в фазе

Линейный ток

Определение мощности

Мощность в каждой фазе трехфазной цепи определяется теми же формулами, которые применялись при расчете однофазных цепей.
При симметричной нагрузке фазные напряжения, токи и углы сдвига фаз между ними в каждой фазе одинаковы, поэтому при определении мощности цепи можно написать общие выражения:

Учитывая, что при соединении звездой

а при соединении треугольником

мощности можно определять через линейные величины напряжений и токов:

При решении задач символическим методом мощность определяется, так же как и в однофазных цепях, произведением соответствующих комплекса напряжения и сопряженного комплекса тока.

Задача 20.9.

К трехфазному трансформатору с линейным напряжением на вторичной обмотке 380 В включены звездой электрические лампы мощностью 40 Вт каждая (по 100 шт. в фазе) и трехфазный двигатель мощностью 10 кВт, имеющий к. п. д. 85%,
Пренебрегая сопротивлением проводов, определить токи в линии.
Решение. Заданная нагрузка симметрична, так как в каждой фазе включены одинаковые по величине и характеру приемники: осветительная нагрузка и одна фаза двигателя.


Рис. 20.12. К задаче 20.9

Расчет можно вести на одну фазу:

Ток осветительной нагрузки

Ток в фазе двигателя

Для нахождения тока в линии нужно сложить токи ламп и двигателя. Эти токи по фазе не совпадают, поэтому разложим их на активные и реактивные составляющие и сложим одноименные составляющие.
Ток в лампах совпадает по фазе с напряжением, поэтому реактивный ток ламп I = 0, активный ток I = I0 = 18,2 А.
Активный ток в фазе двигателя

Реактивный ток в фазе двигателя

Общий активный ток. в линии

Общий реактивный ток в линии

Ток в линии

Задача 20.12.

Приемник электрической энергии, соединенный треугольником, имеет активное сопротивление R = 12 Ом и емкость С = 199 мкФ. Определить: токи в фазах приемника и в линии, с помощью которой приемник подключен к сети с линейным напряжением U = 220 В и частотой f = 50 Гц; активную, реактивную и полную мощности приемника.
Решение.
Емкостное сопротивление фазы приемника

Полное сопротивление фазы приемника

Фазное напряжение приемника

Фазный ток

Линейный ток

Мощность приемника:
активная

реактивная

полная

Симметричный режим работы трехфазной цепи

Расчет трехфазной цепи, так же как и расчет всякой сложной цепи, ведется обычно в комплексной форме. Ввиду того что фазные э. д. с. генератора сдвинуты друг относительно друга на 120°, для краткости математической записи применяется фазовый оператор — комплексная величина

Умножение вектора на оператор а означает поворот вектора на 120° в положительном направлении (против хода часовой стрелки).

Соответственно умножение вектора на множитель а2 означает поворот вектора на, 240° в положительном направлении или, что то же, поворот его на 120° в отрицательном направлении.

Если э. д. с. фазы А равна то э. д. с. фаз В и С равны соответственно:

В простейшем случае симметричного режима работы трехфазной цепи, когда генератор и нагрузка соединены звездой (рис. 12-9, а), векторная диаграмма э. д. с. и токов имеет вид, показанный на рис. 12-9, б.

Ток в каждой фазе отстает от э. д. с. той же фазы на

угол где r и х — активное и реактивное сопротивления фаз.

* Кроме того, применяется понятие «фазное напряжение в данном сечении» трехфазной цепи по отношению к какой-либо точке, принимаемой за нуль, например земле, нулевой точке генератора или искусственной нулевой точке.

Ток в фазе А находят так же, как в однофазной цепи, потому что нейтральные точки генератора и нагрузки в симметричном режиме могут быть соединены как имеющие одинаковые потенциалы:


Соответственно токи в фазах В и С через ток

Наличие нейтрального провода «не вносит при симметричном режиме никаких изменений, так как сумма токов трех фаз равна нулю и ток в нем отсутствует:

Таким образом, при симметричном режиме работы трехфазной цепи задача сводится к расчету одной из фаз

аналогично расчету однофазной цепи. При этом сопротивление обратного (нейтрального) провода не учитывается, так как ток в нем и соответственно падение напряжения на нем отсутствуют.

По мере удаления от генератора фазные напряжения, определяемые падениями напряжения до нейтральной точки нагрузки, изменяются по модулю (обычно убывают) и по фазе. Линейные напряжения определяются как разности соответствующих фазных напряжений, например: В любом месте трехфазной линии при симметричном режиме соблюдается следующее соотношение между модулями линейных и фазных напряжений:

т. e. опережает по фазе а на 30°, причем модуль раз превышает

В случае соединения треугольником линейные токи определяются в соответствии с первым законом Кирхгофа как разности фазных токов и при симметричном режиме соблюдается соотношение

Соединение фаз генератора или нагрузки треугольником должно быть для расчета заменено эквивалентным соединением фаз звездой; вследствие этого расчет трехфазной цепи с соединением фаз треугольником приводится в конечном итоге к расчету эквивалентной трехфазной цепи с соединением фаз звездой.

Между сопротивлениями сторон треугольника и лучей звезды имеет место соотношение вытекающее из формул преобразования треугольника сопротивлений в эквивалентную звезду. Это соотношение справедливо как для сопротивлений симметричной трехфазной нагрузки, так и для сопротивлений симметричного .трехфазного • генератора. При этом фазные э. д. с. эквивалентного генератора, соединенного звездой, берутся в раз меньшими фазных э. д. с. заданного генератора, соединенного треугольником (кроме того, они должны быть сдвинуты на угол 30°). Это легко усмотреть из векторной потенциальной диаграммы напряжений генератора.

Активная мощность симметричной трехфазной нагрузки равна:

Ввиду того что при соединении нагрузки звездой а при соединении нагрузки треугольникомактивная мощность трехфазной цепи независимо от вида соединения выражается через линейные напряжения и ток следующим образом:

здесь — угол сдвига фазного тока относительно одноименного фазного напряжения.

Аналогичным образом для реактивной и полной мощностей симметричной трехфазной нагрузки имеем:

Приведенные выражения не означают, что при пересоединении нагрузки со звезды на треугольник (или наоборот) активная и реактивная мощности не изменяются. При пересоединении нагрузки со звезды на треугольник при заданном линейном напряжении фазные токи возрастут в раз, в линейный ток — в 3 раза и поэтому мощность возрастет в 3 раза.

Если нейтральная точка симметричной трехфазной нагрузки выведена, то измерение активной мощности может быть осуществлено одним ваттметром, включенным по схеме рис. 12-10, а (одноименные или так называемые генераторные выводы последовательной и параллельной цепей ваттметра отмечены на рис. 12-10, а звездочками). Утроенное показание ваттметра равно суммарной активной мощности трех фаз.

Если нейтральная точка не выведена или нагрузка соединена треугольником, то можно воспользоваться схемой рис. 12-10, б, где параллельная цепь ваттметра и два добавочных активных сопротивления равные по величине сопротивлению параллельной цепи ваттметра, образуют искусственную нейтральную точку

* Следует заметить, что здесь применим только электродинамический или ферродинамический ваттметр, сопротивление параллельной цепи которого является чисто активным. Индукционный ваттметр неприменим по той причине, что сопротивление параллельной цепи такого ваттметра имеет реактивное сопротивление; для создания искусственной нейтральной точки в этом случае потребовались бы реактивные добавочные сопротивления.

Для получения суммарной мощности, как и в предыдущем случае, показание ваттметра утраивается.

На рис. 12-11 показан способ измерения реактивной мощности в симметричной трехфазной цепи при помощи одного ваттметра: последовательная цепь ваттметра включена в фазу А, а параллельная — между фазами В и С, причем генераторные выводы ваттметра присоединены к фазам А и В.

Показание ваттметра в этом случае равно:

Для получения суммарной реактивной мощности показание умножается на

Разделив активную мощность на полную мощность, получим:

.
Пример 12-1. Определить ток в генераторе при симметричном режиме работы трехфазной цепи, представленной на рис, 12-12, а.

Сопротивления соединенные треугольником, заменяются эквивалентной звездой из сопротивлений

При симметричном режиме нейтральные точки генератора и нагрузки, как было указано выше, могут быть объединены. Тогда режим работы каждой фазы, например фазы А, может быть рассмотрен в однофазной расчетной схеме (рис, 12-12, б),

Результирующее сопротивление цепи одной фазы равно:


Искомый ток в фазе А

Рекомендую подробно изучить предметы:
  1. Электротехника
  2. Основы теории цепей
Ещё лекции с примерами решения и объяснением:
  • Трехфазные несимметричные цепи
  • Вращающееся магнитное поле
  • Электрические цепи синусоидального тока
  • Электрические цепи несинусоидального тока
  • Принцип действия асинхронного и синхронного двигателей
  • Метод симметричных составляющих
  • Цепи периодического несинусоидального тока
  • Резонанс токов

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Соотношение между линейным и фазным напряжением

Электрические цепи характеризуются наличием различных типов напряжения. Линейное напряжение (ЛН) возникает между фазовыми проводами трёхфазной цепи. У всех частей (фаз) многофазной цепи характеристика тока идентична. Название цепей (шести-, трёх- или 2-фазные) обуславливаются числом фаз. Наибольшее распространение получили трёхфазные электроцепи, так как являются наиболее экономичными в сравнении с многофазными или 2-фазными. А также позволяют на одном агрегате получить ЛН и фазное напряжение (ФН).

Какое напряжение называется линейным, а какое фазным

Линейным называется напряженье между 2-мя фазами линии или когда определяется величина между 2-мя проводами различных фаз.

Напряжение между любой фазой и нулём — фазное. Оно меряется между начальной и конечной стадией фазы. Практически ФН от ЛН отличается на 58-60 процентов. То есть, величины ЛН в 1,73 раза больше величин ФН.


Трёхфазный ток

Трёхфазные цепи имеют 380В ЛН, что позволяет получить 220В фазного.

Отличия

Специфика ЛН — это показатель, по которому производится расчёт токов и остальных величин трёхфазной цепи. Подобная схема позволяет подключать одно- и трёхфазные контакты. Номинальное равно 380В и меняется при изменениях в ограниченной сети, к примеру, вследствие скачков.

Популярнейшей является цепь с нейтралью и заземлением. Подключение в такой системе производится по схеме:

  • к фазным проводам подсоединяются однофазные провода;
  • к 3-фазным — 3-фазные.


Типы соединений
Широта применения ЛН обуславливается его безопасностью и комфортностью разветвления цепи. Оборудование в таком случае подключается к фазному выводу, и лишь он не безопасен.

Расчёт системы несложен, при этом действуют стандартные физические формулы. Параметры ЛН сети замеряются мультиметром, а ФН — спецустройствами, например, вольтметром, датчиком тока, тестером.

  1. Разводка подобной проводки не нуждается в применении профессионального оборудования. Достаточно отвёрток, которые имеют индикаторы.
  2. Вероятность удара током очень мала. Подобное объясняется присутствующей в цепи свободной нейтралью. Соединение проводников не требует подключения 0-вого вывода.
  3. Схема подходит для всех видов тока.

Вам это будет интересно Особенности катушки индуктивности
Важно! К 3-фазной цепи можно подключить 1-фазную. Наоборот сделать нельзя.


Включение в трёхфазную цепь приёмников электрической энергии

  1. Подобная схема подключения пригодна для многих устройств, которым необходима высокая мощность, чтобы работать. ЛН позволяет увеличить КПД двигателя на33%.

При переключении обмоток генератора к треугольнику со звезды обуславливает увеличение в 1,73 раза величины ЛН.


Соединения в трёхфазных цепях

Важно! Сложность обнаружения повреждений в линейном соединении является немаловажным недостатком цепи, так как вследствие этого может случиться пожар.

Отличие между ЛН и ФН состоит в различии соединяемых проводов обмоток. Чтобы проконтролировать параметры ЛН и ФН потребуется импульсный стабилизатор, по-другому — линейный стабилизатор. Этот прибор даёт возможность, сохраняя показатель на одном уровне, приводить в норму напряжение, если оно резко выросло. Прибор можно подключить к контактам электорооборудования, обычной розетке.

Что такое фаза?

Фаза является значением тригонометрической функции, например определяющей вид или описывающей волновое или колебательное движение. Величина тождественна углу или аргументу периодической функции. Зависимость целой фазы от координат и времени не всегда бывает линейной и гармонической. Конец проводника, по которому ток поступает в цепь, или зажим представляет собой начало фазы. Изменение вольтажа цепи через временной промежуток является проекцией лучевого вектора на координатную ось.

Цепь представляет собой стандартные элементы — энергетический генератор, цепь передачи, приемник. Для понятия, что такое фазное, линейное напряжение, их взаимодействие требуется определение фазы. Положение фазы действует только для магистралей переменного тока. Понятие определятся в виде уравнения сектора векторного вращения с фиксацией одного конца в исходе координат.

Электрические линии отличаются числом фаз: одно-, двух-, трех- и многофазная.

В России популярна трехфазная сеть для питания потребителей, которые представлены бытовыми строениями или промышленными объектами. Подключение отличается преимуществами по сравнению с электроснабжающей однофазной цепью:

  • экономичность из-за выгодного применения материалов;
  • возможность транспортировки большого объема электричества;
  • включение в рабочую цепь электрогенераторов и двигателей высокой мощности;
  • создание разных показателей напряжения в зависимости от варианта включения потребляющей нагрузки в электрическую линию.

Работа в трехфазной цепи зависит от взаимного соотношения ее компонентов. Показатели напряжения зависят от фазы (угла наклона векторного луча к координатной плоскости оси). Вольтаж определяется по земельному потенциалу, который равен нулю. Из-за этого кабель с присутствующим вольтажом именуют фазным, а заземляющий провод — нулевым. Угол фазы единичного вектора не имеет особой значимости, т. к. в линии он делает полный оборот на 360° за 1/50 часть секунды. Во внимание берется междуфазный угол относительности 2 векторов.

В сети с применением реактивных деталей угол берется между векторными показателями электротока и вольтажа, он носит название сдвига фазы. Если значения подключенных нагрузок со временем не изменяются, то величина сдвига будет всегда постоянной. Неизменность показателя используется в расчете электрической линии и анализа работы.

Соотношения фазного и линейного напряжения

Соотношение между напряжением линейным и фазным составляет 1,73. То есть при ста процентах мощности ЛН, напряжение фазы будет 58%. То есть, ЛН превышает ФН в 1,73 раза и при этом стабильно.


ФН и ЛН, отличие и соотношение

Напряжение в трёхфазной цепи оценивается по параметрам линейной составляющей. Обычно оно 380 вольт и тождественно 220 вольтам фазной компоненты сети трёхфазного электротока. В электрических сетях, где имеется четыре провода, напряжение 3-фазного тока обозначается 380/220В. Это позволяет подключить к подобной сети оборудование с 1-фазным потреблением электричества 220В и мощных приборов, которые могут работать от 380В.

Универсальной и приемлемой в большинстве случаев является трёхфазная цепь 380/220В 0-вым проводом. Электроприборы, которые функционируют от однофазного напряженья 220В, могут при подсоединении к паре проводов ФН питаться от ЛН.

Электрооборудование, которое запитывается от трёхфазной сети может работать, только если имеется подсоединение одновременно к 3-м выводам различных фаз. Тогда заземление не обязательно, но если изоляционный материал провода будет повреждён, то отсутствие 0-ого значительно увеличивает опасность удара электрическим током.

Важно! При понижении ЛН меняются величины ФН. При уже выясненном значении междуфазного напряжения определить величину ФН труда не составит.

Что такое фазное напряжение?

В трехфазных магистралях большинства государств размер напряжения равен 220 вольт. Фазный вольтаж измеряется в промежутке между фазами в начале и конце провода. Практически это величина посередине нулевого проводника и напряженного кабеля. При подсоединении по типу звезды значения линейных токов и фазного электричества не отличаются.

Симметричная система исключает присутствие нейтральной жилы, при несимметричном способе нулевой кабель поддерживает соразмерность с источником. Во втором варианте часто в цепь включаются приборы освещения, и требуется независимое функционирование 3 рабочих кабелей, тогда выводы приемника объединяются по типу треугольника.

Межфазное напряжение используется в многоквартирном секторе с магазинами или офисами на первых этажах. Так можно запитать торговые площадки силовыми кабелями в целях обеспечения 380 вольт. В высотках подключение обеспечивает лифты, эскалаторы, промышленные холодильники. Разводка выполняется относительно просто, учитывая, что в жилье идет ноль и жила под нагрузкой, а на общественные помещения ответвляются 3 рабочих кабеля и нейтральная жила.

Отличие трехфазного тока от однофазного состоит в том, что показатель сети — это линейная мощность, а параметры, имеющие отношение к нагрузке, представляют собой фазный вольтаж. От станции к потребителю проводится линия, включающая рабочие жилы и нулевой провод. Для снижения утечек при прохождении по цепи в начале и конце сети ставятся преобразователи, но картина от этого не изменяется. Нейтральный провод фиксирует и транспортирует пользователю заявленный потенциал, полученный на выходе. Мощность в проводе под нагрузкой создается, исходя из значения в нейтрали.

Величина напряжения фазы выявляется и возникает относительно центра подключения обмоток — нейтрального провода. В симметричной относительно нагрузок схеме трехфазной цепи через ноль передается ток с минимальными показателями. На выводе такой линии провода под нагрузкой окрашиваются в общепринятые стандартные цвета:

  • жила L1 — коричневый;
  • провод L2 — черный;
  • кабель L3 — серый;
  • нулевая оплетка N — синий;
  • желтый или зеленый — предусмотрен для заземления.

Такие мощные линии проводятся к крупным потребителям — целым микрорайонам, заводам. Для небольших приемников монтируется однофазная линия, включающая нагруженный провод и дополнительный ноль. При равномерном распределении мощности в однофазных ответвлениях появляется равновесие в трехфазной конструкции. Для прокладки составляющих ветвей принимается напряжение фазы одной жилы относительно нейтрали.

В чем измеряется

Согласно ГОСТ 13109 норма напряжения в электрической сети варьирует в диапазоне от 198В до 242В (то есть 220В плюс или минус 10 процентов). При частой поломке бытовой техники, ламп или их мигании потребуется измерение напряжения в электрической проводке. Подобная проверка делается мультиметром или вольтметром. Ночью, когда электроприборы используются по минимуму, полученные значения будут максимальными.

Мультиметром измеряется напряжение в трёхфазной сети так:

  1. Между рабочим 0 и каждой из фаз: А-N, В-N, С-N.
  2. Линейные напряжения: А-В, А-С, В-С.

Всего должно получиться шесть измерений. Иногда делается ещё один замер — между заземляющим и нулевым рабочим проводником: N-PE.

Как измерить

Измерить подобную систему можно мультиметром или применив физические формулы.


Измерение подключения к сети

ЛН рассчитывается по формуле Кирхгофа: ∑ Ik = 0. Здесь сила тока равняется нулю во всех частях электроцепи, то есть к=1. Используется также закон Ома: I=U/R. Применив обе формулы можно высчитать параметры клейма или электросети.

В системе из несколько линий, потребуется найти напряжение между 0 и фазой IL = IF. Значения IL и IF непостоянные и меняются при разных вариациях подключения. Потому линейные параметры точно такие же, как и фазные.

Фазное

Для того чтобы получить показания подключения фазного вида, потребуется специальное оборудование, например, мультиметр, вольтметр. Для того чтобы измерить токи и напряжения в трёхфазных цепях обычно достаточно знать данные одного линейного тока и одного ЛН.


Перекос фаз

ФН измеряется при проседании (падении) линейного. Из линейных величин извлекается Квадратный корень из трёх. Полученный показатель и есть параметры ФН.

Соотношение между линейными и фазными токами и напряжениями

Напряжение между линейным проводом и нейтралью (Ua, Ub, Uc) называется фазным

. Напряжение между двумя линейными проводами (UAB, UBC, UCA) называется
линейным
. Для соединения обмоток звездой, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:

Различие в присоединении электродвигателя по указанным схемам состоит в соединении концов обмоток. В схеме «звезда», все окончания обмоток соединяются вместе, а в схеме «треугольник» завершение одной с началом следующей. При соединении по первой схеме («звезда») питание подаётся на начала обмоток статора, а при второй – на места соединения разных обмоток между собой. При соединении звездой к точке соединения всех концов обмоток рекомендуется присоединять нейтраль источника питания. Это делается для компенсации возможной асимметрии амплитуды различных питающих фаз, которая может быть из-за разного индуктивного сопротивления каждой из обмоток.

Если сопротивления Za, Zb, Zc потребителя равны между собой, то такую нагрузку называют симметричной.

Напряжение между линейным проводом и нейтралью (Ua, Ub, Uc) называется фазным. Напряжение между двумя линейными проводами (UAB, UBC, UCA) называется линейным. Для соединения обмоток звездой, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями: Uл = 2Uф cos 30°,Iл = IФ

Различие в присоединении электродвигателя по указанным схемам состоит в соединении концов обмоток. В схеме «звезда», все окончания обмоток соединяются вместе, а в схеме «треугольник» завершение одной с началом следующей. При соединении по первой схеме («звезда») питание подаётся на начала обмоток статора, а при второй – на места соединения разных обмоток между собой. При соединении звездой к точке соединения всех концов обмоток рекомендуется присоединять нейтраль источника питания. Это делается для компенсации возможной асимметрии амплитуды различных питающих фаз, которая может быть из-за разного индуктивного сопротивления каждой из обмоток.

Если сопротивления Za, Zb, Zc потребителя равны между собой, то такую нагрузку называют симметричной.

Напряжение между линейным проводом и нейтралью (Ua, Ub, Uc) называется фазным. Напряжение между двумя линейными проводами (UAB, UBC, UCA) называется линейным. Для соединения обмоток звездой, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями: Uл = 2Uф cos 30°,Iл = IФ

Соединение трёхфазной системы « треугольником».

Трёхфазная система электроснабжения — частный случай многофазных систем электрических цепей, в которых действуют созданные общим источником синусоидальные ЭДС одинаковой частоты, сдвинутые друг относительно друга во времени на определённый фазовый угол. В трёхфазной системе этот угол равен 2π/3 (120°).

Многопроводная (шестипроводная) трёхфазная система переменного тока изобретена Николой Теслой. Значительный вклад в развитие трёхфазных систем внёс М. О. Доливо-Добровольский, который впервые предложил трёх- и четырёхпроводную системы передачи переменного тока, выявил ряд преимуществ малопроводных трёхфазных систем по отношению к другим системам и провёл ряд экспериментов с асинхронным электродвигателем. Экономичность передачи электроэнергии на значительные расстояния. Меньшая материалоёмкость 3-фазных трансформаторов. Меньшая материалоёмкость силовых кабелей, так как при одинаковой потребляемой мощности снижаются токи в фазах (по сравнению с однофазными цепями).Уравновешенность системы. Это свойство является одним из важнейших, так как в неуравновешенной системе возникает неравномерная механическая нагрузка на энергогенерирующую установку, что значительно снижает срок её службы.

Возможность простого получения кругового вращающегося магнитного поля, необходимого для работы электрического двигателя и ряда других электротехнических устройств. Двигатели 3-фазного тока (асинхронные и синхронные) устроены проще, чем двигатели постоянного тока, одно- или 2-фазные, и имеют высокие показатели экономичности.

Возможность получения в одной установке двух рабочих напряжений — фазного и линейного, и двух уровней мощности при соединении на «звезду» или «треугольник».

Возможность резкого уменьшения мерцания и стробоскопического эффекта светильников на люминесцентных лампах путём размещения в одном светильнике трёх ламп (или групп ламп), питающихся от разных фаз.

Благодаря этим преимуществам, трёхфазные системы наиболее распространены в современной электроэнергетике. Звездой называется такое соединение, когда концы фаз обмоток генератора (G) соединяют в одну общую точку, называемую нейтральной точкой или нейтралью. Концы фаз обмоток потребителя (M) также соединяют в общую точку. Провода, соединяющие начала фаз генератора и потребителя, называются линейными. Провод, соединяющий две нейтрали, называется нейтральным. Шины для раздачи нулевых проводов (синяя) и проводов заземления(зеленая).Трёхфазная цепь, имеющая нейтральный провод, называется четырёхпроводной. Если нейтрального провода нет — трёхпроводной.

Треугольник — такое соединение, когда конец первой фазы соединяется с началом второй фазы, конец второй фазы с началом третьей, а конец третьей фазы соединяется с началом первой.

Для соединения обмоток треугольником, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:

Основная статья: Маркировка кабеля. Проводники, принадлежащие разным фазам, маркируют разными цветами. Разными цветами маркируют также нейтральный и защитный проводники. Это делается для обеспечения надлежащей защиты от поражения электрическим током, а также для удобства обслуживания, монтажа и ремонта электрических установок и электрического оборудования. В разных странах маркировка проводников имеет свои различия. Однако многие страны придерживаются общих принципов цветовой маркировки проводников, изложенных в стандарте Международной Электротехнической Комиссии МЭК 60445:2010.

Цепи трехфазного тока. Соединения звездой и треугольником. Фазные и линейные токи и напряжения.

Трёхфазная система электроснабжения — частный случай многофазных систем электрических цепей, в которых действуют созданные общим источником синусоидальные ЭДС одинаковой частоты, сдвинутые друг относительно друга во времени на определённый фазовый угол. В трёхфазной системе этот угол равен 2π/3 (120°).

В трехфазных цепях применяют два вида соединений генераторных обмоток – в звезду и треугольник (рис. 1).

При соединении в звезду все концы фазных обмоток соединяют в один узел, называемый нейтральной или нулевой точкой, и обозначают, как правило, буквой O.

При соединении в треугольник обмотки генератора соединяют так, чтобы начало одной соединялось с концом другой. ЭДС в катушках в этом случае обозначают соответственно EBA, ECB, EAC. Если генератор не подключен к нагрузке, то по его обмоткам не протекают токи, т.к. сумма ЭДС равна нулю.

Рис. 1 Соединения генераторных обмоток – в звезду и треугольник

В звезду и треугольник включаются и сопротивления нагрузки так, как показано на рис. 2. Фазные сопротивления Za, Zb, Zc, Zab, Zbc, Zca, соединенные в треугольник или в звезду, называют фазами нагрузки.

Напряжение между началом и концом фазы — фазное напряжение Uф,

Таким образом, имеется три фазных напряжения—UA, UB и UС. Обычно за условное положительное направление э. д. с. генератора принимают направление от конца к началу фазы. Положительное направление тока в фазах совпадает с положительным направлением э. д. с., а положительное направление падения напряжения (напряжение) на фазе приемника совпадает с положительным направлением тока в фазе. Положительным направлением напряжения на фазе генератора, как и на фазе приемника, является направление от начала фазы к ее концу, т. е. противоположное положительному направлению э. д. с.

Напряжение между линейными проводами – линейное напряжение Uл.

Таким образом, имеется три линейных напряжения — UAB, UBC, UCA ,условные положительные направления которых приняты от точек, соответствующих первому индексу, к точкам, соответствующим второму индексу. Линейные напряжения определяются через известные фазные напряжения. Это соотношение может быть получено из уравнения, написанного по второму закону Кирхгофа для контура ANBA, если принять направление обхода контура от точки А к точке N и т. д.:

UA — UB — UAB = 0. (10.1)

Таким образом, действующее значение линейных напряжений равно векторной разности соответствующих фазных напряжений..

23. . Симметричный режим работы трехфазной цепи. Фазовый оператор. Соотношение между фазным и линейным токами и напряжениями в трехфазной цепи при соединении звезда-звезда. Векторная диаграмма.

Напряжение между линейным проводом и нейтралью (Ua, Ub, Uc) называется фазным. Напряжение между двумя линейными проводами (UAB, UBC, UCA) называется линейным. Для соединения обмоток звездой, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:

Трехфазные источники питания практически всегда выполняются симметричными. В этом случае:

— действующие значения ЭДС

;

— комплексные, активные, индуктивные сопротивления

; ; ;

— фазные коэффициенты мощности

.

— действующие значения фазных напряжений

;

— действующие значения линейных напряжений

,

где ;

;

.

Рисунок 8.5 — Векторная диаграмма напряжений при нагрузке «звезда»

Из векторной диаграммы видно, что

или .

В симметричной трехфазной цепи при соединении фаз звездой действующие фазные и линейные токи равны друг другу, а напряжения отличаются друг от друга в раз

24. . Симметричный режим работы трехфазной цепи. Фазовый оператор. Соотношение между фазным и линейным напряжениями в трехфазной цепи при соединении треугольник –треугольник. Векторная диаграмма.

При соединении трехфазного приемника треугольником при симметричной трехфазной системе:

— фазные напряжения оказываются равны линейным напряжениям

;

.

— фазные коэффициенты мощности

.

— соотношения между линейными и фазными токами по первому закону Кирхгофа для узлов a, b, c

; ; ,

где — комплексные линейные токи (IЛ), (IФ) — фазные токи.

— действующие значения линейных токов

;

— действующие значения фазных токов

;

В симметричной трехфазной цепи при соединении фаз нагрузки треугольником фазные и линейные напряжения равны друг другу, а линейный ток раз больше фазного

Соотношение между линейными и фазными токами и напряжениями

Для соединения обмоток треугольником, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:

Уравнением отвечает векторная диаграмма на рисунке 7.

Магнитные цепи. Магнитное поле проводника с током. Магнитное поле катушки с током. Магнитный поток. Магнитная индукция. Намагничивающая сила. Напряженность магнитного поля. Закон Ома для магнитной цепи.

Магнитная цепь — последовательность взаимосвязанных магнетиков, по которым проходит магнитный поток. При расчётах магнитных цепей используется почти полная формальная аналогия с электрическими цепями.

В простых случаях магнитное поле проводника с током (в том числе и для случая тока, распределённого произвольным образом по объёму или пространству) может быть найдено из закона Био — Савара — Лапласа или теоремы о циркуляции (она же — закон Ампера)

Энергию магнитного поля в катушке индуктивности можно найти по формуле:

Магни́тный пото́к — поток как интеграл вектора магнитной … Также магнитный поток можно рассчитать как скалярное произведение вектора магнитной индукции на вектор площади.

Магнитная индукция, вектор магнитной индукции В, основная характеристика магнитного поля (см. Индукция электрическая и магнитная). Единицей М. и. в Международной системе единиц служит тесла (тл), в СГС системе единиц — гаусс (гс), 1 тл = 10⁴ гс.

МАГНИТОДВИЖУЩАЯ СИЛА (мдс) (намагничивающая сила) — характеристика способности источников магнитного поля (электрических токов) создавать магнитные потоки; вводится при расчетах магнитных цепей по аналогии с эдс электрических цепей.

Напряжённость магни́тного по́ля (стандартное обозначение Н) — векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M.

Эта формула выражает закон Ома для магнитной цепи.

26. Магнитные свойства вещества. Ферромагнитные материалы. Зависимость магнитной индукции от напряженности магнитного поля (петля Гистерезиса). Остаточная магнитная индукция. Коэрцитивная сила.

Разделение веществ на диа-, пара- и ферромагнетики носит в значительной степени условный характер, т.к. первые два вида веществ отличаются по магнитным свойствам от вакуума менее чем на 0,05%. На практике все вещества обычно разделяют на ферромагнитные (ферромагнетики) и неферромагнитные, для которых относительная магнитная проницаемость m может быть принятой равной 1,0.

К ферромагнетикам относятся железо, кобальт, никель и сплавы на их основе. Они имеют магнитную проницаемость, превышающую проницаемость вакуума в несколько тысяч раз. Поэтому все электротехнические устройства, использующие магнитные поля для преобразования энергии, обязательно имеют конструктивные элементы, изготовленные из ферромагнитного материала и предназначенные для проведения магнитного потока. Такие элементы называются магнитопроводы.

Кроме высокой магнитной проницаемости ферромагнетики обладают сильно выраженной нелинейной зависимостью индукции B от напряженности магнитного поля H, а при перемагничивании связь между B и H становится неоднозначной. Функции B(H) имеют особое значение, т.к. только с их помощью можно исследовать электромагнитные процессы в цепях, содержащих элементы, в которых магнитный поток проходит в ферромагнитной среде. Эти функции бывают двух видов: кривые намагничивания и петли гистерезиса.

Рассмотрим процесс перемагничивания ферромагнетика. Пусть первоначально он был полностью размагничен. Сначала индукция быстро возрастает за счет того, что магнитные диполи ориентируются по силовым линиям поля, добавляя свой магнитный поток к внешнему. Затем ее рост замедляется по мере того, как количество неориентированных диполей уменьшается и, наконец, когда практически все они ориентируются по внешнему полю рост индукции прекращается и наступает режим насыщения (рис. 1).

Если в процессе намагничивания довести напряженность поля до некоторого значения, а затем начать уменьшать, то уменьшение индукции будет происходить медленнее, чем при намагничивании и новая кривая будет отличаться от первоначальной. Кривая изменения индукции при увеличении напряженности поля для предварительно полностью размагниченного вещества называется начальной кривой намагничивания. На рис. 1 она показана утолщенной линией.

После нескольких (около 10) циклов изменения напряженности от положительного до отрицательного максимальных значений зависимость B=f(H) начнет повторяться и приобретет характерный вид симметричной замкнутой кривой, называемой петлей гистерезиса. Гистерезисом называют отставание изменения индукции от напряженности магнитного поля. Явление гистерезиса характерно вообще для всех процессов, в которых наблюдается зависимость какой-либо величины от значения другой не только в текущем, но и в предыдущем состоянии, т.е. B2=f(H2, H1) — где H2 и H1 — соответственно текущее и предыдущее значения напряженности.

Петли гистерезиса можно получить при различных значениях максимальной напряженности внешнего поля Hm (рис. 2). Геометрическое место точек вершин симметричных циклов гистерезиса называется основной кривой намагничивания. Основная кривая намагничивания практически совпадает с начальной кривой.

Симметричная петля гистерезиса, полученная при максимальной напряженности поля Hm (рис. 2), соответствующей насыщению ферромагнетика , называется предельным циклом.

Для предельного цикла устанавливают также значения индукции Br при H = 0, которое называется остаточной индукцией, и значение Hc при B = 0, называемое коэрцитивной силой. Коэрцитивная (удерживающая) сила показывает, какую напряженность внешнего поля следует приложить к веществу, чтобы уменьшить остаточную индукцию до нуля.


источники:

http://toolprokat43.ru/sistemy-osveshcheniya/linejnaya-zavisimost-toka.html

http://poisk-ru.ru/s42781t5.html