Уравнения в целых числах тест

Олимпиадные задания. Решение уравнений в целых числах
методическая разработка по алгебре (9, 10, 11 класс) на тему

В данной работе представлены различные способы решения уравнений в целых числах. Работа может быть использована при подготовке к олимпиадам, на кружковых и факультативных занятиях.

Скачать:

ВложениеРазмер
aksanova_ii._olimpiadnye_zadaniya.reshenie_uravneniy_v_tselyh_chislah.docx100.62 КБ

Предварительный просмотр:

МБОУ «Высокогорская средняя общеобразовательная школа №2

Высокогорского муниципального района Республики Татарстан»

Решение уравнений в целых числах

Аксанова Ильсияр Исмагиловна

Учитель математики высшей категории

С. Высокая Гора – 2015 г.

Работа посвящена решению уравнений в целых числах. Актуальность этой темы обусловлена тем, что задачи, основанные на решении уравнений в целых числах, часто встречаются на вступительных экзаменах в высшие учебные заведения и на олимпиадах по математике и на ЕГЭ в старших классах. В школьной программе эта тема рассматривается в ознакомительном порядке. В работе представлены различные способы решения уравнений в целых числах, разобраны конкретные примеры. Данная работа будет полезна учителям старших классов для подготовки к ЕГЭ и олимпиадам.

Уравнения в целых числах – это алгебраические уравнения с двумя или более неизвестными переменными и целыми коэффициентами. Решениями такого уравнения являются все целочисленные наборы значений неизвестных переменных, удовлетворяющих этому уравнению. Такие уравнения ещё называют диофантовыми , в честь древнегреческого математика Диофанта Аксандрийского, который исследовал некоторые типы таких уравнений ещё до нашей эры.

Наиболее известное уравнение в целых числах – великая теорема Ферма: уравнение

не имеет ненулевых рациональных решений для всех натуральных n > 2.

При решении уравнений в целых и натуральных числах можно условно выделить следующие способы решения:

  • способ перебора вариантов;
  • применение алгоритма Евклида;
  • применение цепных дробей;
  • разложения на множители;
  • решение уравнений в целых числах как квадратных относительно какой-либо переменной;
  • метод остатков;
  • метод бесконечного спуска;
  • оценка выражений, входящих в уравнение.

В работе представлены два приложения: п риложение 1. Таблица остатков при делении степеней ( a n : m ); приложение 2. Задачи для самостоятельного решения

1. Способ перебора вариантов.

Пример 1.1. Найти множество всех пар натуральных чисел, которые являются решениями уравнения 49 х + 51 у = 602.

Решение. Выразим из уравнения переменную х через у х = , так как х и у – натуральные числа, то

х = 602 — 51 у ≥ 49, 51 у ≤553, 1≤ у ≤10 .

Полный перебор вариантов показывает, что натуральными решениями уравнения являются х =5, у =7.

2. Применение алгоритма Евклида. Теорема.

Дано уравнение ax+by=c , где a, b, c -целые числа, a и b не равны 0.

Теорема: Если c не делится нацело на НОД( a,b ), то уравнение не разрешимо в целых числах. Если НОД( a,b )=1или c делится на НОД( a,b ), то уравнение разрешимо в целых числах. Если (x 0 , y 0 )- какое-нибудь решение уравнения, то все решения уравнения задаются формулами:

y=y 0 +at , где t — принадлежит множеству целых чисел.

Пример 2.1. Решить уравнение в целых числах 5 х + 7 у = 19

Подберём сначала некоторое конкретное решение. В данном случае, это просто, например,

Тогда 5 x 0 + 7 y 0 = 19, откуда

5( х – x 0 ) + 7( у – y 0 ) = 0,

5( х – x 0 ) = –7( у – y 0 ).

Поскольку числа 5 и 7 взаимно простые, то

х – x 0 = 7 k , у – y 0 = –5 k.

Значит, общее решение:

х = 1 + 7 k , у = 2 – 5 k ,

где k – произвольное целое число.

Ответ: (1+7 k ; 2–5 k ), где k – целое число.

Пример 2.2. Решить уравнение 201 х – 1999 у = 12.

Найти некоторое конкретное решение подбором в данном случае достаточно сложно. Воспользуемся алгоритмом Евклида для чисел 1999 и 201:

НОД(1999, 201) = НОД(201, 190) = НОД(190, 11) = НОД(11, 3) = НОД(3 , 2) = НОД(2, 1) = 1.

Запишем этот процесс в обратном порядке:

1 = 2 – 1 = 2 – (3 – 2) = 2·2 – 3 = 2· (11 – 3·3) – 3 = 2·11 – 7·3 = 2·11 – 7(190 – 11·17) =

= 121·11 – 7·190 = 121(201 – 190) – 7·190 = 121·201 – 128·190 =

= 121·201 – 128(1999 – 9·201) = 1273·201 – 128·1999.

Значит, пара (1273, 128) является решением уравнения 201 х – 1999 у = 1. Тогда пара чисел

x 0 = 1273·12 = 15276, y 0 = 128·12 = 1536

является решением уравнения 201 х – 1999 у = 12.

Общее решение этого уравнения запишется в виде

х = 15276 + 1999 k , у = 1536 + 201 k , где k – целое число,

или, используя, что 15276 = 1283 + 7·1999, 1536 = 129 + 7·201, имеем

х = 1283 + 1999 n , у = 129 + 201 n , где n – целое число.

Ответ: (1283+1999 n , 129+201 n ), где n – целое число.

3. Метод остатков.

Этот метод основан на исследовании возможных остатков левой и правой частей уравнения от деления на некоторое фиксированное натуральное число.

Замечание . Говоря строго математическим языком, для решения уравнения в данном случае применяется теория сравнений.

Рассмотрим примеры, которые раскрывают сущность данного метода.

Пример 3.1. Решить уравнение в целых числах x 3 + y 3 = 3333333;

Так как x 3 и y 3 при делении на 9 могут давать только остатки 0, 1 и 8 (смотрите таблицу в приложении 1), то x 3 + y 3 может давать только остатки 0, 1, 2, 7 и 8. Но число 3333333 при делении на 9 даёт остаток 3. Поэтому исходное уравнение не имеет решений в целых числах.

Ответ: целочисленных решений нет.

Пример 3.2. Решить уравнение в целых числах x 3 + y 3 = 4( x 2 y + xy 2 + 1).

Перепишем исходное уравнение в виде ( x + y ) 3 = 7( x 2 y + xy 2 ) + 4. Так как кубы целых чисел при делении на 7 дают остатки 0, 1 и 6, но не 4, то уравнение не имеет решений в целых числах.

Ответ: целочисленных решений нет.

Пример 3.3. Решить в целых числах уравнение x 2 + 1 = 3 y .

Решение. Заметим, что правая часть уравнения делится на 3 при любом целом y .

Исследуем какие остатки может иметь при делении на три левая часть этого уравнения.По теореме о делении с остатком целое число х либо делится на 3, либо при делении на три в остатке дает 1 или 2.

Если х = 3 k , то правая часть уравнения на 3 не делится.

Если х = 3 k+ 1, то x 2 + 1= (3 k+ 1) 2 +1=3 m +2, следовательно, опять левая часть на 3 не делится.

Если х = 3 k+ 2, то x 2 + 1= (3 k+ 2) 2 +1=3 m +2, следовательно, и в этом случае левая часть уравнения на три не делится.

Таким образом, мы получили, что ни при каких целых х левая часть уравнения на 3 не делится, при том, что левая часть уравнения делится на три при любых значениях переменной y . Следовательно, уравнение в целых числах решений не имеет.

Ответ: целочисленных решений нет.

Пример 3.4. Решить в целых числах x³ — 3y³ — 9z³ = 0 (1)

Решение. Очевидно, что решением уравнения будет тройка чисел (0; 0; 0).

Выясним, имеет ли уравнение другие решения. Для этого преобразуем уравнение (1) к виду

x ³ = 3 y ³ + 9 z ³ (2)

Так как правая часть полученного уравнения делится на 3, то и левая должна делиться на три, следовательно, так как 3 — число простое, х делится на 3, т.е. х = 3 k , подставим это выражение в уравнение (2), получим:

27 k 3 = 3 y ³ + 9 z ³, откуда

9 k 3 = y ³ + 3 z ³ (3)

следовательно, y ³ делится на 3 и y = 3 m . Подставим полученное выражение в уравнение (3): 9 k 3 = 27 m ³ + 3 z ³, откуда

3 k 3 = 9 m ³ + z ³ (4)

В свою очередь, из этого уравнения следует, что z 3 делится на 3, и z = 3 n . Подставив это выражение в (4), получим, что k 3 должно делиться на 3.

Итак, оказалось, что числа, удовлетворяющие первоначальному уравнению, кратны трём, и сколько раз мы не делили бы их на 3, опять должны получаться числа, кратные трём. Единственное целое число, удовлетворяющее этому условию, будет нуль, т. е. решение данного уравнения (0; 0; 0) является единственным.

4. Решение уравнений в целых числах сведением их к квадратным.

Пример 4.1. Решить в простых числах уравнение

х 2 – 7 х – 144 = у 2 – 25 у .

Решим данное уравнение как квадратное относительно переменной у . Получим: у = х + 9 или у = 16 – х .

Поскольку при нечётном х число х + 9 является чётным, то единственной парой простых чисел, которая удовлетворяет первому равенству, является (2; 11).

Так как х, у – простые, то из равенства у = 16 – х , имеем

С помощью перебора вариантов находим остальные решения: (3; 13), (5; 11), (11; 5), (13; 3).

Ответ: (2; 11), (3; 13), (5; 11), (11; 5), (13; 3).

Пример 4.2 . Решить в целых числах уравнение x + y = x 2 – xy + y 2 .

Рассмотрим данное уравнение как квадратное уравнение относительно x :

x 2 – ( y + 1) x + y 2 – y = 0.

Дискриминант этого уравнения равен –3 y 2 + 6 y + 1. Он положителен лишь для следующих значений у : 0, 1, 2. Для каждого из этих значений из исходного уравнения получаем квадратное уравнение относительно х , которое легко решается.

Ответ: (0; 0), (0; 1), (1; 0), (1; 2), (2; 1), (2; 2).

Пример 4.3 . Решить уравнение в целых числах: 5 х 2 +5 у 2 +8 ху +2 у -2 х +2=0.

Рассмотрим уравнение как квадратное относительно х:

5 х 2 + (8 у — 2) х + 5 у 2 + 2 у + 2 = 0

D = (8 у — 2) 2 — 4·5(5 у 2 + 2 у + 2) = 64 у 2 — 32 у + 4 = -100 у 2 — 40 у – 40 = = -36( у 2 + 2 у + 1) = -36( у + 1) 2

Для того, чтобы уравнение имело решения, необходимо, чтобы D = 0.

-36( у + 1) 2 = 0. Это возможно при у = -1, тогда х = 1.

5. Разложение на множители .

Пример 5.1. Решить в целых числах уравнение x 2 – xy – 2 y 2 = 7.

Разложим левую часть на множители ( x – 2 y )( x + y ) = 7.

Так как х, у – целые числа, то находим решения исходного уравнения, как решения следующих четырёх систем:

1) x – 2 y = 7, x + y = 1;

2) x – 2 y = 1, x + y = 7;

3) x – 2 y = –7, x + y = –1;

4) x – 2 y = –1, x + y = –7.

Решив эти системы, получаем решения уравнения: (3; –2), (5; 2), (–3; 2) и (–5; –2).

Ответ: (3; –2), (5; 2), (–3; 2), (–5; –2).

Пример 5.2 . Решить уравнение в целых числах: х 2 + 23 = у 2

Решение. Перепишем уравнение в виде:

у 2 — х 2 = 23, ( у — х )( у + х ) = 23

Так как х и у – целые числа и 23 – простое число, то возможны случаи:

Решая полученные системы, находим:

Пример 5.3 . Решить уравнение в целых числах y 3 — x 3 = 91.

Решение. Используя формулы сокращенного умножения, разложим правую часть уравнения на множители:

( y — x )( y 2 + xy + x 2 ) = 91

Выпишем все делители числа 91: ± 1; ± 7; ± 13; ± 91

Проводим исследование. Заметим, что для любых целых x и y число

y 2 + yx + x 2 ≥ y 2 — 2| y || x | + x 2 = (| y | — | x |) 2 ≥ 0,

следовательно, оба сомножителя в левой части уравнения должны быть положительными. Тогда уравнение равносильно совокупности систем уравнений:

Решив системы, получим: первая система имеет решения (5; 6), (-6; -5); третья (-3; 4),(-4;3); вторая и четвертая решений в целых числах не имеют.

Пример 5.4 . Решить в целых числах уравнение x + y = xy .

Решение. Перенесем все члены уравнения влево и к обеим частям полученного уравнения прибавим (–1)

x + y – xy – 1 = – 1

Сгруппируем первое – четвертое и второе – третье слагаемые и вынесем общие множители, в результате получим уравнение: ( x — 1)( y — 1) = 1

Произведение двух целых чисел может равняться 1 в том и только в том случае, когда оба этих числа равны или 1, или (–1). Записав соответствующие системы уравнений и, решив их, получим решение исходного уравнения.

Пример 5.5 . Доказать, что уравнение ( x — y ) 3 + ( y — z ) 3 + ( z — x ) 3 = 30 не имеет решений в целых числах.

Решение. Разложим левую часть уравнения на множители и обе части уравнения разделим на 3, в результате получим уравнение:

( x — y )( y — z )( z — x ) = 10

Делителями 10 являются числа ±1, ±2, ±5, ±10. Заметим также, что сумма сомножителей левой части уравнения равна 0. Нетрудно проверить, что сумма любых трех чисел из множества делителей числа 10, дающих в произведении 10, не будет равняться 0. Следовательно, исходное уравнение не имеет решений в целых числах.

Ответ: целочисленных решений нет.

6. Метод бесконечного спуска.

Метод спуска предполагает сначала последовательное выражение одной переменой чрез другую, пока в представлении переменной не останется дробей, а затем, последовательное «восхождение» по цепочке равенств для получения общего решения уравнения.

Пример 6.1 . Решить уравнение в целых числах 5 x + 8 y = 39.

Выберем неизвестное, имеющее наименьший коэффициент , и выразим его через другое неизвестное: . Выделим целую часть: Очевидно, что х будет целым, если выражение окажется целым, что, в свою очередь, будет иметь место тогда, когда число 4 – 3 y без остатка делится на 5.

Введем дополнительную целочисленную переменную z следующим образом: 4 –3 y = 5 z . В результате получим уравнение такого же типа, как и первоначальное, но уже с меньшими коэффициентами. Решать его будем уже относительно переменной y , рассуждая аналогично: . Выделяя целую часть, получим:

Рассуждая аналогично предыдущему, вводим новую переменную

Выразим неизвестную с наименьшим коэффициентом, в этом случае переменную z : = . Требуя, чтобы было целым, получим: 1 – u = 2 v , откуда u = 1 – 2 v . Дробей больше нет, спуск закончен.

Теперь необходимо «подняться вверх». Выразим через переменную v сначала z , потом y и затем x :

z = = = 3 v – 1; = 3 – 5 v .

Формулы x = 3+8 v и y = 3 – 5 v , где v – произвольное целое число, представляют общее решение исходного уравнения в целых числах.

Ответ: x = 3+8 v и y = 3 – 5 v.

7. Оценка выражений, входящих в уравнение.

Пример 7.1. Решить в целых числах уравнение ( х 2 + 4)( у 2 + 1) = 8ху

Решение. Заметим, что если ( х ;у ) – решение уравнения, то (- х ;- у ) – тоже решение.

И так как х = 0 и у = 0 не являются решением уравнения, то, разделив обе части уравнения на ху, получим:

Пусть х > 0, у > 0, тогда, согласно неравенству Коши,

тогда их произведение ( х + )( у + ) = 4·2 = 8, значит, х + = 4 и у + = 2.

Отсюда находим х = 2 и у = 1 – решение, тогда х = -2 и у = -1 – тоже решение.

Пример 7.2 . Решить уравнение в целых числах

x 2 + 13 y 2 – 6 xy = 100

Решение . x 2 + 13 y 2 –6 xy= 100 ↔ ( x- 3 y ) 2 + 4 y 2 = 100 . Так как ( x- 3 y ) 2 ≥ 0 , то 4 y 2 ≤ 100 , или │ 2 y│≤ 10 . Аналогично, в силу 4 y 2 ≥ 0 должно выполняться │x- 3 y│≤ 10 .

Решение уравнений в целых числах

Математика, 9 класс

, ДВГГУ

Решение уравнений в целых числах

Решение уравнений в целых числах является одной из древнейших математических задач.

Алгебраическое уравнение с целыми коэффициентами, имеющее более одного неизвестного, когда стоит задача найти его целые или рациональные решения называется неопределенным или диофантовым, по имени древнегреческого математика Диофанта, который занимался проблемой решения таких уравнений. По некоторым данным Диофант жил до 364 года н. э. Достоверно известно лишь своеобразное жизнеописание Диофанта, которое по преданию было высечено на его надгробии и представляло задачу-головоломку: «Бог ниспослал ему быть мальчиком шестую часть жизни; добавив к сему двенадцатую часть, Он покрыл его щеки пушком; после седьмой части Он зажег ему свет супружества и через пять лет после вступления в брак даровал ему сына. Увы! Несчастный поздний ребенок, достигнув меры половины полной жизни отца, он был унесен безжалостным роком. Через четыре года, утешая постигшее его горе наукой о числах, он [Диофант] завершил свою жизнь».

Цель настоящей статьи рассмотреть методы решения некоторых диофантовых уравнений. Многие из этих методов предполагают применение некоторых понятий и алгоритмов теории делимости, в связи с этим, напомним их.

Определение 1. Наибольшим общим делителем (НОД) целых чисел a1, a2,…, an называется такой их положительный общий делитель, который делится на любой другой общий делитель этих чисел.

Теорема 2. Если , то существуют такие целые числа х и у, что имеет место равенство .

Замечание. Это равенство называется линейной комбинацией или линейным представлением НОД через эти числа.

Определение 3. Числа а и b называются взаимно простыми, если НОД этих чисел равен 1.

Теорема 4. (теорема о делении с остатком) Для любого целого а и целого существуют и единственные целые q и r, такие что .

Замечание. Если то q называется неполным частным, а r – остатком от деления a на b. В частности, если , то и делится на .

Из теоремы 4 следует, что при фиксированном целом m > 0 любое целое число а можно представить в одном из следующих видов:

При этом если то будем иметь , если и

, если .

На следующей теореме основан способ нахождения наибольшего общего делителя целых чисел.

Теорема 5. Пусть a и b – два целых числа, 0 и , тогда .

Этот способ называется алгоритмом Евклида. Задача нахождения НОД чисел a и b сводится к более простой задаче нахождения НОД b и r, . Если r = 0, то . Если же , то рассуждения повторяем, отправляясь от b и r. В результате получаем цепочку равенств:

, ,

, ,

, , ……………………(**)

, ,

.

Мы получим убывающую последовательность натуральных чисел

которая не может быть бесконечной. Поэтому существует остаток, равный нулю: пусть . На основании теоремы 10 из (**) следует, что .

1. Решение неопределенных уравнений первой степени от двух переменных в целых числах

Рассмотрим два метода решения диофантовых уравнений первой степени от двух переменных.

Алгоритм этого метода рассмотрим на примере решения конкретного уравнения. Шаги алгоритма, которые необходимо применять при решении любого такого уравнения выделим курсивом.

Пример 1. Решить уравнение в целых числах 5x + 8y = 39.

1. Выберем неизвестное, имеющее наименьший коэффициент (в нашем случае это х), и выразим его через другое неизвестное: .

2. Выделим целую часть: . Очевидно, что х будет целым, если выражение окажется целым, что, в свою очередь, будет иметь место тогда, когда число 4 – 3y без остатка делится на 5.

3. Введем дополнительную целочисленную переменную z следующим образом: 4 –3y = 5z. В результате получим уравнение такого же типа, как и первоначальное, но уже с меньшими коэффициентами.

4. Решаем его уже относительно переменной y, рассуждая точно также как в п.1, 2: . Выделяя целую часть, получим:

5. Рассуждая аналогично предыдущему, вводим новую переменную u: 3u = 1 – 2z.

6. Выразим неизвестную с наименьшим коэффициентом, в этом случае переменную z: = . Требуя, чтобы было целым, получим: 1 – u = 2v, откуда u = 1 – 2v. Дробей больше нет, спуск закончен (процесс продолжаем до тез пор, пока в выражении для очередной переменной не останется дробей).

7. Теперь необходимо «подняться вверх». Выразим через переменную v сначала z, потом y и затем x:

z = = = 3v – 1; = 3 – 5v.

= = 3+8v.

8. Формулы x = 3+8v и y = 3 – 5v, где v – произвольное целое число, представляют общее решение исходного уравнения в целых числах.

Замечание. Таким образом, метод спуска предполагает сначала последовательное выражение одной переменой чрез другую, пока в представлении переменной не останется дробей, а затем, последовательное «восхождение» по цепочке равенств для получения общего решения уравнения.

Это уравнение и любое другое линейное уравнение с двумя неизвестными может быть решено и другим методом, с использованием алгоритма Евклида, более того можно доказать, что уравнение, рассмотренное выше всегда имеет единственное решение. Приведем здесь формулировки теорем, на основании которых может быть составлен алгоритм решения неопределенных уравнений первой степени от двух переменных в целых числах.

Теорема 1.1. Если в уравнении , , то уравнение имеет, по крайней, мере одно решение.

Теорема 2.2. Если в уравнении , и с не делится на , то уравнение целых решений не имеет.

Теорема 3.3. Если в уравнении , и , то оно равносильно уравнению , в котором .

Теорема 4.4. Если в уравнении , , то все целые решения этого уравнения заключены в формулах:

где х0, у0 – целое решение уравнения , — любое целое число.

Как уже отмечалось выше, сформулированные теоремы позволяют составить следующий алгоритм решения в целых числах уравнения вида .

1. Найти наибольший общий делитель чисел a и b,

если и с не делится на , то уравнение целых решений не имеет;

если и , то

2. Разделить почленно уравнение на , получив при этом уравнение , в котором .

3. Найти целое решение (х0, у0) уравнения путем представления 1 как линейной комбинации чисел и ;

4. Составить общую формулу целых решений данного уравнения

где х0, у0 – целое решение уравнения , — любое целое число.

Пример 2. Решить уравнение в целых числах 407х – 2816y = 33.

Воспользуемся составленным алгоритмом.

1. Используя алгоритм Евклида, найдем наибольший общий делитель чисел 407 и 2816:

2816 = 407·6 + 374;

33 = 11·3. Следовательно (407,2816) = 11, причем 33 делится на 11

2. Разделим обе части первоначального уравнения на 11, получим уравнение 37х – 256y = 3, причем (37, 256) = 1

3. С помощью алгоритма Евклида найдем линейное представление числа 1 через числа 37 и 256.

Выразим 1 из последнего равенства, затем, последовательно поднимаясь по цепочке равенств, будем выражать 3; 34 и полученные выражения подставим в выражение для 1.

1 = 34 – 3·11 = 34 – (37 – 34·1) ·11 = 34·12 – 37·11 = (256 – 37·6) ·12 – 37·11 =

– 83·37 – 256·(–12). Таким образом, 37·(– 83) – 256·(–12) = 1, следовательно пара чисел х0 = – 83 и у0 = – 12 есть решение уравнения 37х – 256y = 3.

4. Запишем общие формулы решений первоначального уравнения

где t — любое целое число.

Замечание. Можно доказать, что если пара (х1,y1) — целое решение уравнения , где , то все целые решения этого уравнения находятся по формулам: .

2. Методы решения некоторых нелинейных диофантовых уравнений

Общие подходы к решению нелинейных диофантовых уравнений достаточно сложны и предполагают серьезную подготовку по теории чисел. Мы рассмотрим здесь некоторые уравнения и элементарные методы их решения.

Метод разложения на множители

Первоначальное уравнение путем группировки слагаемых и вынесения общих множителей приводится к виду, когда в левой части уравнения стоит произведение сомножителей, содержащих неизвестные, а справа стоит некоторое число. Рассматриваются все делители числа, стоящего в правой части уравнения. Проводится исследование, в котором каждый сомножитель, стоящий в правой части уравнения приравнивается к соответствующему делителю числа, стоящего в правой части уравнения.

Пример 3. Решить уравнение в целых числах y3 — x3 = 91.

Решение. 1) Используя формулы сокращенного умножения, разложим правую часть уравнения на множители:

2) Выпишем все делители числа 91: ± 1; ± 7; ± 13; ± 91

3) Проводим исследование. Заметим, что для любых целых x и y число

следовательно, оба сомножителя в левой части уравнения должны быть положительными. Тогда уравнение (1) равносильно совокупности систем уравнений:

; ; ;

4) Решив системы, получим: первая система имеет решения (5; 6), (-6; -5); третья (-3; 4),(-4;3); вторая и четвертая решений в целых числах не имеют.

Ответ: уравнение (1) имеет четыре решения (5; 6); (-6; -5); (-3; 4); (-4;3).

Пример 4. Решить в целых числах уравнение x + y = xy.

Решение. 1) Перенесем все члены уравнения влево и к обеим частям полученного уравнения прибавим (–1): x + yxy – 1 = – 1

Сгруппируем первое – четвертое и второе – третье слагаемые и вынесем общие множители, в результате получим уравнение: (x — 1)(y — 1) = 1

2) Произведение двух целых чисел может равняться 1 в том и только в том случае, когда оба этих числа равны или 1, или (–1).

3) Записав соответствующие системы уравнений и решив их, получим решение исходного уравнения. Ответ: (0,0) и (2,2).

Пример 5. Доказать, что уравнение (x — y)3 + (y — z)3 + (z — x)3 = 30 не имеет решений в целых числах.

Решение. 1) Разложим левую часть уравнения на множители и обе части уравнения разделим на 3, в результате получим уравнение:

2) Делителями 10 являются числа ±1, ±2, ±5, ±10. Заметим также, что сумма сомножителей левой части уравнения (2) равна 0. Нетрудно проверить, что сумма любых трех чисел из множества делителей числа 10, дающих в произведении 10, не будет равняться 0. Следовательно, исходное уравнение не имеет решений в целых числах.

Метод испытания остатков

Этот метод основан на исследовании возможных остатков левой и правой частей уравнения от деления на некоторое фиксированное натуральное число.

Рассмотрим примеры, которые раскрывают сущность данного метода.

Пример 6. Решить в целых числах уравнение x2 + 1 = 3y.

Решение. 1) Заметим, что правая часть уравнения делится на 3 при любом целом y.

2) Исследуем какие остатки может иметь при делении на три левая часть этого уравнения.

По теореме о делении с остатком целое число х либо делится на 3, либо при делении на три в остатке дает 1 или 2.

Если х = 3k, то правая часть уравнения на 3 не делится.

Если х = 3k+1, то x2 + 1= (3k+1)2+1=3m+2, следовательно, опять левая часть на 3 не делится.

Если х = 3k+2, то x2 + 1= (3k+2)2+1=3m+2, следовательно, и в этом случае левая часть уравнения на три не делится.

Таким образом, мы получили, что ни при каких целых х левая часть уравнения на 3 не делится, притом, что левая часть уравнения делится на три при любых значениях переменной y. Следовательно, уравнение в целых числах решений не имеет.

Пример 7. Решить в целых числах x³ — 3y³ — 9z³ = 0.

Решение. 1) Очевидно, что решением уравнения будет тройка чисел (0; 0; 0).

2) Выясним, имеет ли уравнение другие решения. Для этого преобразуем уравнение к виду

Так как правая часть полученного уравнения делится на 3, то и левая обязана делится на три, следовательно, так как 3 — число простое, х делится на 3, т. е. х = 3k, подставим это выражение в уравнение (3): 27k3 = 3y³ + 9z³, откуда

следовательно, y³ делится на 3 и y = 3m. Подставим полученное выражение в уравнение (4): 9k3 = 27m³ + 3z³, откуда

В свою очередь, из этого уравнения следует, что z3 делится на 3, и z = 3n. Подставив это выражение в (5), получим, что k3 должно делиться на 3.

Итак, оказалось, что числа, удовлетворяющие первоначальному уравнению, кратны трём, и сколько раз мы не делили бы их на 3, опять должны получаться числа, кратные трём. Единственное целое число, удовлетворяющее этому условию, будет нуль, т. е. решение данного уравнения (0; 0; 0) является единственным.

Контрольное задание №1

Представленные ниже задачи являются контрольным заданием №1 для учащихся 9 классов. Решения необходимо оформить в отдельной тетради и выслать по адресу 8, ХКЦТТ, ХКЗФМШ. Для зачета нужно набрать не менее 15 баллов (каждая правильно решенная задача оценивается в 3 балла).

М.9.1.1. Решив задачу, помещенную вначале статьи, определить сколько лет прожил Диофант.

М.9.1.2. Решить уравнения в целых числах

М.9.1.3. Найдите день моего рождения, если сумма чисел равных произведению даты рождения на 12 и номера месяца рождения на 31 равна 380.

М.9.1.4. Кусок проволоки длиной 102 см нужно разрезать на части длиной 15 см и 12 см, так чтобы была использована вся проволока. Как это сделать?

М.9.1.5. Решить уравнения в целых числах

М.9.1.6. Докажите, что уравнение x2 – y2 = 30 не имеет решений в целых числах.

М.9.1.7. Существуют ли целые числа m и n, удовлетворяющие уравнению m2 + 1994 = n2

1. Башмакова, И. Г. Диофант и диофантовы уравнения. – М.: Наука, 1972.

2. Фоминых, Ю. Ф. Диофантовы уравнения //Математика в шк. – 1996. — №6.

3. Школьная энциклопедия. Математика. / под редакцией – М.: Издательство «Большая российская энциклопедия», 1996.

4. Бабинская, И. Л. Задачи математических олимпиад. – М., 1975.

5. Васильев, Н. Б. Задачи Всесоюзных математических олимпиад. – М., 1998.

6. Курляндчик, Л. Метод бесконечного спуска // Приложение к журналу «Квант». 1999. – №3.

7. Яковлев, Г. Н. Всесоюзные математические олимпиады школьников. М., 1992.

8. Серпинский, В. О решении уравнений в целых числах. – М, 1961.

9. Перельман, Я. И. Занимательная алгебра. – М.: Наука, 1975.

8. Базовая математика Читать 0 мин.

8.264. Уравнения в целых числах

Уравнения в целых числах – уравнения с двумя и более неизвестными переменными и целыми коэффициентами. Решениями таких уравнений являются целые числа. Также такие уравнения называются диофантовыми, в честь древнегреческого математика Диофанта Александрийского, который изучал такие уравнения еще до нашей эры.

При решении уравнений в целых и натуральных числах можно выделить следующие способы.

1 способ. Метод перебора вариантов.

Решим уравнение $ (x-2)(y+3)=4 $ в целых числах.

Так как x и у целые числа, совершим перебор вариантов:

Ответ: (3; 1), (6; -2), (1; -7), (-2; -4), (4; -1), (0; -5).

Решим уравнение 10х + 10у = 2019 в целых числах.

Поскольку при любых целых значениях х и у левая часть уравнения делится на два, а правая является нечётным числом, то уравнение не имеет решений в целых числах.

Ответ: решений нет.

Пусть нужно решить уравнение в целых числах: $ 5x+4y=22. $

Методом перебора находим решение $ x_1=2;\;y_1=3. $

Получаем систему уравнений:

Из полученного равенства видно, что число (х – 2) будет целым тогда и только тогда, когда (у – 3) делится на 5, т.е. у – 3 = 5n, где n какое-нибудь целое число.

Тем самым все целые решения исходного уравнения можно записать в таком виде:

Ответ: $ \ (2-4n;\;3=5n),\; где\; n \in Z. $

2 способ. Алгоритм Евклида

Пусть нужно решить уравнение в целых числах: $ \ 5x+7y=6. $

Сделаем это с помощью Алгоритма Евклида. Ищем НОД чисел 5 и 7 с помощью него:

НОД (5, 7) = НОД (5, 7-5) = НОД (5, 2) = НОД (5 — 2∙2, 2) = НОД (1, 2) = 1

Запишем этот процесс в обратном порядке:

Тогда $ <\ x=-24 \;и \; y=18>$ является решением уравнения.

Общее решение записывается в виде:

Это не всевозможные способы решения. Зачастую для решения диофантовых уравнений требуются более тонкие рассуждения, связанные с делимостью, перебором остатков, оценками частей уравнения, тождественными преобразованиями и т.п.

Разложить на множители и выразить переменную мы здесь не можем. Воспользуемся методом перебора остатков.

Если левая часть уравнения в целых числах кратна какому-то числу, то и другая обязательно должна быть кратна этому же числу. Отсюда следует, что и остатки от деления обеих частей уравнения на одно и то же число будут давать одинаковые остатки.

Будем делать выводы о делимости одной части уравнения на какое-либо число (или смотреть, какой остаток от деления при этом получается) и проверять, при каких значениях переменных вторая часть уравнения также делится на это число (либо даёт такой же остаток).

Левая часть кратна 5. И остатки от деления на 5 у обеих частей также будут равны.

Про пятёрку уже сказали, что правая часть делится на неё без остатка, значит и левая тоже должна делиться.

Рассмотрим остатки от деления на 4.

Z$ \ 5^ $Остаток при делении на 4
151
2251
31251
46251

Видим простую закономерность, что 5 в любой степени при делении на 4 будет давать остаток 1.

Теперь левая часть: будет делиться на 4 без остатка.

Рассмотрим остатки от деления на 4 числа $ \ 3^ $

Z$ \ 3^ $Остаток при делении на 4
133
291
3273
4811
52433

И так далее. Закономерность: при чётных х остаток 1, при нечётных остаток 3.

Отсюда делаем вывод, что х — число чётное, значит, мы можем представить его как х = 2n.

Теперь рассмотрим остатки при делении обеих частей на 3.

Z$ \ 5^ $Остаток при делении на 3
152
2251
31252
46251

И так далее. Видим закономерность, что при чётных z остаток равен 1, при нечетных z остаток равен 2.

Рассмотрим левую часть. Число $ \ 3^ $ даёт остаток 0 при делении на 3.

Рассмотрим остатки от деления на 3 числа $ \ 4^ $

Z$ \ 4^ $Остаток при делении на 3
141
2161
3641
42561
510241

Получается, что левая часть при делении на 3 может давать только остаток 1. Значит, и правая тоже. Это происходит при чётных z.

Вернёмся к нашему уравнению $ \ 3^+4^=5^ $

Рассмотрев все остатки от деления, мы делаем выводы, что х и z — чётные числа. Тогда х = 2n, z = 2m, где m, n натуральные. Подставим в уравнение:

Теперь мы можем разложить на множители, используя формулу разности квадратов:

$ \ (5^-3^)(5^+3^)=2^ <2y>$ . Получается, что обе скобки должны быть степенями двойки. Мы не можем сделать никаких обоснованных выводов. Наша группировка неудачная. Попробуем иначе:

Теперь у нас обе скобки являются произведением троек. Рассмотрим такую ситуацию,

$ \ a\cdot b=3^ <2n>$ , это означает, что и а, и b кратны 3. Либо одно из чисел кратно 3, а другое равно 1.

Рассмотрим случай, когда и а, и b кратны трём. Вспомним основные свойства делимости.

Ключевым признаком здесь будет второй: в нашем случае разность a-b также будет делиться на 3.

Рассмотрим разность скобок:

$ \ 5^+2^-(5^-2^)=2\cdot 2^ $ — это число никогда не будет кратно 3. Значит, в нашем произведении один из множителей равен 1, а другой равен 3 2n . Так как $ \ 5^+2^> 1 $ ,

$ \ 5^-2^=1,5^+2^)=3^ <2n>$ Итак, мы с вами уже решаем немного другое уравнение, с переменными m и n, которые зависят от х и у. И пришли к выводу, что $ \ 5^+2^=1 $

m$ \ 5^ $y$ \ 2^ $
0 10 1
1 51 2
2 252 4
3 1253 8

Эта таблица показывает, что $ \ 5^+2^=1 $ только в одном случае при m = 1, y = 2. При их увеличении разница между и будет всё больше, поэтому это единственное решение.


источники:

http://pandia.ru/text/78/004/3180.php

http://reshutest.ru/theory/7?theory_id=227