Уравнения возрастания и убывания функции

Свойства функции. Возрастание и убывание, наибольшее и наименьшее значения, нули, промежутки знакопостоянства.

теория по математике 📈 функции

Каждый из нас встречался с разными графиками, как на уроках, так и в жизни. Например, рассматривали, как изменяется температура воздуха в определенный период времени.

На рисунке видно, что температура воздуха была отрицательной с 0 часов до 6 часов, а также с 20 до 24 часов. Еще можем сказать, что температура повышалась до 14 часов, а затем понижалась. То есть по данному графику мы смогли определить некоторые свойства зависимости температуры воздуха от времени суток.

Остановимся подробнее на свойствах функций.

Нули функции

Нули функции – это значение аргумента, при которых функция обращается в нуль. Если смотреть нули функции на графике, то берем точки, где график пересекает ось х.

На рисунке он пересекает ось х при х=-1; х=4; х=6. Эти точки пересечения выделены красным цветом. Внимание!

Существует функция, которая не будет иметь нули функции. Это гипербола. Вспомним, что функция имеет

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

График функции у=k/x выглядит следующим образом: По данному рисунку видно, что нулей функции не существует. Как найти нули функции?

  1. Для того чтобы найти нули функции, которая задана формулой, надо подставить вместо у число нуль и решить полученное уравнение.
  2. Если график функции дан на рисунке, то ищем точки пересечения графика с осью х.

Рассмотрим примеры нахождения нулей функции. Пример №1. Найти нули функции (если они существуют):

а) Для нахождения нулей функции необходимо в данную формулу вместо у подставить число 0, так как координаты точки пересечения графика с осью х (х;0). Нам нужно найти значение х. Получаем 0 = –11х +12. Решаем уравнение. Переносим слагаемое, содержащее переменную, в левую часть, меняя знак на противоположный: 11х=22

Находим х, разделив 22 на 11: х=22:11

Таким образом, мы нашли нуль функции: х=2

б) Аналогично во втором случае. Подставляем вместо у число 0 и решаем уравнение вида 0=(х + 76)(х – 95). Вспомним, что произведение двух множителей равно 0 тогда и только тогда, когда хотя бы один из множителей равен 0. Таким образом, так как у нас два множителя, составляем два уравнения: х + 76 = 0 и х – 95 = 0. Решаем каждое, перенося числа 76 и -95 в правую часть, меняя знаки на противоположные. Получаем х = – 76 и х = 95. Значит, нули функции это числа (-76) и 95.

в) в третьем случае: если вместо у подставить 0, то получится 0 = – 46/х, где для нахождения значения х нужно будет -46 разделить на нуль, что сделать невозможно. Значит, нулей функции в этом случае нет.

Пример №2. Найти нули функции у=f(x) по заданному графику.

Находим точки пересечения графика с осью х и выписываем значения х в этих точках. Это (-4,9); (-1,2); 2,2 и 5,7. У нас на рисунке точки пересечения выделены красным цветом.

Промежутки знакопостоянства

Промежутки, где функция сохраняет знак (то есть значение y либо положительное на этом промежутке, либо отрицательное), называется промежутками знакопостоянства.

Рассмотрим по нашему рисунку, на какие промежутки разбивается область определения данной функции [-3; 7] ее нулями. По графику видно, что это 4 промежутка: [-3; -1), (-1;4), (4; 6) и (6; 7]. Помним, что значения из области определения смотрим по оси х.

На рисунке синим цветом выделены части графика в промежутках [-3; -1) и (4; 6), которые расположены ниже оси х. Зеленым цветом выделены части графика в промежутках (-1;4) и (6; 7], которые расположены выше оси х.

Значит, что в промежутках [-3; -1) и (4; 6) функция принимает отрицательные значения, а в промежутках (-1;4) и (6; 7] она принимает положительные значения. Это и есть промежутки знакопостоянства.

Пример №3. Найдем промежутки знакопостоянства по заданному на промежутке [-2; 10] графику функции у=f(x).

Функция принимает положительные значения в промежутках [-2; -1) и (3; 8). Обратите внимание, что эти части на рисунке выделены зеленым цветом.

Функция принимает отрицательные значения в промежутках (-1; 3) и (8; 10]. Обратите внимание на линии синего цвета.

Возрастание и убывание функции

Значения функции могут уменьшаться или увеличиваться. Это зависит от того, как изменяются значения х. Рассмотрим это свойство по рисунку.

На графике видно, что с увеличением значения х от -3 до 2 значения у тоже увеличиваются. Также с увеличением значения х от 5 до 7 значения у опять увеличиваются. Проще говоря, слева направо график идет вверх (синие линии). То есть в промежутках [-3; 2] и [5; 7] функция у=f(x) является возрастающей.

Посмотрим на значения х, которые увеличиваются от 2 до 5. В этом случае значения у уменьшаются. На графике эта часть выделена зеленым цветом. Слева направо эта часть графика идет вниз. То есть в промежутке [2;5] функция у=f(x) является убывающей.

Функция называется возрастающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует большее значение функции; функция называется убывающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует меньшее значение функции.

Интервалы возрастания и убывания функции

Исследование функции с помощью производной

Определение : Точка х0 называется точкой локального минимума, если для любого х из окрестности точки х0 выполняется неравенство: f(x0) .
Точки минимума и максимума функции называются точками экстремума данной функции, а значения функции в этих точках – экстремумами функции.
Точками экстремума могут служить только критические точки I рода, т.е. точки, принадлежащие области определения функции, в которых производная f′(x) обращается в нуль или терпит разрыв.

Правило нахождения экстремумов функции y=f(x) с помощью первой производной

  1. Найти производную функции f′(x) .
  2. Найти критические точки по первой производной, т.е. точки, в которых производная обращается в нуль или терпит разрыв.
  3. Исследовать знак первой производной в промежутках, на которые найденные критические точки делят область определения функции f(x) . Если на промежутке f′(x) , то на этом промежутке функция убывает; если на промежутке f′(x)>0 , то на этом промежутке функция возрастает.
  4. Если в окрестности критической точки f′(x) меняет знак с «+» на «-», то эта точка является точкой максимума, если с «-» на «+», то точкой минимума.
  5. Вычислить значения функции в точках минимума и максимума.

С помощью приведенного алгоритма можно найти не только экстремумы функции, но и промежутки возрастания и убывания функции.

Пример №1 : Найти промежутки монотонности и экстремумы функции: f(x)=x 3 –3x 2 .
Решение: Найдем первую производную функции f′(x)=3x 2 –6x.
Найдем критические точки по первой производной, решив уравнение 3x 2 –6x=0; 3x(x-2)=0 ;x = 0, x = 2

Исследуем поведение первой производной в критических точках и на промежутках между ними.

x(-∞, 0)0(0, 2)2(2, +∞)
f′(x)+00+
f(x)возрастаетmaxубываетminвозрастает

f(0) = 0 3 – 3*0 2 = 0
f(2) = 2 3 – 3*2 2 = -4
Ответ: Функция возрастает при x∈(-∞ ; 0)∪(2; +∞); функция убывает при x∈(0;2);
точка минимума функции (2;-4); точка максимума функции (0;0).

Правило нахождения экстремумов функции y=f(x) с помощью второй производной

  1. Найти производную f′(x) .
  2. Найти стационарные точки данной функции, т.е. точки, в которых f′(x)=0 .
  3. Найти вторую производную f″(x) .
  4. Исследовать знак второй производной в каждой из стационарных точек. Если при этом вторая производная окажется отрицательной, то функция в такой точке имеет максимум, а если положительной, то – минимум. Если же вторая производная равна нулю, то экстремум функции надо искать с помощью первой производной.
  5. Вычислить значения функции в точках экстремума.

Отсюда следует, что дважды дифференцируемая функция f(x) выпукла на отрезке [a, b], если вторая производная f»(x) ≥ 0 при всех х [a, b].

Все вычисления можно проделать в онлайн режиме.

Пример №2 . Исследовать на экстремум с помощью второй производной функцию: f(x) = x 2 – 2x — 3.
Решение: Находим производную: f′(x) = 2x — 2.
Решая уравнение f′(x) = 0, получим стационарную точку х =1. Найдем теперь вторую производную: f″(x) = 2.
Так как вторая производная в стационарной точке положительна, f″(1) = 2 > 0, то при x = 1 функция имеет минимум: fmin = f(1) = -4.
Ответ: Точка минимума имеет координаты (1; -4).

Возрастание, убывание и монотонность функции

Понятие возрастания, убывания и монотонности функции

Исследование функции на возрастание и убывание может быть как самостоятельной задачей, так и одним из этапов полного исследования функции и построения её графика.

Функции, у которых имеет место убывание или возрастание на некотором числовом промежутке, называются монотонными функциями.

Возрастание функции. Функция называется возрастающей на интервале ]a, b[ , принадлежащем области определения функции, если бОльшим значениям независимой переменной из этого интервала соответствуют бОльшие значения функции, т.е. если

x 2 > x 1 → f(x 2 ) > f(x 1 ) для всех x 1 и x 2 , принадлежащих интервалу. Кстати, будет полезным открыть в новом окне материал Свойства и графики элементарных функций.

Убывание функции. Функция называется убывающей на интервале ]a, b[ , если бОльшим значениям независимой переменной из этого интервала соответствуют меньшие значения функции, т.е. если

x 2 > x 1 → f(x 2 ) 1 ) для всех x 1 и x 2 , принадлежащих интервалу.

Признаки постоянства, возрастания и убывания функции

Теорема 1. Если во всех точках некоторого промежутка производная функции равна нулю ( f ‘(x) = 0 ), то функция f(x) сохраняет в этом промежутке постоянное значение.

Этот промежуток может быть замкнутым или открытым, конечным или бесконечным.

Теорема 2 (достаточный признак возрастания). Если во всех точках некоторого промежутка производная функции больше нуля ( f ‘(x) > 0 ), то функция f(x) возрастает в этом промежутке.

Теорема 3 (достаточный признак убывания). Если во всех точках некоторого промежутка производная функции меньше нуля ( f ‘(x) ), то функция f(x) убывает на этом промежутке.

Замечание. Условия теорем 2 и 3 не являются в полной мере необходимыми. Их можно несколько ослабить, а именно заменить нестрогими неравенствами и считать, что производная функции больше или равна нулю ( f ‘(x) ≥ 0 ) или меньше или равна нулю ( f ‘(x) ≤ 0 ), так как заключения теорем остаются справедливыми и тогда, когда производная обращается в нуль в конечном множестве точек.

Для самопроверки при расчётах можно воспользоваться онлайн калькулятором производных.

Пример 1. Найти промежутки возрастания и убывания функции

Решение. Находим производную функции:

(Для разложения квадратного двухчлена на множители решали квадратное уравнение).

Для отыкания промежутков возрастания и убывания функции найдём точки, в которых . Такими точками являются и .

Исследуем знаки производной в промежутках, ограниченных этими точками. От до точки знак положителен, от точки до точки знак отрицателен, от точки до знак положителен. Ответ на вопрос задания: промежутки возрастания данной функции — и , а промежуток убывания функции — .

Пример 2. Найти промежутки возрастания и убывания функции .

Решение. Находим производную функции:

Решая уравнение , получаем точки, в которых производная функции равна нулю:

.

Исследуем знаки производной. От до точки знак положителен, от точки до точки знак отрицателен, от точки до знак положителен. Наше исследование показало, что промежутки возрастания данной функции и , а промежуток убывания —

Для самопроверки при расчётах можно воспользоваться онлайн калькулятором производных.

Пример 3. Найти промежутки возрастания и убывания функции .

Решение. Область определения функции — промежуток , так как логарифмическая функция определена при .

Далее находим производную функции:

.

Решая уравнение , получаем точку, в которой производная равна нулю:

Исследуем знаки производной. От 0 до точки знак отрицателен, от точки до знак положителен. Ответ: промежуток убывания функции — , а промежуток возрастания — .


источники:

http://math.semestr.ru/math/intervals.php

http://function-x.ru/function_increase_decrease.html