Уравнения трансформатора приведение вторичной обмотки трансформатора к первичной

Схемы замещения двухобмоточного трансформатора

Автор: Евгений Живоглядов.
Дата публикации: 03 октября 2014 .
Категория: Статьи.

Приведение вторичной обмотки к первичной

Первичные и вторичные токи, напряжения и другие величины имеют одинаковый порядок, если у первичной и вторичной обмоток число витков одинаково. Рассмотрим поэтому вместо реального трансформатора эквивалентный ему так называемый приведенный трансформатор, первичные и вторичные обмотки которого имеют одинаковое число витков.

Представим себе, что реальная вторичная обмотка трансформатора с числом витков w2 заменена воображаемой, или приведенной, обмоткой с числом витков w2’ = w1. При этом число витков вторичной обмотки изменится в

k = w2’ / w2 = w1 / w2
(1)

раз. Величина k называется коэффициентом приведения или коэффициентом трансформации. Более подробно о том, что называется коэффициентом трансформации и как определить коэффициент трансформации изложено в статье «Принцип действия и виды трансформаторов».

В результате такой замены, или приведения, электродвижущая сила E2’ и напряжение U2’ приведенной обмотки также изменяются в k раз по сравнению с величинами E2 и U2 реальной вторичной обмотки:

(2)

Чтобы мощности приведенной и реальной обмоток при всех режимах работы были равны, необходимо соблюдать равенство

где I2’ – приведенный вторичный ток. Отсюда с учетом второго равенства (2) следует, что

(3)

Намагничивающие силы приведенной и реальной обмоток на основании выражений (1) и (3) равны:

(4)

Для того чтобы электромагнитные процессы в реальном и приведенном трансформаторах протекали одинаково, приведенная и реальная вторичные обмотки должны создавать одинаковые магнитные поля. Для этого, кроме соблюдения условия (4), необходимо, чтобы приведенная вторичная обмотка имела те же геометрические размеры и конфигурацию и была расположена в окне магнитопровода трансформатора так же, как и реальная вторичная обмотка (смотрите например, рисунок 1, в статье «Магнитопроводы трансформаторов» и рисунок 1, в статье «Элементы конструкции и способы охлаждения масляных трансформаторов»). Поэтому суммарное сечение всех витков приведенной обмотки должно быть таким же, как и у реальной обмотки, а сечение каждого витка приведенной обмотки должно уменьшиться в k раз. Но поскольку приведенная обмотка имеет в k раз больше витков, то в итоге активное сопротивление приведенной обмотки в k 2 раз больше, чем реальной:

r2’ = k 2 × r2 .
(5)

Так как при одинаковых геометрических размерах и одинаковом расположении катушек их индуктивности и индуктивные сопротивления пропорциональны квадратам чисел витков, то между индуктивными сопротивлениями приведенной обмотки x2’ и реальной x2 существует такое же соотношение:

x2’ = k 2 × x2 .
(6)

Очевидно, что потери в приведенной и реальной обмотках одинаковы:

Одинаковы также относительные падения напряжения во вторичных обмотках приведенного и реального трансформаторов:

Таким образом, все энергетические и электромагнитные соотношения в приведенном и реальном трансформаторах одинаковы, что и позволяет производить указанное приведение.

Схема замещения без учета магнитных потерь

В соответствии с изложенным сделаем подстановки в уравнениях напряжения трансформатора (уравнения (2), представленные в статье «Уравнения напряжений трансформатора»):

(7)

что в математическом отношении соответствует переходу от исходных реальных переменных U2, I2 к новым (приведенным) переменным U2’, I2’. Умножив при этом второе из уравнений (2), представленное в статье «Уравнения напряжений трансформатора», на k, получим

(8)

При переходе к электрической связи двух цепей в соответствующей схеме замещения должна появиться общая для обеих цепей ветвь, которая обтекается суммой токов обеих цепей I1 + I2’. Соответственно этому в уравнениях напряжений этих цепей должны появиться одинаковые члены с множителями (I1 + I2’). Из уравнений (8) видно, что для получения в них таких членов нужно прибавить к первому из этих уравнений и вычесть из него член jkx12 × I1 и прибавить ко второму и вычесть из него член jkx12 × I2’. При этом получим

(9)

Введем следующие наименования и обозначения:

1) приведенное активное сопротивление вторичной обмотки

r2’ = k 2 × r2 ,
(10)

совпадающее с выражением (5);

2) приведенное взаимное индуктивное сопротивление

x12’ = k × x12 ;
(11)

3) индуктивное сопротивление рассеяния первичной обмотки

x1 = x11k × x12 ;
(12)

4) приведенное индуктивное сопротивление рассеяния вторичной обмотки

x2’ = k 2 × x22k × x12 = x22’ – x12’ = k 2 × x2 ,
(13)
x2 = x22x12 / k
(14)

представляет собой неприведенное индуктивное сопротивление рассеяния вторичной обмотки.

Введя перечисленные приведенные величины в уравнения (9), получим уравнения напряжения приведенного трансформатора:

(15)
Рисунок 1. Схемы замещения двухобмоточного трансформатора без учета магнитных потерь

Уравнениям (15), как нетрудно видеть, соответствует схема замещения рисунка 1, а. Действительно, мысленно обойдя левый и правый контуры схемы рисунка 1, а и составив уравнения напряжения для этих контуров, вновь получим уравнения (15). Таким образом, схема рисунка 1, а представляет собой схему замещения трансформатора, соответствующую уравнению (2), представленному в статье «Уравнения напряжений трансформатора» и уравнению (15), представленному в данной статье.

Аналогичным образом можно также преобразовать уравнения напряжения в дифференциальной форме (уравнения (1), представленные в статье «Уравнения напряжений трансформатора»), произведя в них подстановки

u2 = u2’ / k ; i2 = k × i2’ .(16)

При этом получается схема замещения рисунка 1, б, где

S1 = L11k × M = x1 / ω
(17)
(18)

представляют собой индуктивности рассеяния первичной и вторичной обмоток, а

M12’ = k × M = x12’ / ω
(19)

Схема замещения рисунка 1, б действительна при любых закономерностях изменения напряжения и токов во времени, в том числе и в случае переходных процессов.

Уравнения (15) и схемы замещения рисунка 1 можно трактовать таким образом, что сопротивления r1 и x1, r2’ и x2’ или индуктивности S1 и S2’ включены в цепи обмоток до и после трансформатора, а параметры обмоток трансформатора уменьшены на значения этих величин. В результате получается идеальный трансформатор, активные сопротивления которого равны нулю, а коэффициент электромагнитной связи c = 1. Действительно, у такого идеального трансформатора приведенные собственные и взаимные индуктивные сопротивления одинаковы и равны x12’ = k × x12 и поэтому в соответствии с равенством (12), представленном в статье «Индуктивности обмоток трансформатора и электромагнитное рассеяние» и равенством (7), представленном в статье «Уравнения напряжений трансформатора», c2 = 1 и σ = 0.

Отметим, что, как следует из рассмотрения приведенных преобразований, соотношения (7) и все последующие, а также схемы замещения рисунка 1 справедливы и правильно отражают все процессы в трансформаторе при любом значении k. С математической точки зрения эти преобразования означают переход от переменных U2 и I2 к новым переменным U2’ и I2’ по формулам (7), что возможно при любом значении k. В связи с этим необходимо подчеркнуть, что индуктивные сопротивления и индуктивности рассеяния, согласно равенствам (11) – (14), (17), (18) и (19), определяются неоднозначно и зависят от коэффициента приведения k. Однако для силовых трансформаторов k рационально определять по формуле (1), как это и принято на практике. Выбор иного значения k целесообразен лишь в специальных случаях, например в измерительных трансформаторах тока.

Параметры схемы замещения

Рассмотрим параметры схем замещения рисунка 1 при k = w1 / w2 [смотрите равенство (1)].
Приведенная взаимная индуктивность на основании равенств (6) и (10), в представленных статье «Индуктивности обмоток трансформатора и электромагнитное рассеяние» и равенства (19), настоящей статьи

(20)

Последний член выражения (20) весьма мал по сравнению с первым, и поэтому с достаточной точностью

M12’ ≈ Lс1 .(21)

Соответственно, согласно выражению (3), представленного в статье «Уравнения напряжений трансформатора» и выражениям (11), (19), (21), настоящей статьи,

x12’ ≈ xс1 = ω × w1 2 / Rµc .(22)

Следовательно, сопротивление x12’ с большой точностью равно сопротивлению самоиндукции первичной обмотки от потока, замыкающегося по магнитопроводу.

Ветви 12 схем замещения рисунка 1 называются намагничивающими ветвями. Протекающий по этим ветвям намагничивающий ток

Iм = I1 + I2

создает результирующую намагничивающую силу обмоток трансформатора

которая в свою очередь создает результирующий поток стержня с амплитудой Фс. Напряжение на этих ветвях в соответствии с выражением (22), настоящей статьи и выражением (3), представленным в статье «Принцип действия и виды трансформаторов»

то есть равно по значению и обратно по знаку электродвижущей силе E1, которая индуктируется в первичной обмотке результирующим потоком магнитопровода, или основным потоком трансформатора, и отстает от него на 90°.

Индуктивность рассеяния первичной обмотки, согласно выражениям (9) и (10), представленных в статье «Индуктивности обмоток трансформатора и электромагнитное рассеяние» и выражению (17), данной статьи,

S1 = Lв1k × Mв .(23)

Аналогично, согласно выражениям (9) и (10), представленных в статье «Индуктивности обмоток трансформатора и электромагнитное рассеяние» и выражению (18), данной статьи

(24)

Таким образом, индуктивности рассеяния S1, S2 и S2’ и индуктивные сопротивления рассеяния при k = w1 / w2 определяются магнитными потоками, замыкающимися главным образом по воздуху.

x1 = ω × S1 ; x2 = ω × S2 ; x2’ = ω × S2
(25)

Однако вторыми членами равенств (23) и (24) по сравнению с первыми пренебречь нельзя, и поэтому потоки, замыкающиеся по воздуху, можно назвать потоками рассеяния лишь условно.

Схема замещения с учетом магнитных потерь

Потери в стали магнитопровода pмг при заданной частоте пропорциональны следующим величинам:

Таким образом, потери pмг пропорциональны квадрату напряжения U12 на зажимах 12 намагничивающей цепи схемы замещения рисунка 1, а. Если к этим зажимам параллельно x12’ = xc1 подключить активное сопротивление rмг, как показано на рисунке 2, а, то потери в этом сопротивлении также будут пропорциональны U12. Значение сопротивления rмг можно подобрать так, чтобы потери в нем равнялись магнитным потерям:

rмг = m1 × E1 2 / pмг .(26)

Рисунок 2. Намагничивающая цепь схемы замещения с учетом магнитных потерь

Величину pмг при заданной электродвижущей силе E1 можно считать известной из расчетных (смотрите статью «Расчет магнитной цепи трансформатора») или опытных данных. Тогда можно считать известным также rмг.

разделяется в двух ветвях намагничивающей цепи (рисунок 2, а) на активную Iмa и реактивную Iмr составляющие (смотрите статью «Расчет магнитной цепи трансформатора»), из, из которых первая определяет мощность магнитных потерь, а вторая создает поток магнитопровода.

Схема с двумя параллельными ветвями намагничивающей цепи хорошо согласуется с реальными физическими явлениями. Однако расчеты на основе схемы замещения вести удобнее, если объединить две параллельные ветви схемы 2, а в одну общую ветвь, как показано на рисунке 2, б. Тогда сопротивление этой ветви

(27)
(28)

При увеличении насыщения магнитопровода, то есть при увеличении Фс, E1 или U1, сопротивление x12’ при f = const уменьшается. Однако при этом rмг ≈ const, а значение rм уменьшается.

Схема замещения трансформатора с учетом магнитных потерь согласно рисунку 2, б показана на рисунке 3, а. Если использовать обозначения

Z1 = r1 + jx1 ; Z2’ = r2’ + jx2’ ; Zм = rм + jxм ,(29)
Рисунок 3. Схема замещения двухобмоточного трансформатора с учетом магнитных потерь

то схему замещения можно изобразить более компактно, как показано на рисунке 3, б. В режиме холостого хода I2’ = 0 и I1 = Iм – току холостого хода трансформатора.

В итоге получилась весьма простая Т-образная схема замещения трансформатора, представляющая собой пассивный четырехполюсник. Сопротивление намагничивающей цепи этой схемы Zм отражает явления в ферромагнитном магнитопроводе. Оно значительно больше сопротивлений Z1 и Z2’, которые включают в себя активные сопротивления и индуктивные сопротивления рассеяния обмоток. Для силовых трансформаторов в относительных единицах

Уравнения напряжений и схему замещения трансформатора можно представлять также в относительных единицах. Имея в виду, что

левые части уравнений вида (15) можно разделить на Uн, а правые части – на Zн × Iн, в результате чего и будет совершен переход к относительным единицам. Абсолютные значения U, I, r, x и Z в схемах замещения также можно заменить относительными. При этом расчеты режимов работы трансформатора можно вести в относительных единицах.

Нетрудно видеть, что относительные значения сопротивлений, токов и напряжений вторичной цепи будут зависеть от того, какая величина коэффициента k была использована при приведении вторичной обмотки к первичной. Неопределенность в этом вопросе исчезает, если определять k всегда одинаковым образом. Например, в силовых трансформаторах всегда берут k = w1 / w2.

Упрощенная схема замещения

Рисунок 4. Упрощенная схема замещения трансформатора

Так как Zм >> Z1Z2’, то во многих случаях можно положить Zм = ∞, что означает разрыв намагничивающей цепи схемы замещения рисунка 3. При Zм = ∞ будет Iм = 0, то есть такое предположение эквивалентно пренебрежению намагничивающим током или током холостого хода, что ввиду малости Iм во многих случаях допустимо. При этом I1 = –I2’ = I .

При Zм = ∞ и Iм = 0 схема замещения принимает вид, изображенный на рисунке 4. Параметры этой схемы

Zк = Z1 + Z2’ ; rк = r1 + r2’ ; xк = x1 + x2
(30)

называются соответственно полным, активным и индуктивным сопротивлениями короткого замыкания. Такие названия обусловлены тем, что замыкание вторичных зажимов трансформатора накоротко соответствует замыканию накоротко вторичных (правых) зажимов схемы замещения рисунка 4 и при этом сопротивление трансформатора при коротком замыкании будет равным Zк.

Схема замещения рисунка 4 чрезвычайно проста. Согласно этой схеме, трансформатор эквивалентен сопротивлению Zк. Обычно в силовых трансформаторах zк* = 0,05 – 0,15.

Источник: Вольдек А. И., «Электрические машины. Учебник для технических учебных заведений» – 3-е издание, переработанное – Ленинград: Энергия, 1978 – 832с.

В) Приведение величин вторичной обмотки к числу витков первичной обмотки

Указанное приведение получим, если помножим уравнение (2-37) на отношение чисел витков

соответственно будем иметь

(2-38)

; [согласно (2-8)];

(2-39)

представляют собой величины вторичной обмотки, приведенные к числу витков первичной обмотки. Такое приведение величин вторичной обмотки облегчает исследование работы трансформатора: делает более удобным построение для него векторных диаграмм (§ 2-4,г), позволяет построить удобную для расчетов схему соединения его активных и индуктивных сопротивлений, называемую схемой замещения трансформатора, где магнитная связь между обмотками заменена электрической связью между ними (§ 2-5).

Можно считать, что приведение величин вторичной обмотки к числу витков первичной обмотки сводится к замене действительной обмотки с числом витков обмоткой с числом витков , причем при такой замене н.с. должна остаться, как отмечалось, неизменной и равной , а также должны остаться неизменными относительные значения падений напряжения и электрические потери в обмотке:

Из этих равенств, учитывая, что и , мы можем также найти соотношения между приведенными и действительными величинами вторичной обмотки. Они получаются такими же, как и (2-39).

Г) Векторные диаграммы.

Векторные диаграммы наглядно показывают соотношения между токами, э.д.с. и напряжениями обмоток. Они строятся в соответствии с уравнениями (2-19), (2-36) и (2-38).

На рис. 2-14 — 2-16 представлены диаграммы трансформатора, работающего с различными нагрузками.

Рис. 2-14. Векторная диаграмма трансформатора работающего с отстающим током.

Рис. 2-15. Векторная диаграмма трансформатора, работающего с 1.

Рис. 2-16. Векторная диаграмма трансформатора, работающего с опережающим током.

Векторная диаграмма трансформатора, работающего, например, с отстающим током (рис. 2-14), при заданных может быть построена следующим образом.

Зная найдем и . Построим в выбранном масштабе для токов и напряжений векторы и так, чтобы они были сдвинуты на угол Прибавляя к векторы падений напряжения и найдем э.д.с. (мы предполагаем, что сопротивления и , а также и известны). Вектор потока опережает э.д.с. на 90°. Ток опережает поток на угол . Вторая составляющая первичного тока равна и противоположна по фазе вторичному току следовательно, вектор первичного тока определяется геометрическим сложением: . Первичное напряжение , имеет составляющую , уравновешивающую э.д.с. , и составляющие и равные соответственно активному и индуктивному падениям напряжения в первичной обмотке ( совпадает по фазе с током опережает ток на 90°).

Обратная задача, с которой обычно приходится иметь дело на практике, когда заданы и cos φ2 и требуется найти решается в большинстве случаев аналитически, как показано в § 2-8.

Диаграммы на рис. 2-14 и 2-15 показывают, что напряжение при нагрузке меньше, чем напряжение при холостом ходе, и тем меньше, чем больше сопротивления обмоток r1, x1, r2, и угол φ2.

Значение тока зависит от значения э.д.с. ; следовательно, оно изменяется с изменением тока нагрузки, если = const. Однако это изменение невелико, и при практических расчетах можно принять Фм=const и =const.

Диаграмма на рис. 2-16 показывает, что при работе трансформатора с опережающим током напряжение на его зажимах может быть выше, чем при холостом ходе, так как в этом случае э.д.с. возрастает и, кроме того, результирующая э.д.с. + больше, чем ( ― э.д.с. рассеяния вторичной обмотки, приведенная к числу витков первичной обмотки).

Приведенные ранее уравнения напряжений и токов, а также векторные диаграммы относятся к однофазному трансформатору или к одной фазе трехфазного трансформатора. Различие токов холостого хода отдельных фаз трехфазного трансформатора вследствие несимметрии их магнитных цепей не имеет практического значения, так как токи холостого хода составляют обычно небольшую долю номинального тока; параметры же отдельных фаз r1, , x1, можно считать одинаковыми.

2-5. Схема замещения

Расчеты, связанные с исследованием работы трансформатора, можно свести к расчетам простых цепей переменного тока. Для этого заменим трансформатор некоторой схемой, сопротивление которой Zэкв определим; из уравнений напряжений (2-36) и (2-38) и уравнения токов (2-17). Перепишем эти уравнения в следующем виде:

(2-40)

(2-41)

(2-42)

где [см. уравнение (2-12)];

― приведенное к числу витков первичной обмотки сопротивление внешней вторичной цепи, падение напряжения в котором, очевидно, и есть .

Подставив в (2-41) значение тока из (2-42), найдем:

Подставив в (2-40) найденное значение , получим:

(2-43)

Сопротивлению Zэкв соответствует схема, представленная на рис. 2-17. Она называется схемой замещения трансформатора. Здесь ветвь с сопротивлением может быть названа ветвью намагничивания. Очевидно, что уравнения напряжений и токов, составленные согласно законам Кирхгофа для этой схемы, будут такими же, как и уравнения (2-40) — (2-42).

Рис. 2-17. Схема замещения трансформатора.

В схеме замещения переменным параметром является сопротивление ; остальные ее параметры можно считать постоянными. Они могут быть определены путем расчета, а также опытным путем. В последнем случае обращаются к данным опытов холостого хода и короткого замыкания.

2-6. Опыт холостого хода

По данным опыта холостого хода определяются коэффициент трансформации , магнитные потери Рс и параметры ветви намагничивания Магнитные потери Рс, как указывалось, могут быть приняты равными мощности Р0, потребляемой трансформатором при холостом ходе.

При опыте холостого хода собирается схема по рис. 2-18 для однофазного трансформатора или по рис. 2-19 для трехфазного трансформатора. При номинальном напряжении (линейном в случае трехфазного трансформатора) измеряют и Опыт холостого хода должен производиться при синусоидальном напряжении. Если напряжение заметно отличается от синусоидального, то в данные измерений необходимо внести некоторые поправки (согласно ГОСТ). При исследовании малых трансформаторов следует учитывать потери в приборах, так как они могут быть соизмеримы с потерями холостого хода.

Рис. 2-18 Схема при опыте холостого хода для однофазного трансформатора.

Рис. 2-19. Схема при опыте холостого хода для трехфазного трансформатора.

Измерения U1 и U20 производятся при помощи вольтметров или при высоком напряжении, при помощи вольтметров и измерительных трансформаторов напряжения. По данным измерений находят коэффициент трансформации: U20/U1 По амперметру и ваттметру находят ток и мощность P0 в случае однофазного трансформатора. В случае трехфазного трансформатора необходимо измерить токи во всех трех фазах, так как вследствие несимметрии магнитных цепей отдельных фаз токи в них будут различны. За ток холостого хода здесь принимается среднее арифметическое токов отдельных фаз, т. е.

(2-44)

Мощности отдельных фаз также различны; поэтому мощность, потребляемую трехфазным трансформатором при холостом ходе, следует измерять двумя ваттметрами по схеме рис. 2-19.

Для нормальных силовых трансформаторов ток холостого хода составляет (0,10—0,04) IН при номинальных мощностях от 5 до нескольких тысяч киловольт-Ампер.

Холостому ходу будет соответствовать схема замещения рис. 2-17 при =∞. Следовательно, по данным опыта холостого хода получаем:

Так как для нормальных трансформаторов r12 больше r1 и x12 больше х1 в сотни раз, то можно принять:

2-7. Опыт короткого замыкания

По данным опыта короткого замыкания определяются потери короткого замыкания Рк, которые могут быть приняты равными электрическим потерям в обмотках, и параметры трансформатора, к которым приходится обращаться при решении многих практических задач.

Под коротким замыканием трансформатора здесь понимается такой режим его работы, при котором вторичная обмотка замкнута накоротко, а к первичной обмотке подведено напряжение. Этому режиму работы соответствует схема замещения (рис. 2-17) при =0.

Так как сопротивления z1 и в сотни раз меньше сопротивления z12, то при коротком замыкании трансформатора можно пренебречь током в этом сопротивлении, т. е. принять . В этом случае получаем схему замещения, представленную на рис. 2-20.

Рис. 2-20. Схема замещения короткозамкнутого трансформатора.

Векторная диаграмма короткозамкнутого трансформатора приведена на рис. 2-21.

Рис. 2-21. Векторная диаграмма короткозамкнутого трансформатора.

От этой диаграммы мы можем перейти к диаграмме, представленной на рис. 2-22.

Рис. 2-22. Треугольник короткого замыкания.

Прямоугольный треугольник ОАВ называется треугольником короткого замыкания трансформатора. Один его катет другой катет и гипотенуза

называются соответственно активным, индуктивным и полным сопротивлениями короткого замыкания трансформатора. Параметры короткого замыкания zк, rк и xк определяются по данным опыта короткого замыкания. При этом опыте собирается одна из схем, приведенных на рис. 2-18 и 2-19, но вторичные зажимы замыкаются накоротко. Измеряют U, I1, Pк. Напряжение U устанавливают такое, чтобы ток был приблизительно равен номинальному току Оно для нормальных трансформаторов мощностью от 20 до 10000 кВА составляет от 5 до 10% номинального напряжения В соответствии с указанными значениями и подбирают при опыте короткого замыкания измерительные приборы.

Так как при этом опыте а следовательно, и поток Ф (E1 ≈ 0,5 U, рис. 2-21) составляют всего несколько процентов от их значений при номинальном напряжении (а потери в стали приблизительно пропорциональны Ф 2 ), то магнитными потерями можно пренебречь и считать, что мощность Pк, потребляемая трансформатором при коротком замыкании, идет на покрытие электрических потерь в обмотках трансформатора:

(2-45)

(2-46)

Согласно ГОСТ активные сопротивления обмоток трансформаторов, по которым определяются электрические потери и активные падения напряжения, должны быть приведены к температуре 75° С. Это приведение делаем согласно соотношению

(2-47)

где — температура обмоток, °С, при опыте короткого замыкания.

(можно принять, что от температуры не зависит) и

После этого определяем номинальное напряжение короткого замыкания Uк = Izк75. Оно, очевидно, равно напряжению, которое, будучи приложено к одной обмотке трансформатора при замкнутой накоротко его другой обмотке, создаст в обеих обмотках номинальные токи.

Напряжение Uк = Izк75 выражается в процентах номинального напряжения той обмотки, со стороны которой производились измерения при опыте короткого замыкания:

(2-48)

Процентное значение номинального напряжения короткого замыкания указывается на щитке трансформатора. Оно для нормальных трансформаторов лежит в пределах 5 — 10%. Также выражаются в процентах номинального напряжения реактивная и активная составляющие напряжения короткого замыкания:

(2-49)
(2-50)

Если числитель и знаменатель правой части равенства (2-50) умножить на I и число фаз т, то получим:

(2-51)

т. е. в то же время дает процентное значение электрических потерь в обмотках трансформатора или потерь короткого замыкания при номинальных токах.

Значения r1 и r2 могут быть измерены при постоянном токе, например при помощи амперметра и вольтметра Полученные при этом сопротивления будут несколько меньше активных сопротивлений обмоток. Активные сопротивления больше сопротивлений, измеренных при постоянном токе, в 1,03 — 1,07 раза вследствие наличия вихревых токов в проводниках обмоток и в других металлических частях трансформатора, вызванных полями рассеяния.

Определить отдельно значения х1 и x2 довольно трудно. Практически достаточно найти только хк.

2-8. Изменение вторичного напряжения

Вторичное напряжение при нагрузке в общем случае отличается от вторичного напряжения U20 при холостом ходе. Изменение вторичного напряжения при переходе от холостого хода к нагрузке при принято выражать в процентах номинального напряжения.

(2-52)

называется процентным изменением напряжения трансформатора. Оно может быть найдено при помощи векторной диаграммы, представленной на рис. 2-23 и соответствующей схеме замещения на рис. 2-24.

Рис. 2-23. Упрощенная векторная диаграмма трансформатора (для определения изменения напряжения).

Рис. 2-24. Упрощенная схема замещения (для определения изменения напряжения).

При построении диаграммы мы пренебрегли током I0, так как он не превышает 5—10% номинального тока (при этом ). На диаграмме ∆ОАВ — треугольник короткого замыкания со сторонами Из точки А мы опустили перпендикуляр на продолжение вектора .

Теперь можем написать:

(2-53)

(2-54)

где и

Так как n составляет в обычных случаях небольшую долю единицы, то можно воспользоваться приближенным равенством . Подставляя в (2-54) приближенное значение радикала, получим: или в процентах

(2-55)

где mк = m·100 и nк = n·100. Значения mк и nк можно найти при помощи графического построения, представленного на рис. 2-25. Здесь — треугольник короткого замыкания, стороны которого выражены в процентах от номинального напряжения:

(2-56)

(2-57)

значения uк и uo и uа рассчитываются по (2-48), (2-49) и (2-50). На гипотенузе как на диаметре построим окружность Проведем линию под заданным углом к катету до пересечения с этой окружностью. Отсюда найдем искомые значения mк и nк:

; .

Рис. 2-25 Диаграмма для определения и .

Непосредственное определение из рис. 2-23 не может быть точным, так как отрезки , во много раз меньше U и . На основе рис. 2-25 может быть получена формула для рекомендованная ГОСТ на трансформаторы.

Из рис. 2-25 и равенств (2-56) имеем:

(2-58)

(2-59)

Подставляя найденные значения mк и nк в (2-55), получим искомую формулу:

(2-60)

При многих практических расчетах можно пренебречь вторым слагаемым, так как оно по сравнению с первым слагаемым незначительно.

При помощи диаграммы, приведенной на рис. 2-25, или при помощи формулы (2-60) определяются важные в практическом отношении кривые, выражающие зависимости от от cos при Указанные кривые приведены на рис. 2-26 и 2-27.

Рис. 2-26. Кривые U% = f(b) при cosφ2 = const. Рис. 2-27. Кривая U% = f(cosj2) при b = const.

Здесь отрицательные значения при работе трансформатора с опережающим током соответствуют повышению напряжения при переходе от холостого хода к нагрузке (ср. с рис. 2-16).

Наибольшее значение получается при cos φ2 = cos φк, что следует из рис. 2-23.

2-9. Потери и коэффициент полезного действия

При работе трансформатора в нем возникают потери — магнитные и электрические.

Магнитные потери, или потери в стали Рс, принимаются, как отмечалось, равными потерям холостого хода P0. Они зависят от частоты тока, от индукций Вс в стержне и Вя в ярме сердечника, а также от весов стержней и ярм. Для уменьшения магнитных потерь и реактивной составляю­щей тока холостого хода сечение ярма берут несколько больше (на 5—10%) сечения стержня. Потери P0 приблизительно пропорциональны квадрату индукции (В 2 ) и частоте тока в степени 1,3 (f 1,3 ).

Электрические потери, или потери короткого замыкания, пропорциональны квадрату тока.

Коэффициент полезного действия (к.п.д.) трансформатора имеет высокие значения: от 0,96 при S ≈ 5 кВА до 0,995 при номинальной мощности, составляющей десятки тысяч кВА. Поэтому определение его непосредственным методом по формуле

(2-61)

где Р2 — полезная (вторичная) мощность; Р1 — затраченная (первичная) мощность, практически не может дать точных результатов.

Так как потери в трансформаторе невелики, то следует определять к.п.д. трансформатора косвенным методом и пользоваться при этом формулой

(2-62)

где — сумма всех потерь в трансформаторе;
m — число фаз;
rк75 и P0 — активное сопротивление короткого замыкания при 75°С и потери холостого хода, которые определяются, как указывалось ранее, по данным опытов короткого замыкания и холостого хода. Можно считать в обычных условиях U2 = U = const, P0 = const.

Тогда, обозначив , получим:

(2-63)

где Sн = mU2I — номинальная мощность; Рк н — потери короткого замыкания при номинальных токах в обмотках трансформатора.

В правой части (2-63) переменной величиной является только . Обычным путем можно найти максимум функции . Для этого приравняем ее первую производную нулю:

В полученной дроби знаменатель при реальных значениях не может быть равным бесконечности. Поэтому нужно приравнять нулю числитель. Отсюда найдем, что к.п.д. будет максимальным, когда потери короткого замыкания будут равны потерям холостого хода:

, (2-64)

т. е. при равенстве переменных потерь постоянным потерям (при изменении нагрузки практически изменяются только потери короткого замыкания).

Для трансформаторов, выпускаемых заводами Советского Союза, имеем:

P0 : Pк.н = 0,5÷0,25 ,что дает: = 0,7

Следовательно, к.п.д. получается максимальным при нагрузке, составляющей 50—70% от номинальной. Такая нагрузка обычно и соответствует средней нагрузке при эксплуатации трансформатора.

При вычислении к.п.д. пользуются формулой

(2-62,а)

2-10. Трансформирование трехфазного тока

Для трансформирования трехфазного тока применяются или трехфазные трансформаторы, или «трехфазные группы», состоящие из трех однофазных трансформаторов.

Наибольшее распространение на практике получили трехфазные стрежневые трансформаторы с расположением стержней в одной плоскости.

Сердечник одного из таких трансформаторов показан на рис. 2-28.

Рис. 2-28. Сердечник трехфазного стержневого трансформатора.

Здесь же указаны потоки (в соответствии с векторным уравнением потоков , причем за положительное их направление условно принято направление снизу вверх. Очевидно, амплитуда потока в ярме равна амплитуде потока в стержне.

Трехфазная группа, состоящая из трех однофазных трансформаторов, представлена на рис. 2-29.

Рис. 2 29. Трехфазная группа.

Одна из ее обмоток соединена в звезду, другая, как правило, соединяется в треугольник (§ 2-13).

На рис. 2-30,а представлен трехфазный броневой трансформатор.

Рис. 2-30. Трехфазный броневой трансформатор и распределение потоков в его сердечнике.

Обычно его стержни располагаются горизонтально с помещенными на них дисковыми чередующимися обмотками (рис. 2-8). Здесь различают продольные ярма, расположенные параллельно стержням, и поперечные ярма, расположенные перпендикулярно стержням. Продольные и поперечные ярма выполняются обычно с сечением, равным примерно половине сечения стержня. В трехфазном броневом трансформаторе средняя фаза первичной и вторичной обмоток должна быть соединена в обратном порядке по сравнению с крайними фазами. На рис. 2-30,а показано соединение обмотки высшего напряжения в звезду. Здесь правый зажим средней фазы принят за начало фазы, а левый — за ее конец в противоположность тому, что принято для крайних фаз. Только в этом случае поток в промежуточных поперечных ярмах равен полусумме потоков соседних стержней (рис. 2-30,б и в).

Неправильным будет соединение, при котором за начало и конец средней фазы приняты такие же зажимы, что и для крайних фаз, так как в этом случае в промежуточных поперечных ярмах поток будет равен полуразности потоков в соседних стержнях, т. е. в раз больше, чем в предыдущем случае.

2-11. Соединения обмоток трансформаторов

Обратимся к однофазному трансформатору, обмотки которого показаны на рис. 2-31.

Рис. 2-31. Обозначения зажимов обмоток однофазного трансформатора.

Согласно ГОСТ зажимы обмоток обозначаются так, как указано на этом рисунке. Начало и конец обмотки высшего напряжения обозначаются соответственно прописными буквами А и X. Для обмотки низшего напряжения берутся строчные буквы: а — начало и х — конец обмотки.

Зажимы обмоток трехфазных трансформаторов обозначаются, как указано на рис. 2-32.

Рис. 2-32. Обозначения зажимов обмоток трех фазного трансформатора.

Зная обозначения зажимов обмоток, мы можем правильно соединить обмотки трехфазного трансформатора и трехфазной группы в звезду или треугольник. Их необходимо также знать при включении трансформаторов на параллельную, работу.

Соединение обмотки, например, высшего напряжения в звезду показано на рис. 2-33.

Рис. 2-33. Соединение обмотки в звезду.

Напомним, что в этом случае линейное напряжение в раз больше фазного, а линейный ток равен фазному.

На рис. 2-34 показано соединение обмотки в треугольник.

Рис. 2-34. Соединение обмотки в треугольник.

Здесь линейное напряжение равно фазному, а линейный ток в раз больше фазного.

Соединение обмоток в звезду и звезду обозначают Y/Y и называют «звезда — звезда» или «игрек — игрек». Соединение обмоток в звезду и треугольник обозначают Y/D и называют «звезда — треугольник» или «игрек — дельта». Если от обмотки, соединенной в звезду, выводится нулевая точка, то такое соединение обозначают Y0 и называют «звезда с нулем» или «игрек нулевое».

Следует иметь в виду, что отношение линейных напряжений Uл1 и Uл2 трансформатора зависит не только от чисел витков обмоток w1 и w2 (на фазу), но и от способов их соединения:

при Y/Y

при Y/∆

при ∆/Y

2-12. Группы соединений

В зависимости от сдвига по фазе между линейными первичной и вторичной э.д.с. на одноименных зажимах трансформаторы разделяются на группы соединений, причем каждую группу составляют трансформаторы с одинаковым сдвигом по фазе между указанными э.д.с.

Для обозначения группы соединений выбирается ряд целых чисел от 1 до 12; здесь условно принято, что единица соответствует 30° по аналогии с углами между минутной и часовой стрелками часов в 1, 2. 12 ч. При определении группы соединений с вектором э.д.с. обмотки высшего напряжения нужно совместить минутную стрелку, а с вектором э.д.с. обмотки низшего напряжения — часовую стрелку. Отсчет угла производится от минутной стрелки к часовой по направлению их вращения.

Обратимся к однофазному трансформатору, обмотки которого представлены на рис. 2-35.

Рис. 2-35. Однофазный трансформатор 1/1-12.

Если они выполнены при одинаковом направлении намотки (например, по часовой стрелке, если смотреть от А к X и от a к х), то наведенные в них э.д.с. изобразятся векторами, направленными в одну и ту же сторону (рис. 2-35). Такой трансформатор принадлежит к группе соединений, обозначаемой числом 12. Его условное обозначение: 1/1-12.

Если тот же трансформатор будет иметь обмотку, например, низшего напряжения, у которой будут переставлены обозначения зажимов по сравнению с предыдущим случаем, то сдвиг между э.д.с. будет равен 180° (рис. 2-36).

Рис. 2-36. Однофазный трансформатор 1/1-6.

Такой трансформатор принадлежит к группе соединений, обозначаемой числом 6.

Обратимся к трехфазному трансформатору, представленному на рис. 2-37.

Рис. 2-37. Трехфазный трансформатор Y/Y-12.

Здесь обе обмотки соединены в звезду и намотаны в одинаковом направлении от начал к концам фаз. Векторные диаграммы э.д.с. показывают, что сдвиг между линейными э.д.с. АВ и ab в данном случае равен 0°. В этом мы убеждаемся, совместив при наложении диаграмм точки А и а. Следовательно, рассматриваемый трансформатор принадлежит к группе 12. Его полное обозначение: Y/Y-12.

Если у трехфазного трансформатора группы 12 поменять местами начала и концы фаз, например обмотки низшего напряжения, то получается трансформатор группы 6 (рис. 2-38). Его обозначают: Y/Y-6.

Рис. 2-38. Трехфазный трансформатор Y/Y-6.

Трехфазные трансформаторы с соединением обмоток Y/Y принадлежат к группам 6 и 12, если на каждом стержне сердечника помещены одноименные фазы. Если же у одной из обмоток сделать круговое перемещение обозначений зажимов, например вместо аbс сделать саb и затем bса, то при каждом перемещении будем поворачивать звезду вторичных э. д. с. на 120° и, следовательно, переходить от группы 12 к группам 4 и 8, а от группы b — к группам 10 и 2. Таким образом, при соединении обмоток Y/Y можем получить все четные группы соединений 2, 4, 6, 8, 10, 12.

Обратимся к трехфазному трансформатору с соединением обмоток Y/∆ представленному на рис. 2-39.

Рис. 2-39. Трехфазный трансформатор Y/∆-5.

Векторные диаграммы э.д.с., приведенные на этом же рисунке, показывают, что сдвиг между линейными э.д.с. здесь равен 330°. Следовательно, трансформатор принадлежит к группе 11. Он обозначается: Y/-11.

Если у рассмотренного трансформатора (рис. 2-39) поменять местами начала и концы фаз обмотки низшего напряжения, то получается трансформатор группы 5 (рис. 2-40) со сдвигом между линейными э.д.с., равным 150°. Такой трансформатор обозначается Y/∆-5.

Рис. 2-40. Трехфазный трансформатор Y/∆-5.

Если сделать круговое перемещение обозначений зажимов для обмотки низшего напряжения трансформаторов, представленных на рис. 2-39 и 2-40, то перейдем соответственно от группы 11 к группам 3 и 7 и от группы 5 к группам 9 и 1. Следовательно, при соединении обмоток Y/∆ (или ∆/Y) можем noлучить все нечетные группы 1, 3, 5, 7, 9, 11.

Такое большое разнообразие групп соединений трансформаторов не только не требуется, но вызывало бы большие затруднения на практике, например при осуществлении параллельной работы трансформаторов (§ 2-17).

В СССР стандартизованы только две группы соединений: 12 и 11. Все выпускаемые советскими заводами нормальные однофазные трансформаторы и трехфазные с соединением обмоток Y/Y принадлежат к группе 12, а трехфазные трансформаторы с соединением обмоток Y/∆ — к группе 11.

2-13. Третьи гармоники в кривых тока холостого хода, магнитного потока и электродвижущих сил

Рассмотрим вначале процесс намагничивания однофазного трансформатора. Как отмечалось, вследствие нелинейной связи между потоком Ф в стальном сердечнике трансформатора и создающей его н.с. i0w1 кривая i0 = f(t) отличается от синусоиды. Мы эту кривую найдем, пренебрегая потерями в стали и рассматривая вместо тока io намагничивающий ток iμ, прак­тически равный i0.

Кривую Ф = f(t) можно принять синусоидальной, если приложенное напряжение u1 и, следовательно, уравновешивающая его э.д.с. е1 — синусоидальные функции времени. В этом случае кривая iμ = f(t) определяется графически, как показано на рис. 2-41.

Рис. 2-41. Построение кривой намагничивающего тока iμ = f(t) однофазного трансформатора при синусоидальном потоке.

Слева мы имеем кривую намагничивания Ф = f(iμ) (здесь пренебрегаем гистерезисом). Справа для заданной синусоидальной кривой Ф = /(t) мы получаем кривую iμ = f(t), ординаты которой a, b, с, d и т. д. равны абсциссам кривой Ф = f(iμ) для соответствующих значений потока Ф.

Мы видим, что кривая тока искажена. Она имеет наряду с первой гармоникой довольно резко выраженные третью и пятую гармоники. Кривая тока построена для нормального трансформатора, имеющего, как это обычно бывает, максимальную индукцию в сердечнике около 14 500 Гс. В этом случае гармоники с номером выше пятого имеют небольшие значения.

Гистерезис мало искажает кривую тока. При разложении на гармоники кривой тока, построенной с учетом гистерезиса, мы получили бы, кроме синусоид, еще косинусоиды с малыми амплитудами. Они дают активную составляющую тока iо, соответствующую потерям от гистерезиса.

При некоторых схемах соединения обмоток трехфазного трансформатора в кривой намагничивающего тока отсутствуют третья гармоника и гармоники с номером, кратным трем. Если принять кривую iμ = f(t) синусоидальной, то кривая Ф = /(t) будет отличаться от синусоиды. Из высших гармоник в ней наиболее резко будет выражена 3-я гармоника. На рис. 2-42 приведено построение кривой Ф = /(t) при синусоидальной кривой iμ = f(t).

Рис. 2-42. Построение кривой Ф = /(t) при синусоидальном намагничивающем токе.

Здесь по абсциссам а, b, с и т. д., равным ординатам кривой iμ = f(t), найдены соответствующие значения потока Ф.

Обратимся к трехфазному трансформатору с соединением обмоток Y0/Y. Будем считать, что с первичной стороны трансформатора выведена нулевая точка, которая соединена с нулевой точкой обмотки генератора трехфазного тока рис. 2-43.

Рис. 2-43. Третьи гармоники намагничивающих токов трехфазного трансформатора при соединении обмоток Y0/Y.

В этом случае намагничивающие токи фаз будут иметь третьи гармоники. Они совпадают по фазе и, следовательно, будут все направлены или oт генератора к трансформатору, или обратно. По нулевому проводу будет проходить ток, равный тройному значению третьей гармоники тока.

При отсутствии нулевого провода (при Y/Y) в кривых фазных намагничивающих токов третьи гармоники не могут иметь места, так как теперь для них нет замкнутого пути. Следовательно, в кривых фазных потоков появятся третьи гармоники, которые будут наводить в фазах обмотки третьи гармоники э.д.с.

Наиболее резко третьи гармоники будут проявляться в кривых фазных э.д.с. трехфазной группы и трехфазного броневого трансформатора. Здесь магнитное сопротивление для третьей гармоники потока мало, так как она проходит по стальному, сердечнику, как и первая гармоника; поэтому она может достичь относительно больших значений: при обычных насыщениях сердечником указанных трансформаторов амплитуда третьей гармоники фазной э.д.с. достигает 40—50% амплитуды первой гармоники той же э.д.с.

В трехфазном стержневом трансформаторе при соединении обмоток Y/Y в кривых фазных э.д.с. также будут иметь место третьи гармоники. Однако здесь вследствие большого магнитного сопротивления для третьих гармоник потоков фаз они относительно малы: их амплитуда обычно не пре­вышает 5—7% амплитуды первой гармоники фазной э.д.с. Увеличение магнитного сопротивления для третьих гармоник фазных потоков объясняется тем, что они в любой момент времени будут направлены по стержням трансформатора или вверх, или вниз и не могут, следовательно, замыкаться по стальному сердечнику, а принуждены часть пути проходить по воздуху или маслу, как показано на рис. 2-44.

Рис. 2-44. Приближенная картина поля, соответствующего третьим гармоникам фазных потоков.

Из рис. 2-44 также следует, что наличие третьих гармоник в фазных потоках трехфазного стержневого трансформатора несколько повышает потери в стали (в стенках бака, конструктивных деталях трансформатора).

Наличие третьих гармоник в фазных э.д.с. не нарушает необходимого условия работы трансформатора — равновесия приложенного напряжения и наведенной в обмотке э.д.с. Действительно, хотя фазная э.д.с. будет иметь третью гармонику, но междуфазная э.д.с. ее иметь не будет, так как при соединении обмотки звездой третьи гармоники фазных э.д.с. при обходе двух фаз, встречно соединенных, направлены друг против друга.

Если одна из обмоток трехфазного трансформатора соединена треугольником, то третьи гармоники в кривых потоков, а следовательно, и фазных э.д.с. практически пропадают. Это объясняется тем, что в обмотке, соединенной треугольником, третьи гармоники фазных э.д.с. направлены по контуру в одну сторону; они создадут третью гармонику тока, при наличии которой поток становится почти синусоидальным.

Теперь должно быть ясным, почему обмотки трехфазной группы и трехфазного броневого трансформатора выполняются, как правило, с соединением Y/D или ∆/Y. Обмотки трехфазного стержневого трансформатора часто имеют соединение Y/Y. Однако и здесь при большой мощности (больше 1800 кВА) выбирается соединение Y/∆ или ∆/Y.

Ранее иногда, в случае необходимости иметь соединение обеих обмоток мощного трехфазного трансформатора в звезду, снабжали такой трансформатор третьей обмоткой, соединенной треугольником, причем никаких выводов от этой обмотки не делалось, она служила только для компенсации третьей гармоники в кривой фазной э.д.с. Такую обмотку будем называть компенсационной. В настоящее время она используется как третья рабочая обмотка (см. § 2-16).

2-14. Расчет тока холостого хода

Ток холостого хода Iо имеет активную составляющую Iоа и реактивную составляющую Iор

Активная составляющая тока холостого хода, как указывалось, зависит от потерь Рс в стали сердечника:

для однофазного трансформатора

для трехфазного трансформатора

где U1 — фазное напряжение.

В действительности потери в стали зависят от потока Фм и, следовательно, от э.д.с. Е1; однако практически при определении потерь Рс можно считать

Потери в стали сердечника зависят от: Вс ─ индукции в стержнях, Гс; Ва ─ в ярмах, Гс; веса Gя ─ стержней и Gя ─ ярм, кг; f ─ частоты перемагничивания, Гц. Приближенно можно принять:

Вт, (2-65)

где p10/50 — удельные потери в листовой стали, Вт/кг, из которой выполнен сердечник трансформатора, при максимальной индукции 10000 Гс и частоте 50 Гц.

Для силовых трансформаторов обычно выбирается сталь марок Э41, Э42 и холоднокатаная Э320 (при толщине листа ∆ = 0,5 или 0,35 мм); для указанных марок стали р10/50 соответственно равняется 1,6; 1,4 и 1,15 — 1,20 Вт/кг (при ∆ =0,5 мм) и 1,35; 1,2; 0,9—0,95 Вт/кг (при ∆ = 0,35 мм).

Значения индукций определяются по формулам

где Sc и Sя — площади сечения стержня и ярма, см 2 (берется площадь без изоляции между листами); значение Фм , мкс, рассчитывается по уравнению

. (2-66)

Веса Gc и Gя определяются по геометрическим размерам и удельному весу для листовой стали γс = 7,6 кг/дм 3 .

Из (2-65) следует, что при увеличении частоты f сверх номинальной и при сохранении неизменным номинального первичного напряжения потери Рс будут уменьшаться, так как при этом согласно (2-66) поток Фм, а следовательно, и В изменяются обратно пропорционально f.

Реактивная составляющая тока холостого хода I определяется из расчета магнитной цепи трансформатора следующим образом.

На рис. 2-45,а представлен сердечник однофазного трансформатора.

Рис. 2-45. Эскизы магнитных цепей.
а
—однофазного трансформатора (пв = 4); б—трехфазного трансформатора (для крайних фаз пв = 3; для средней nв=1).

Здесь жирным пунктиром показан путь главного потока Ф. Согласно закону полного тока н.с. Iw1, необходимая для создания в сердечнике потока Фм, определяется из уравнения
Iw1 = 2Hclc + 2Hяlя + 0,8Bcnвδв, (2-67)
где Hс и Ня — напряженности поля в стержне и ярме, А/см, которые определяются по кривым намагничивания (рис. 2-46) соответственно для индукций Вс и Вя;
n
в — число зазоров, которое принимается равным четырем для однофазного трансформатора при сборке его сердечника «внахлестку»;
δв ≈ 0,0035 0,005 см — зазор при той же сборке сердечника.

Рис. 2-46. Кривые намагничивания трансформаторной листовой стали: сплошная — для Э41 и Э42; пунктирная — для Э320.

Из (2-67) реактивная составляющая тока холостого хода, А:

(2-68)

На рис. 2-45,б представлен сердечник трехфазного стержневого трансформатора. При расчете I такого трансформатора сначала определяется I0р(кр) для крайних фаз по формуле

где nв = 3; затем для средней фазы по формуле

где nв = 1. Ток I принимается равным среднему арифметическому:

При расчете I мы пренебрегаем высшими гармониками тока i iμ, так как они при обычных значениях индукций мало влияют на действующее значение I.

Из кривых намагничивания рис. 2-46 мы видим, как сильно влияет насыщение стали (значение В) на Н, а следовательно, и на I. Обычно при стали Э41 и Э42 значения Bс = 10000 14500 Гс и при стали Э320 Вс = 13000 16500 Гс, Вя = (0,90 0,95) Вс для масляных трансформаторов мощностью от 5 до 100000 кВА; для сухих трансформаторов они снижаются на 10 20%. При таких индукциях ток I (I I0) составляет от 10 до 4% номинального тока I.

2-15. Определение параметров трансформатора расчетным путем

Расчет активных сопротивлений rj и r2, Ом, может быть произведен, если известны сечения проводников обмоток s1 и s2, мм 2 , число витков wl и w2 и средние длины витков lср1 и lср2, м. Тогда имеем:

где kr = 1,03 1,05 — коэффициент, учитывающий потери, вызванные полями рассеяния обмоток;

— удельное сопротивление меди при 75° С;

— тоже для алюминия.

Активное сопротивление короткого замыкания

Потери в обмотках при номинальных токах (сюда же относятся и потери, вызванные полями рассеяния), Вт

Формулы для потерь можно преобразовать следующим образом:

Трансформаторы. Режимы работы и рабочие характеристики

Введение.

В первой части нашей статьи мы рассмотрели устройство трансформатора, принцип действия и виды трансформаторов. Теперь поговорим о них более детально.

Режимы работы трансформатора

Холостой ход однофазного трансформатора

Приведенные при рассмотрении принципа действии трансформа­тора соотношения справедливы лишь для идеального трансформатора, в котором пренебрегают сопротивлениями обмоток и потерями в сердечнике и считают, что магнитный поток замыкается только по сердечнику. В реальных условиях необходимо учитывать падения напряжения в обмотках и фактическую картину распределения магнитных полей. В частности, при холостом ходе МДС F0 кроме основного магнитного потока взаимоиндукции Ф0, замыкающегося по сердечнику, создает магнитный поток рассеяния Фрс1, который замыкается, в основном, по воздуху и сцепляется только с первичной обмоткой (рис. 1).

Рис. 1 — Холостой ход однофазного трансформатора

Под действием этого магнитного потока в первичной обмотке индуктируется ЭДС самоиндукции ерс1, действующее значение которой обычно рассчитывают по соотношению

где хрс1 — индуктивное сопротивление рассеяния первичной обмотки.

Для упрощения записи это сопротивление часто обозначают просто х1 Оно равно

где L1 — индуктивность рассеяния, определяемая по специальным формулам.

Таким образом, реально существующий магнитный поток рассеяния Фрс1 первичной обмотки и соответствующая ему ЭДС Ерс1 учитываются путем введения некоторого индуктивного сопротивления рассеяния х1, падение напряжения на котором уравновешивает ЭДС, т.е. в векторной форме равенство

записывают в виде

Такой подход значительно упрощает анализ и расчет режимов работы трансформатора. Сопротивление х1 практически постоянно, а величина Ерс1 пропорциональна току первичной обмотки.

Полное сопротивление первичной обмотки, кроме сопротивления х1 учитывает также активное сопротивление r1, т.е.

Электрическая схема замещения фазы первичной обмотки трансформатора на холостом ходу полностью аналогична схеме замещения катушки со стальным сердечником (рис. 2).

Рис. 2 — Электрическая схема замещения фазы трансформатора на холостом ходу

Уравнение электрического равновесия трансформатора для режима холостого хода может быть записано в виде

Таким образом, подводимое к первичной обмотке напряжение уравновешивается ЭДС самоиндукции Е10 и падением напряжения на сопротивлениях r1 и х1 обмотки. Поскольку падение напряжения достаточно мало, последнее уравнение для режима холостого хода часто записывают в виде

Векторная диаграмма трансформатора в режиме холостого хода является графической иллюстрацией и решением уравнений

Векторы как это следует из уравнений

отстают от вектора Фом на 90° (рис.3). Величина напряжения U2020 отличается от Е10 в отношении коэффициента трансформации. Ток холостого хода I0 не синусоидален и его представляют в виде двух составляющих: I0а — активной, определяющей потери энергии в стали сердечника и в обмотке; I0р — реактивной, необходимой для создания МДС F0 и потоков Ф0 и Фрс1.

Рис. 3 — Векторная диаграмма холостого хода трансформатора

Таким образом, можно записать

Работа трансформатора под нагрузкой

Нагрузочным или рабочим называется режим работы трансформатора, при котором к первичной обмотке подведено напряжение U1, а к вторичной подключены потребители ZН (рис. 4), так что I2 > 0.

Рис. 4 — Нагрузочный режим однофазного трансформатора

Это основной режим, при котором вторичный ток изменяется в пределах 0 Режим короткого замыкания

Короткое замыкание (к.з.) трансформатора представляет собой такой режим его работы, когда вторичная обмотка замкнута накоротко (Zн = 0) и, следовательно, вторичное напряжение U2 равно нулю.

При внезапном коротком замыкании, когда к первичной обмотке подводится номинальное напряжение, токи в обмотках превышают номинальные значения в 10…20 раз. Такое к.з. может иметь место при эксплуатации трансформатора и является аварийным. Возникают недопустимые перегревы обмоток и значительные электродинамические усилия, которые приводят к разрушению трансформатора. Для защиты трансформатора от коротких замыканий применяются быстродействующие автоматы защиты.

В процессе испытания трансфор­маторов производят опыт короткого замыкания, но при таком понижен­ном первичном напряжении, чтобы токи в обмотках были равны номи­нальным. Это напряжение, выраженное в % от номинального (uк %), заносится на заводскую табличку трансформатора. Измерения при таком испытательном коротком замыкании, также как и измерения при холостом ходе позволяют определить ряд важных параметров трансформатора.

Приведенный трансформатор

Приведение вторичной обмотки трансформатора к первичной

Для упрощения анализа и расчета режимов работы трансформатора пользуются способом, при котором одна из его обмоток приводится к другой. Смысл приведения состоит в том, чтобы сделать ЭДС первичной и вторичной обмоток одинаковыми, электромагнитную связь между обмотками заменить электрической связью и получить единую электрическую схему замещения трансформатора, построить другую, более простую и наглядную векторную диаграмму. Чаще всего вторичную обмотку приводят к первичной. Для этого условно заменяют реальную вторичную обмотку некоторой фиктивной обмоткой с числом витков:

т.е. увеличивают число ее витков в k раз. Таким образом, коэффициент приведения вторичной обмотки к первичной равен коэффициенту трансформации. Все параметры приведенной обмотки обозначают со штрихами:

и т.д. В приведенной обмотке в соответствии с новым числом витков увеличиваются все ЭДС, напряжения и падения напряжения, т.е.:

Важным условием приведения является то, чтобы мощности и потери энергии во вторичной обмотке не изменялись. Для этого должны выполняться равенства:

из которых получаются соотношения для тока и активного сопротивления приведенной вторичной обмотки:

Аналогично последнему соотношению изменяются индуктивное сопротивление рассеяния приведенной вторичной обмотки и параметры нагрузки:

Для полных сопротивлений справедливы соотношения:

Если таким образом изменить (условно конечно) все электрические величины вторичной обмотки, то энергетические соотношения в реальном и приведенном трансформаторе сохраняются без изменений и поэтому приведение правомерно. При этом необходимо помнить, что приведение — это чисто аналитический прием, позволяющий упростить расчеты и анализ физических процессов в реальном трансформаторе.

Схема замещения и уравнения электрического равновесия приведенного трансформатора

Поскольку в приведенной вторичной обмотке ЭДС

равна ЭДС E1, то оказывается возможным схемы замещения первичной обмотки (рис. 5,а) и вторичной обмотки (рис. 5,б) с измененными параметрами объединить в одну схему замещения, соединив электрически точки равного потенциала. Такая полная двухконтурная схема замещения показана на рис. 7. Ее часто называют Т-образной схемой замещения приведенного трансформатора.

Рис. 7 — Т-образная схема замещения приведенного трансформатора

На этой схеме ветвь c – d с сопротивлениями rm и xm и током I0 называют ветвью намагничивания, ветвь А – с с током I1 — первичной ветвью, ветвь с – а– х – d с током

— вторичной ветвью или вторичным контуром.Параметры схемы имеют строго определенные наименования: rm — активное сопротивление ветви намагничивания, учитывающее потери в стали магнитопровода на перемагничивание и вихревые токи:

— индуктивное сопротивление взаимоиндукции (ветви намаг­ничивания).

поэтому принимают, что:

r1 и r2’ — активные сопротивления первичной и приведенной вторичной обмоток; x1 и x2 ‘ — индуктивные сопротивления рассеяния первичной и приведенной вторичной обмоток;

— приведенное сопротивление нагрузки. Уравнения равновесия токов и ЭДС приведенного трансформатора записываются на основании 1 и 2 законов Кирхгофа:

Полная векторная диаграмма приведенного трансформатора (рис.8) является графическим решением приведенных уравнений электрического равновесия.

Рис. 8 — Векторная диаграмма приведенного трансформатора

Она объединяет векторные диаграммы первичной и вторичной обмоток, показанные на рис. 6 , при этом векторы ЭДС

между собой, а все построения для вторичной обмотки производятся для приведенных параметров.

Как отмечалось выше, в режимах номинальной нагрузки ток холостого хода I0 очень мал по сравнению с током I1н. Тем более он несоизмеримо мал по сравнению с током короткого замыкания, поэтому в этих режимах им можно пренебречь и в расчетах пользоваться упрощенной схемой замещения (рис. 9).

Рис. 9 — Упрощенная схема замещения приведенного трансформатора

Сопротивления rk = r1 +r2 ‘ и xk= x1 + x2называют сопротивлениями короткого замыкаия.

Уравнения электрического равновесия для упрощенной схемы имеют вид:

Опытное определение параметров схемы замещения трансформатора

Для определения параметров схемы замещения трансформатора проводят его испытания в режиме холостого хода и опытного короткого замыкания.

Схема опыта холостого хода приведена на рис.10 . Первичную обмотку подключают на номинальное напряжение и измеряют ток холостого хода I0 , мощность P0, напряжение на разомкнутой вторичной обмотке U20 .

Рис. 10 — Схема опыта холостого хода

Мощность P0, потребляемая из сети, расходуется на потери в меди ?Pm1 = I0 2 r1 и потери в стали ?Pст= I0 2 rm при этом, поскольку rm»r1, потерями в первичной обмотке ?Pm1 пренебрегают и считают, что вся потребляемая из сети мощность расходуется на потери в стали, т.е.:

Исходя из схемы замещения (рис. 5, а ) и пренебрегая величиной z1 по сравнению с zm можно определить величину zm из соотношения:

Коэффициент мощности при холостом ходе определяется из соотношения:

Коэффициент трансформации равен:

Схема опыта короткого замыкания приведена на рис. 11.

Рис. 11 — Схема опыта короткого замыкания

В этом опыте вторичная обмотка замыкается накоротко, а на первичной обмотке с помощью регулятора устанавливают такое напряжение U1k, при котором ток в первичной обмотке равен номинальному I1k = I1н. Величина U1k имеет весьма важное эксплуатационное значение и всегда указывается на щитке трансформатора. Обычно она указывается в процентах от номинального напряжения и для однофазных трансформаторов составляет 3%…5%.

Поскольку в рассматриваемом режиме U2=0, то трансформатор не отдает потребителю полезной мощности и вся мощность P1k, потребляемая из сети, расходуется на потери. Т.к. потери в стали ?Рст пропорциональны квадрату магнитной индукции ?Рст ? В 2 ? Е 2 ? U1 2 , то, ввиду малости напряжения U1k, этими потерями пренебрегают и считают, что вся потребляемая мощность расходуется на потери в обмотках, т. е:

Полное сопротивление короткого замыкания равно:

Принимая далее, что :

получаем все параметры Т-образной схемы замещения трансформатора.

Рабочие характеристики трансформатора

Зависимость вторичного напряжения трансформатора от величины и характера нагрузки

Изменением напряжения двухобмоточного трансформатора при заданной нагрузке называется выраженная в процентах от номинального вторичного напряжения разность:

где U2o и U2н — вторичные напряжения при холостом ходе и при нагрузке.

Существуют определенные ГОСТом допустимые нормы изменения напряжения трансформатора при номинальной нагрузке. Часто в конструкции трансформатора предусматривается возможность в небольших пределах регулировать вторичное напряжение путем изменения числа витков первичной или вторичной обмоток, имеющих дополнительные выводы.

Физически влияние величины нагрузки на вторичное напряжение объясняется изменением (увеличением) падения напряжения на соп­ротивлениях обмоток трансформатора при увеличении тока нагрузки I2 (или I2’).

Логическая цепочка этого процесса такова:

При возрастании тока увеличивается и ток I1 вызывая увеличение падения напряжения в сопротивлениях первичной обмотки. Поскольку:

то это приводит к некоторому снижению ЭДС E1, и соответствующему изменению магнитного потока взаимоиндукции, а это влечет за собой уменьшение . В свою очередь падение напряжения на сопротивлениях вторичной обмотки создают дополнительные изменения напряжения .

Влияние характера нагрузки (отношения xн /rн) на величину вторичного напряжения при неизменном токе нагрузки удобно проследить, пользуясь упрощенной векторной диаграммой (рис. 1), на которой показаны режимы работы трансформатора для случаев ?2 > 0, ?2 = 0 и ?2 0) и чисто активной нагрузке (?2 = 0) приведенное вторичное напряжение меньше первичного напряжения .

При активно-емкостной нагрузке (?2 Внешняя характеристика трансформатора

Внешней характеристикой трансформатора называют зависимость:

при и cos?1 = const (рис. 13).

Рис. 13 — Внешняя характеристика трансформатора

Из рис. 13 следует, что внешняя характеристика трансформатора при увеличении тока нагрузки до номинального является достаточно жесткой. Изменение напряжения составляет всего несколько процентов и зависит от характера нагрузки, что находится в соответствии с векторной диаграммой (рис. 12 ).

При активной и активно-индуктивной нагрузке напряжение уменьшается, при активно-емкостной нагрузке оно может несколько возрастать. На практике величина изменения напряжения обычно рассчитывается по приближенной формуле:

где ? = I2/I2н нагрузка трансформатора в относительных единицах;

Потери в трансформаторе и его КПД

Трансформатор потребляет из сети мощность:

где m1 – число фаз.

Часть этой мощности, как отмечалось, теряется в виде потерь в обмотках:

другая часть — в виде потерь в сердечнике на гистерезисе и вихревые токи.

Электромагнитная мощность:

передается во вторичную обмотку посредством магнитного поля.

Полезная мощность равна:

мало изменяются при изменении нагрузки и относятся к категории постоянных потерь. Потери в обмотках:

являются переменными т.к. изменяются при изменении тока. Коэффициент полезного действия трансформатора показывает соотношение между мощностью, которая передается из первичной обмотки во вторичную и обратно, и мощностью, которая преобразуется в тепло. КПД определяется по формуле:

КПД силовых трансформаторов обычно достигает 94…98%. Рассчитывают трансформаторы таким образом, чтобы КПД имел наибольшее значение при нагрузке ? = 0,5 – 0,7 от номинальной. Обычно трансформаторы работают с некоторой недогрузкой — в области максимального значения КПД рис. 14.

Рис. 14 — Коэффициент полезного действия трансформатора

При передаче значительной реактивной мощности (при уменьшении cos?2) КПД уменьшается, что показано на рис. 1, кривая 2.

Параллельная работа трансформаторов

Параллельная работа трансформаторов возможна лишь в том случае, если в обмотках трансформаторов не возникают уравнительные токи, а нагрузка распределяется пропорционально номинальным мощностям трансформаторов. Практически это сводится к выполнению следующих условий:

1. Напряжения обмоток высшего и низшего напряжения, указанные на заводских табличках, должны быть соответственно равны, т.е. должны быть равны коэффициенты трансформации k1 = k2 …kn.

2. Напряжения короткого замыкания uк, указываемые на заводских табличках трансформаторов, должны быть также равны; при параллельной работе трансформаторов допускают отклонения в пределах ±10 %.

3. Мощности параллельно работающих трансформаторов не должны значительно отличаться одна от другой. Допускается различие мощностей не больше чем в 3 раза.

4. Схемы и группы соединений обмоток трансформаторов, предназначенных для параллельной работы, должны быть одинаковыми. Это требование может быть выполнено, если условные обозначения схем и групп соединений, указанные на заводских табличках, будут одинаковыми.

5. Обмотки фаз трансформаторов, включенных для параллельной работы, должны совпадать, т. е. одинаково обозначенные выводы обмоток фаз должны быть присоединены к одной, а не к разным шинам.

Рассмотрим последствия нарушения названных условий.

Допустим, что не выполнено первое условие (k1 Е2. Под действием возникшей разности потенциалов в замкнутом контуре вторичных обмоток пойдет уравнительный ток, который создаст падение напряжения в обмотках. В трансформаторе 1 это вызовет уменьшение напряжения на зажимах вторичной обмотки, в трансформаторе 2 – увеличение вторичного напряжения. В результате напряжение на внешних шинах будет иметь среднее значение. При нагрузке уравнительный ток накладывается на ток нагрузки, вследствии чего трансформатор 1 будет перегружен, а трансформатор 2 – недогружен. ГОСТ допускает расхождение в коэффициентах трансформации не больше ±0,5% от их среднего значения.

Если трансформаторы имеют неодинаковые номинальные напряжения короткого замыкания u ? u, значит неодинаковы сопротивления короткого замыкания Z ? Z. При работе трансформаторов в параллель напряжения вторичных обмоток одинаковы т. е. I12Z = I22Z, а это возможно лишь при неодинаковых токах трансформаторов. Это значит, что при параллельной работе трансформаторов нагрузка между ними будет распределяться непропорционально их номинальным мощностям. Чтобы не вызвать аварии трансформатора, имеющего меньшее значение uК, необходимо снижать общую нагрузку. Это ведет к неполному использованию трансформаторов. Согласно ГОСТ необходимо, чтобы разница напряжений короткого замыкания не превышала ±10% от их среднего значения, а соотношение номинальных мощностей параллельно работающих трансформаторов было не больше, чем 3:1.

Несоблюдение четвертого условия вызывает настолько большой уравнительный ток, что трансформаторы могут выйти из строя из-за перегрева обмоток. Даже при минимальном расхождении групп соединения трансформаторов (например, у одного группа ?/? – 0, а у другого ?/? – 11) уравнительный ток будет примерно в 5 раз больше номинального, что равносильно короткому замыканию.

Во избежание ошибок присоединение трансформаторов к сети без нулевого провода ( пятое условие ) производят следующим образом. Включают оба трансформатора со стороны высшего напряжения, затем один из них присоединяют к шинам низкого напряжения выводами обмоток всех фаз, а другой — выводами обмотки одной фазы, например С. Затем между выводами обмоток фаз В и А второго трансформатора и шинами низкого напряжения, к которым соответственно присоединены выводы обмоток фаз В и А первого трансформатора, включают вольтметр или лампу. Если обозначения выводов обмоток фаз на трансформаторах нанесены правильно, то между всеми парами одноименных выводов напряжение равно нулю (лампа не горит или вольтметр показывает нуль) и выводы В и А второго трансформатора могут быть соединены с шинами, к которым соответственно присоединены выводы В и А первого трансформатора.

Контрольные лампы или вольтметры при указанной проверке должны быть взяты на двойное рабочее напряжение трансформатора со стороны низшего напряжения.


источники:

http://lektsii.org/8-56941.html

http://www.radioingener.ru/transformatory_part2/