Уравнения волн физика 11 класс

Уравнения волн физика 11 класс

«Физика — 11 класс»

Длина волны. Скорость волны

За один период волна распространяется на расстояние λ.

λ = vT

Длина волны — это расстояние, на которое распространяется волна за время, равное одному периоду колебаний.

Так как период Т и частота v связаны соотношением

При распространении волны:

1. Каждая частица шнура совершает периодические колебания во времени.
В случае гармонических колебаний (по закону синуса или косинуса) частота и амплитуда колебаний частиц одинаковы во всех точках шнура.
Эти колебания различаются только фазами.

2. В каждый момент времени форма волны повторяется через отрезки длиной λ.

Спустя промежуток времени Δt волна будет иметь вид, изображенный на том же рисунке второй линией.

Для продольной волны также справедлива формула, связывающая скорость распространения волны, длину волны и частоту колебаний.

Все волны распространяются с конечной скоростью. Длина волны зависит от скорости ее распространения и частоты колебаний.

Уравнение гармонической бегущей волны

Вывод уравнения волны, позволяющего определить смещение каждой точки среды в любой момент времени при распространении гармонической волны (на примере поперечной волны, бегущей по длинному тонкому резиновому шнуру).

Ось ОХ направлена вдоль шнура.
Начало отсчета — левый конец шнура.
Смещение колеблющейся точки шнура от положения равновесия — s.
Для описания волнового процесса нужно знать смещение каждой точки шнура в любой момент времени:

s = s (х, t).

Конец шнура (точка с координатой х = 0) совершает гармонические колебания с циклической частотой ω.
Колебания этой точки будут происходят по закону:

s = sm sinc ωt

Если начальную фазу колебаний считать равной нулю.
sm — амплитуда колебаний.

Колебания распространяются вдоль оси ОХ со скоростью υ и в произвольную точку с координатой х придут спустя время

Эта точка также начнет совершать гармонические колебания с частотой ω, но с запаздыванием на время τ.

Если пренебречь затуханием волны по мере ее распространения, то колебания в точке х будут происходить с той же амплитудой sm, но с другой фазой:

Это и есть уравнение гармонической бегущей волны, распространяющейся в положительном направлении оси ОХ.

Используя уравнение можно определить смещение различных точек шнура в любой момент времени.

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин

Механические волны. Физика, учебник для 11 класса — Класс!ная физика

Уравнения волн физика 11 класс

Для существования волны необходим источник колебания и материальная среда или поле, в которых эта волна распространяется. Волны бывают самой разнообразной природы, но они подчиняются аналогичным закономерностям.

По физической природе различают:

упругие, звуковые, волны на поверхности жидкости

свет, радиоволны, излучения

По ориентации возмущений различают:

Смещение частиц происходит вдоль направления распространения;

могут распростаняться только в упругих средах;

необходимо наличие в среде силы упругости при сжатии;

могут распространяться в любых средах.

Смещение частиц происходит поперек направления распространения;

могут распростаняться только в упругих средах;

необходимо наличие в среде силы упругости при сдвиге;

могут распространяться только в твердых средах (и на границе двух сред).

Примеры: упругие волны в струне, волны на воде

По характеру зависимости от времени различают:

Упругие волны — механические возмещения (деформации), распространяющиеся в упругой среде. Упругая волна называется гармонической (синусоидальной), если соответствующие ей колебания среды являются гармоническими.

Бегущие волны — волны, переносящие энергию в пространстве.

По форме волновой поверхности: плоская, сферическая, цилиндрическая волна.

Волновой фронт — геометрическое место точек, до которых дошли колебания к данному моменту времени.

Волновая поверхность — геометрическое место точек, колеблющихся в одной фазе.

Характеристики волны

Длина волны λ — расстояние, на которое волна распространяется за время, равное периоду колебаний

Амплитуда волны А — амплитуда колебаний частиц в волне

Скорость волны v — скорость распространения возмущений в среде

Период волны Т — период колебаний

Частота волны ν — величина, обратная периоду

Уравнение бегущей волны

В процессе распространения бегущей волны возмущения среды доходят до следующих точек пространства, при этом волна переносит энергию и импульс, но не переносит вещество (частицы среды продолжают колебаться в том же месте пространства).

где v – скорость, φ0 – начальная фаза, ω – циклическая частота, A – амплитуда

Свойства механических волн

1. Отражение волн механические волны любого происхождения обладают способностью отражаться от границы раздела двух сред. Если механическая волна, распространяющаяся в среде, встречает на своем пути какое-либо препятствие, то она может резко изменить характер своего поведения. Например, на границе раздела двух сред с разными механическими свойствами волна частично отражается, а частично проникает во вторую среду.

2. Преломление волн при распространении механических волн можно наблюдать и явление преломления: изменение направления распространения механических волн при переходе из одной среды в другую.

3. Дифракция волн отклонение волн от прямолинейного распространения, то есть огибание ими препятствий.

4. Интерференция волн сложение двух волн. В пространстве, где распространяются несколько волн, их интерференция приводит к возникновению областей с минимальным и максимальным значениями амплитуды колебаний

Интерференция и дифракция механических волн.

Волна, бегущая по резиновому жгуту или струне отражается от неподвижно закрепленного конца; при этом появляется волна, бегущая во встречном направлении.

При наложении волн может наблюдаться явление интерференции. Явление интерференции возникает при наложении когерентных волн.

Когерентными называют волны, имеющие одинаковые частоты, постоянную разность фаз, а колебания происходят в одной плоскости.

Интерференцией называется постоянное во времени явление взаимного усиления и ослабления колебаний в разных точках среды в результате наложения когерентных волн.

Результат суперпозиции волн зависит от того, в каких фазах накладываются друг на друга колебания.

Если волны от источников А и Б придут в точку С в одинаковых фазах, то произойдет усиление колебаний; если же – в противоположных фазах, то наблюдается ослабление колебаний. В результате в пространстве образуется устойчивая картина чередования областей усиленных и ослабленных колебаний.

Условия максимума и минимума

Если колебания точек А и Б совпадают по фазе и имеют равные амплитуды, то очевидно, что результирующее смещение в точке С зависит от разности хода двух волн.

Если разность хода этих волн равна целому числу волн (т. е. четному числу полуволн) Δd = kλ , где k = 0, 1, 2, . то в точке наложения этих волн образуется интерференционный максимум.

Условие максимума:

Амплитуда результирующего колебания А = 2x0.

Если разность хода этих волн равна нечетному числу полуволн, то это означает, что волны от точек А и Б придут в точку С в противофазе и погасят друг друга.

Условие минимума:

Амплитуда результирующего колебания А = 0.

Если Δd не равно целому числу полуволн, то 0

Явление отклонения от прямолинейного распространения и огибание волнами препятствий называется дифракцией.

Соотношение между длиной волны (λ) и размерами препятствия (L) определяет поведение волны. Дифракция наиболее отчетливо проявляется, если длина набегающей волны больше размеров препятствия. Опыты показывают, что дифракция существует всегда, но становится заметной при условии d

Дифракция – общее свойство волн любой природы, которая происходит всегда, но условия её наблюдения разные.

Волна на поверхности воды распространяется в сторону достаточно большого препятствия, за которым образуется тень, т.е. волнового процесса не наблюдается. Такое свойство используется при устройстве волноломов в портах. Если же размеры препятствия сравнимы с длиной волны, то за препятствием будет наблюдаться волнение. Позади него волна распространяется так, как будто препятствия не было вовсе, т.е. наблюдается дифракция волны.

Примеры проявления дифракции. Слышимость громкого разговора за углом дома, звуки в лесу, волны на поверхности воды.

Стоячие волны

Стоячие волны образуются при сложении прямой и отраженной волны, если у них одинаковая частота и амплитуда.

В струне, закрепленной на обоих концах, возникают сложные колебания, которые можно рассматривать как результат наложения (суперпозиции) двух волн, распространяющихся в противоположных направлениях и испытывающих отражения и переотражения на концах. Колебания струн, закрепленных на обоих концах, создают звуки всех струнных музыкальных инструментов. Очень похожее явление возникает при звучании духовых инструментов, в том числе органных труб.

Колебания струны. В закрепленной с обоих концов натянутой струне при возбуждении поперечных колебаний устанавливаются стоячие волны, причем в местах закрепления струны должны располагаться узлы. Поэтому в струне возбуждаются с заметной интенсивностью только такие колебания, половина длины волны которых укладывается на длине струны целое число раз.

Отсюда вытекает условие

Длинам волн соответствуют частоты

n = 1, 2, 3. Частоты v n называются собственными частотами струны.

Гармонические колебания с частотами v n называются собственными или нормальными колебаниями. Их называют также гармониками. В общем случае колебание струны представляет собой наложение различных гармоник.

Уравнение стоячей волны:

В точках, где координаты удовлетворяют условию (n = 1, 2, 3, …), суммарная амплитуда равна максимальному значению – это пучности стоячей волны. Координаты пучностей:

В точках, координаты которых удовлетворяют условию (n = 0, 1, 2,…), суммарная амплитуда колебаний равна нулю – это узлы стоячей волны. Координаты узлов:

Образование стоячих волн наблюдают при интерференции бегущей и отраженных волн. На границе, где происходит отражение волны, получается пучность, если среда, от которой происходит отражение, менее плотная (a), и узел – если более плотная (б).

Если рассматривать бегущую волну, то в направлении ее распространения переносится энергия колебательного движения. В случае же стоячей волны переноса энергии нет, т.к. падающая и отраженная волны одинаковой амплитуды несут одинаковую энергию в противоположных направлениях.

Стоячие волны возникают, например, в закреплённой с обоих концов натянутой струне при возбуждении в ней поперечных колебаний. Причём в местах закреплений располагаются узлы стоячей волны.

Если стоячая волна устанавливается в воздушном столбе, открытом с одного конца (звуковая волна), то на открытом конце образуется пучность, а на противоположном – узел.

Физика. 11 класс

Конспект урока

Физика, 11 класс

Урок 10. Электромагнитные волны

Перечень вопросов, рассматриваемых на уроке:

  1. Основные положения электромагнитной теории Максвелла и опытное доказательство Герцем существования электромагнитных волн.
  2. Электромагнитная волна и её характеристики, вихревое поле, шкала электромагнитных волн.

Глоссарий по теме

Вихревым электрическим полем называется поле, силовые линии которого нигде не начинаются и не заканчиваются, представляют собой замкнутые линии.

Электромагнитное поле – особая форма материи, осуществляющая электромагнитное взаимодействие.

Электромагнитные волны – это электромагнитные колебания, распространяющееся в пространстве с конечной скоростью.

Точечный источник излучения – это источник, размеры которого много меньше расстояния, на котором оценивается его действие, и он посылает электромагнитные волны по всем направлениям с одинаковой интенсивностью.

Плотностью потока электромагнитного излучения называют отношение электромагнитной энергии переносимой волной за время через перпендикулярную лучам поверхность площадью S, к произведению площади на время.

Основная и дополнительная литература по теме урока:

Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н.. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2016. – С. 140-150

Рымкевич А.П. Сборник задач по физике. 10-11 класс.-М.:Дрофа,2009.- С.20-22

Основное содержание урока

Часто вы слышите от заботливых мам: «Не клади телефон под подушку! Не сиди долго за компьютером. Не находись долго около микроволновки! Не носи телефон в кармане! Вредно для здоровья, опасно для жизни, есть риск заболеть раковыми заболеваниями, действуют электромагнитные волны».

Вселенная-это океан электромагнитных излучений. Человек живет в нем, не замечая волн, проникающих в окружающее пространство. Включив лампочку или греясь у камина, человек заставляет источник этих волн работать, не задумываясь об их свойствах. Открытие природы электромагнитного излучения, позволило человечеству в течение XX века освоить и ввести в эксплуатацию различные его виды.

Сегодня мы поговорим об электромагнитных волнах, что это? Каковы его характеристики?

Когда мы слышим слово «волна», что вы себе представляете? Волны на море, на реке, волна в ванной комнате, и т.д. это механические волны. Механика переводится как движение. Мы их видим и способны определить его характеристики. Вспомним, какие величины характеризуют механические волны.

Период – это время, за которое совершается одно колебание. Период обозначается буквой Т, измеряется в секундах. Определяется по формуле:

Частота – это число колебаний в единицу времени. Частота — обозначается буквой ν (ню), измеряется в герцах Гц и определяется по формуле:

Амплитуда – это наибольшее отклонение от положения равновесия. Амплитуда – обозначается буквой А, измеряется в метрах.

Длина волны — это кратчайшее расстояние между точками, колеблющимися в одинаковых фазах. Обозначается буквой лямбда λ, измеряется в метрах м,

Механические волны имеют много общего с электромагнитными волнами, но есть и существенные различия. Они распространяются в твердой, жидкой, газообразной среде, можем ли мы обнаружить их нашими чувствами? Да, в твердых средах-это могут быть землетрясения, колебания струн музыкальных инструментов. В жидкости — волны в море, в газах-это распространение звуков. С электромагнитными волнами не все так просто. Мы не чувствуем и не осознаем, сколько электромагнитных волн пронизывает наше пространство. Радиоволны, телевизионные волны, солнечный свет, Wi-Fi, излучение мобильного телефона и многое другое являются примерами электромагнитного излучения. Если бы мы могли видеть их, мы не смогли бы видеть друг друга за столькими электромагнитными волнами. Электромагнитные волны играют огромную роль в жизни современного человека — с их помощью мы передаем информацию, общаемся, обмениваемся данными, изучаем окружающий мир и многое другое. Сегодня мы должны понять понятие электромагнитных волн, выяснить, как получить электромагнитные волны и какими свойствами они обладают.

Какова история открытия электромагнитных волн? В 1820 году Эрстед обнаружил действие электрического тока на магнитную стрелку, что привело к возникновению новой области физики — электромагнетизма. В 1831 году Фарадей открыл явление электромагнитной индукции: переменное магнитное поле создает переменный электрический ток. В 1864 году Максвелл предположил, что при изменении электрического поля возникает вихревое магнитное поле. В 1887 году Герц экспериментально подтвердил гипотезу Максвелла о существовании электромагнитного поля.

Для подтверждения гипотезы Максвелла о существовании электромагнитного поля необходимо было экспериментально открыть электромагнитные волны. Это сделал немецкий физик Генрих Герц, который использовал устройство, названное в его честь вибратором Герца-открытый колебательный контур.

Простейшая система, в которой возникают электромагнитные колебания, называется колебательным контуром.

Для того, чтобы иметь колебания в цепи, необходимо зарядить конденсатор. В результате периодической перезарядки конденсатора в цепи возникают колебания. Между обкладками конденсатора возникает переменное электрическое поле. А вокруг него переменное магнитное поле, вихрь и вихрь переменного электрического поля и др. Таким образом, в пространстве электромагнитное поле распространяется в виде электромагнитных волн. Генри Герц измерил частоту ν гармонических колебаний в цепи и длину λ электромагнитной волны и определил скорость электромагнитной волны:

Значение скорости электромагнитной волны, полученное в эксперименте Герца, совпало со значением скорости электромагнитной волны по гипотезе Максвелла с = 299 792 458 м = 300 000 км/с. Чтобы сделать излучение более интенсивным, необходимо увеличить циклическую частоту. По формуле: ω=1/√(L∙C) частота зависит от индуктивности катушки и емкости конденсатора. Так, необходимо уменьшить индуктивность L и электрическую емкость C. для этого необходимо уменьшить количество витков катушки и раздвинуть обкладки конденсатора. Закрытый колебательный контур превращается в открытый – прямой проводник. Проводник был разрезан, оставляя зазор, чтобы поставить шары и зарядить до высокой разности потенциалов. В результате между шариками проскакивала искра. Возбуждая в вибраторе с помощью источника высокого напряжения, серии импульсов быстроизменяющегося тока, Герц получал электромагнитные волны высокой частоты. Электромагнитные волны регистрировались Герцем с помощью приемного вибратора (резонатора), который является тем же устройством, что и излучающий вибратор

Итак, процесс взаимного порождения электрического поля переменным магнитным полем и изменение магнитного поля электрическое поле может продолжать распространяться, захватывая новые области пространства. Переменные электрическое и магнитное поля, распространяющиеся в пространстве и генерирующие друг друга, называются электромагнитной волной.

Электромагнитное поле-особая форма материи, осуществляющая электромагнитное взаимодействие. И это поле имеет совершенно иную природу, чем электростатическое. Линии натяжения не имеют начала и конца, они замкнуты. Отсюда и название вихревого поля. Вихревое электрическое поле-это поле, силовые линии которого не начинаются и не заканчиваются нигде, а являются замкнутыми линиями.

Чем быстрее меняется магнитная индукция, тем больше напряженность электрического поля. Сила, действующая на заряд со стороны вихревого электрического поля, равна:

Но, в отличие от электростатического поля, работа вихревого электрического поля на замкнутой линии не равна нулю. Так как при перемещении заряда вдоль замкнутой линии напряженности электрического поля работа на всех участках пути имеет один и тот же знак, потому, что сила и перемещение совпадают по направлению.

Согласно теории Максвелла, электромагнитная волна переносит энергию. Энергия электромагнитного поля волны в данный момент времени меняется периодически в пространстве с изменением векторов и Электрическое и магнитное поля в электромагнитной волне перпендикулярны друг к другу, причем каждое из них перпендикулярно к направлению распространения волны:

Таким образом, электромагнитная волна является поперечной волной. Электромагнитная волна излучается колеблющимися зарядами, при этом важно, чтобы заряды двигались с ускорением. Электромагнитная волна, как и механическая, характеризуется периодом и частотой колебаний, длиной волны и скоростью распространения. Период Т – это время одного колебания. Частота ν – это число колебаний за одну секунду. Длина волны λ — это расстояние, на которое распространяется электромагнитная волна за время одного периода. В вакууме для электромагнитной волны период Т и частота ν и длина волны λ связаны соотношениями:

Герц не только открыл электромагнитные волны, но и показал, что они ведут себя подобно другим волнам. Они поглощаются, отражаются, преломляются, наблюдаются явления интерференции и дифракции волн. Вычисленная на основании гипотезы Максвелла скорость электромагнитной волны совпала с наблюдаемой в опытах скоростью света. Это совпадение позволило предположить, что свет является одним из видов электромагнитных волн.

Свойства электромагнитных волн:

Отражение электромагнитных волн: волны хорошо отражаются от металлического листа, причем угол падения равен углу отражения;

Поглощение волн: электромагнитные волны частично поглощаются при переходе через диэлектрик;

Преломление волн: электромагнитные волны меняют свое направление при переходе из воздуха в диэлектрик;

Интерференция волн: сложение волн от когерентных источников;

Дифракция волн: отгибание волнами препятствий.

Фронтом волны называется геометрическое место точек, до которых дошли возмущения в данный момент времени. Поверхность равной фазы называется волновой поверхностью. Плоской волной называется волна, у которой волновая поверхность — плоскость. Линия, перпендикулярная волновой поверхности, называется лучом. Электромагнитная волна, как мы уже сказали, переносит энергию. Луч указывает направление, в котором волна переносит энергию. Тогда для плоской электромагнитной волны скорость, которой перпендикулярна поверхности площадью s, то можно ввести понятие плотность потока излучения. Плотностью потока электромагнитного излучения называют отношение электромагнитной энергии переносимой волной за время через перпендикулярную лучам поверхность площадью S, к произведению площади на время.

Иногда ее называют интенсивностью волны. Плотностью потока электромагнитного излучения пропорциональна четвертой степени циклической частоты.

Источники излучения электромагнитных волн разнообразны, но самым простым является точечный источник. Точечный источник излучения – это источник, размеры которого много меньше расстояния, на котором оценивается его действие, и он посылает электромагнитные волны по всем направлениям с одинаковой интенсивностью (например, звёзды).

Длина электромагнитных волн различна: от значений порядка 10 13 м (низкочастотные колебания) до 10 -10 м (γ-лучи). Свет составляет ничтожную часть широкого спектра электромагнитных волн. Принято выделять низкочастотное излучение, радиоволны, инфракрасное излучение, видимое излучение, ультрафиолетовое излучение, рентгеновское излучение, -излучение. Атомные ядра испускают самое коротковолновое -излучение. Особого различия между отдельными излучениями нет. Излучения различной длины волны отличаются друг от друга по способу их получения (излучение антенны, тепловое излучение, излучение при торможении быстрых электронов и др.) и методам регистрации. Электромагнитные волны обнаруживаются, в конечном счете, по их действию на заряженные частицы. В вакууме излучение любой длины волны распространяется со скоростью 300 000 км/с. Если мысленно разложить эти виды по возрастанию частоты или убыванию длины волны, то получится широкий непрерывный спектр – шкала электромагнитных излучений.

Сегодня мы знаем, что к опасным видам излучения относятся: гамма-излучение, рентгеновские лучи и ультрафиолетовое излучение, остальные – безопасны. Распределение электромагнитных излучений по диапазонам условное и резкой границы между областями нет. Вся шкала электромагнитных волн является подтверждением того, что все излучения обладают одновременно квантовыми и волновыми свойствами.

В зависимости от своей частоты или длины волны электромагнитные волны имеют различное применение. Они несут людям пользу и вред. Бытовые обогревательные приборы, приборы для приготовления еды, телефоны, компьютеры, вышки сотовой связи и телебашни, электропровода излучают электромагнитные волны. Больше других источников электромагнитные волны у нас дома излучают мобильные телефоны, микроволновые печи, холодильники, электрические кухонные плиты. Самым мощным источником излучения являются линии электропередач, и строить жилые дома под ними, воспрещено. Антенны радиопередатчиков нельзя устанавливать на сооружениях, в которых живут люди. Эмбрионы и ткани, находящиеся в стадии роста, больше всего подвержены влиянию волн, воздействуют электромагнитное поле на центральную нервную систему и мышцы тела. Это влияние становится причиной бессонницы и дисфункций в неврологической области, нарушения частоты биений сердца и скачков давления. Но есть, и полезные свойства электромагнитных волн. Их используют в физиотерапевтическом лечении некоторых болезней так как они способствуют быстрому заживлению тканей, останавливает развитие воспалительных процессов. Мы сегодня исключить полностью общение с электромагнитными волнами не можем, но чтобы обезопасить себя дома, надо грамотно устанавливать бытовые устройства в комнатах.

Итак, свойства электромагнитных волн:

1. Электромагнитная волна представляет собой распространение в пространстве с течением времени переменных (вихревых) электрических и магнитных полей.

2. Электромагнитные волны излучаются зарядами, которые движутся с ускорением, например, при колебаниях. Причем, чем больше ускорение колеблющихся зарядов, тем больше интенсивность излучения волны.

3. Векторы и в электромагнитной волне перпендикулярны друг другу и перпендикулярны направлению распространения волны.

4.Электромагнитная волна является поперечной.

Разбор тренировочного задания

1. Определить, на какой частоте работает передатчик, если длина излучаемых им волн равна 200 м.

Частоту выражаем через длину волны и скорость.

Ответ:

2. Ёмкость конденсатора колебательного контура Какова индуктивность катушки контура, если идет прием станции, работающей на длине волны 1000 метров?

Формула Томсона для периода колебаний:

Период колебаний выражаем через длину волны и скорость:

Ответ:


источники:

http://light-fizika.ru/index.php/11-klass?layout=edit&id=138

http://resh.edu.ru/subject/lesson/4913/conspect/