Уравнения второй степени с косинусом

Формулы понижения степени в тригонометрии

Тригонометрические формулы обладают рядом свойств, одно из которых это применение формул понижения степени. Они способствуют упрощению выражений при помощи уменьшения степени.

Формулы понижения работают по принципу выражения степени синуса и косинуса через синус и косинус первой степени, но кратного угла. При упрощении формула становится удобной для вычислений, причем повышается кратность угла от α до n α .

Формулы понижения степени, их доказательство

Ниже приводится таблица формул понижения степени со 2 по 4 для sin и cos угла. После ознакомления с ними зададим общую формулу для всех степеней.

sin 2 α = 1 — cos 2 α 2 cos 2 α = 1 + cos 2 α 2 sin 3 = 3 · sin α — sin 3 α 4 sin 4 = 3 — 4 · cos 2 α + cos 4 α 8 cos 4 α = 3 + 4 · cos 2 α + cos 4 α 8

Данные формулы предназначены для понижения степени.

Существует формулы двойного угла у косинуса и синуса, из которых и следуют формулы понижения степени cos 2 α = 1 — 2 · sin 2 α и cos 2 α = 2 · cos 2 α — 1 . Равенства разрешаются относительно квадрата синуса и косинуса, которые предоставляются как sin 2 α = 1 — cos 2 α 2 и cos 2 α = 1 + cos 2 α 2 .

Формулы понижения степеней тригонометрических функций перекликаются с формулами синуса и косинуса половинного угла.

Имеет место применение формулы тройного угла sin 3 α = 3 · sin α — 4 · sin 3 α и cos 3 α = — 3 · cos α + 4 · cos 3 α .

Если решать равенство относительно синуса и косинуса в кубе, получим формулы понижения степеней для синуса и косинуса:

sin 3 α = 3 — 4 · cos 2 α + cos 4 α 8 и cos 3 α = 3 · cos α + cos 3 α 4 .

Формулы четвертой степени тригонометрических функций выглядят так: sin 4 α = 3 — 4 · cos 2 α + cos 4 α 8 и cos 4 α = 3 + 4 · cos 2 α + cos 4 α 8 .

Чтобы понизить степени эти выражений, можно действовать в 2 этапа, то есть дважды понижать, тогда это выглядит таким образом:

sin 4 α = ( sin 2 α ) 2 = ( 1 — cos 2 α 2 ) 2 = 1 — 2 · cos 2 α + cos 2 2 α 4 = = 1 — 2 · cos 2 α + 1 + cos 4 α 2 4 = 3 — 4 · cos 2 α + cos 4 α 8 ; cos 4 α = ( cos 2 α ) 2 = ( 1 + cos 2 α 2 ) 2 = 1 + 2 · cos 2 α + cos 2 2 α 4 = = = 1 + 2 · cos 2 α + 1 + cos 4 α 2 4 = 3 + 4 · cos 2 α + cos 4 α 8

Методом подстановки мы упростили сложное выражение. Для того, чтобы записать общий вид формул понижения степени разделим их на с наличием четных и нечетных показателей. Четные показатели, где n = 2 , 4 , 6 … , выражение имеет вид sin n α = C n 2 n 2 n + 1 2 n — 1 · ∑ ( — 1 ) n 2 — k k = 0 n 2 — 1 · C k n · cos ( ( n — 2 · k ) α ) и cos n α = C n 2 n 2 n + 1 2 n — 1 ∑ ( — 1 ) n 2 — k k = 0 n 2 — 1 · C k n · cos ( ( n — 2 · k ) α ) .

Нечетные показатели, где n = 3 , 5 , 7 …, выражение имеет вид

sin n α = 1 2 n — 1 · ∑ ( — 1 ) n — 1 2 — k k = 0 n — 1 2 · C k n · cos ( ( n — 2 · k ) α ) и cos n α = 1 2 n — 1 ∑ ( — 1 ) n — 1 2 — k k = 0 n — 1 2 · C k n · cos ( ( n — 2 · k ) α ) .

C p q = p ! q ! · ( p — q ) ! — это число сочетаний из p элементов по q .

Формулы понижения степени общего вида используются на любого выражения с высокой степенью для его упрощения. Рассмотрим пример для понижения кубического синуса. Третья степень нечетная, значит воспользуемся формулой sin n α = 1 2 n — 1 · ∑ ( — 1 ) n — 2 2 — k k = 0 n — 1 2 — k · C k n · sin ( ( n — 2 · k ) α ) где значение n присвоим 3 . Подставляя n = 3 в выражение, получим

sin 3 α = 1 2 3 — 1 · ∑ ( — 1 ) 3 — 1 2 — k k = 0 3 — 1 2 — k · C k 3 · sin ( ( 3 — 2 · k ) α ) = = 1 4 · ∑ ( — 1 ) 1 — k k = 0 1 · C k 3 · sin ( ( 3 — 2 · k ) α ) = = 1 4 · ( ( — 1 ) 1 — 0 · C 0 3 · sin ( ( 3 — 2 · 0 ) α ) + ( 1 ) 1 — 1 · C 1 3 · sin ( ( 3 — 2 · 1 ) α ) ) = = 1 4 · ( ( — 1 ) 1 · 3 ! 0 ! · 3 ! · sin 3 α + ( — 1 ) 0 · 3 ! 1 ! · ( 3 — 1 ) ! · sin α ) = = 1 4 · ( — sin 3 α + 3 · sin α ) = 3 · sin α — sin 3 α 4

Примеры применения формул понижения степени

Чтобы закрепить материал, необходимо детально разобрать его на примерах с использованием формулы понижения степени. Таким образом будет понятен принцип решения, подстановка и весь алгоритм.

Справедлива ли формула вида cos 4 α = 3 + 4 · cos 2 α + cos 4 α 8 при α = α 6 .

Для того, чтобы данная формула прошла проверку на возможность понижения степени с заданным значением угла α , необходимо посчитать левую и правую стороны. По условию имеем, что α = π 6 , тогда 2 α = π 3 , следовательно 4 α = 2 π 3 .

По таблице тригонометрических функций имеем, что cos α = cos π 6 = 3 2 , тогда cos 2 α = cos π 3 = 1 2 .

Для подробного уяснения необходимо проштудировать статью значения синуса, косинуса, тангенса и котангенса. Подставляя в формулу, получим cos 4 α = ( cos π 6 ) 4 = ( 3 2 ) 4 = 9 16 и 3 + 4 cos 2 α + cos 4 α 8 = 3 + 4 cos π 3 + cos 2 π 3 8 = 3 + 4 · 1 2 + ( — 1 2 ) 8 = 9 16

Отсюда видим, что левая и правая части равенства верны при α = π 6 , значит, выражение справедливо при значении заданного угла. Если угол отличен от α , формула понижения степени одинаково применима.

При помощи формулы понижения степени преобразовать выражение sin 3 2 β 5 .

Кубический синус для угла α имеет формулу вида sin 3 α = 3 · sin α — sin 3 α 4 . В данном случае необходимо выполнить замену α на 2 β 5 и подставить в формулу, тогда получаем выражение вида sin 3 2 β 5 = 3 · sin 2 β 5 — sin ( 3 · 2 β 5 ) 4 .

Это выражение равно равенству sin 3 2 β 5 = 3 · sin 2 β 5 — sin 6 β 5 4 .

Ответ: sin 3 2 β 5 = 3 · sin 2 β 5 — sin 6 β 5 4 .

Для решения сложных тригонометрических уравнений применяют формулы понижения степени. Они способны упростить выражение и сделать его намного удобным для вычислений или подстановки числовых значений.

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Решение тригонометрических уравнений.

Этот математический калькулятор онлайн поможет вам решить тригонометрическое уравнение. Программа для решения тригонометрического уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения ответа.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >>
С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> Введите тригонометрическое уравнение
Решить уравнение

Немного теории.

Тригонометрические уравнения

Уравнение cos(х) = а

Из определения косинуса следует, что \( -1 \leqslant \cos \alpha \leqslant 1 \). Поэтому если |a| > 1, то уравнение cos x = a не имеет корней. Например, уравнение cos х = -1,5 не имеет корней.

Уравнение cos x = а, где \( |a| \leqslant 1 \), имеет на отрезке \( 0 \leqslant x \leqslant \pi \) только один корень. Если \( a \geqslant 0 \), то корень заключён в промежутке \( \left[ 0; \; \frac<\pi> <2>\right] \); если a

Уравнение sin(х) = а

Из определения синуса следует, что \( -1 \leqslant \sin \alpha \leqslant 1 \). Поэтому если |a| > 1, то уравнение sin x = а не имеет корней. Например, уравнение sin x = 2 не имеет корней.

Уравнение sin х = а, где \( |a| \leqslant 1 \), на отрезке \( \left[ -\frac<\pi><2>; \; \frac<\pi> <2>\right] \) имеет только один корень. Если \( a \geqslant 0 \), то корень заключён в промежутке \( \left[ 0; \; \frac<\pi> <2>\right] \); если а

Уравнение tg(х) = а

Из определения тангенса следует, что tg x может принимать любое действительное значение. Поэтому уравнение tg x = а имеет корни при любом значении а.

Уравнение tg x = а для любого a имеет на интервале \( \left( -\frac<\pi><2>; \; \frac<\pi> <2>\right) \) только один корень. Если \( |a| \geqslant 0 \), то корень заключён в промежутке \( \left[ 0; \; \frac<\pi> <2>\right) \); если а

Решение тригонометрических уравнений

Выше были выведены формулы корней простейших тригонометрических уравнений sin(x) = a, cos(x) = а, tg(x) = а. К этим уравнеииям сводятся другие тригонометрические уравнения. Для решения большинства таких уравнений требуется применение различных формул и преобразований тригонометрических выражений. Рассмотрим некоторые примеры решения тригонометрических уравнений.

Уравнения, сводящиеся к квадратным

Решить уравнение 2 cos 2 (х) — 5 sin(х) + 1 = 0

Заменяя cos 2 (х) на 1 — sin 2 (х), получаем
2 (1 — sin 2 (х)) — 5 sin(х) + 1 = 0, или
2 sin 2 (х) + 5 sin(х) — 3 = 0.
Обозначая sin(х) = у, получаем 2у 2 + 5y — 3 = 0, откуда y1 = -3, y2 = 0,5
1) sin(х) = — 3 — уравнение не имеет корней, так как |-3| > 1;
2) sin(х) = 0,5; \( x = (-1)^n \text(0,5) + \pi n = (-1)^n \frac<\pi> <6>+ \pi n, \; n \in \mathbb \)
Ответ \( x = (-1)^n \frac<\pi> <6>+ \pi n, \; n \in \mathbb \)

Решить уравнение 2 cos 2 (6х) + 8 sin(3х) cos(3x) — 4 = 0

Используя формулы
sin 2 (6x) + cos 2 (6x) = 1, sin(6х) = 2 sin(3x) cos(3x)
преобразуем уравнение:
3 (1 — sin 2 (6х)) + 4 sin(6х) — 4 = 0 => 3 sin 2 (6х) — 4 sin(6x) + 1 = 0
Обозначим sin 6x = y, получим уравнение
3y 2 — 4y +1 =0, откуда y1 = 1, y2 = 1/3

Уравнение вида a sin(x) + b cos(x) = c

Решить уравнение 2 sin(x) + cos(x) — 2 = 0

Используя формулы \( \sin(x) = 2\sin\frac <2>\cos\frac<2>, \; \cos(x) = \cos^2 \frac <2>-\sin^2 \frac <2>\) и записывая правую часть уравпения в виде \( 2 = 2 \cdot 1 = 2 \left( \sin^2 \frac <2>+ \cos^2 \frac <2>\right) \) получаем

Поделив это уравнение на \( \cos^2 \frac <2>\) получим равносильное уравнение \( 3 \text^2\frac <2>— 4 \text\frac <2>+1 = 0 \)
Обозначая \( \text\frac <2>= y \) получаем уравнение 3y 2 — 4y + 1 = 0, откуда y1=1, y1= 1/3

В общем случае уравнения вида a sin(x) + b cos(x) = c, при условиях \( a \neq 0, \; b \neq 0, \; c \neq 0, \; c^2 \leqslant b^2+c^2 \) можно решить методом введения вспомогательного угла.
Разделим обе части этого уравнения на \( \sqrt \):

Решить уравнение 4 sin(x) + 3 cos(x) = 5

Здесь a = 4, b = 3, \( \sqrt = 5 \). Поделим обе части уравнения на 5:

Уравнения, решаемые разложением левой части на множители

Многие тригонометрические уравнения, правая часть которых равна нулю, решаются разложением их левой части на множители.

Решить уравнение sin(2х) — sin(x) = 0
Используя формулу синуса двойного аргумента, запишем уравнепие в виде 2 sin(x) cos(x) — sin(x) = 0. Вынося общий множитель sin(x) за скобки, получаем sin(x) (2 cos x — 1) = 0

Решить уравнение cos(3х) cos(x) = cos(2x)
cos(2х) = cos (3х — х) = cos(3х) cos(x) + sin(3х) sin(x), поэтому уравнение примет вид sin(x) sin(3х) = 0

Решить уравнение 6 sin 2 (x) + 2 sin 2 (2x) = 5
Выразим sin 2 (x) через cos(2x)
Так как cos(2x) = cos 2 (x) — sin 2 (x), то
cos(2x) = 1 — sin 2 (x) — sin 2 (x), cos(2x) = 1 — 2 sin 2 (x), откуда
sin 2 (x) = 1/2 (1 — cos(2x))
Поэтому исходное уравнение можно записать так:
3(1 — cos(2x)) + 2 (1 — cos 2 (2х)) = 5
2 cos 2 (2х) + 3 cos(2х) = 0
cos(2х) (2 cos(2x) + 3) = 0

Основные виды тригонометрических уравнений (задание 13)

Рассмотрим некоторые наиболее часто встречающиеся виды тригонометрических уравнений и способы их решения.

\(\blacktriangleright\) Квадратные тригонометрические уравнения
Если после преобразования уравнение приняло следующий вид: \[<\Large>\] где \(a\ne 0, \ f(x)\) — одна из функций \(\sin x, \cos x, \mathrm\,x, \mathrm\, x\) ,
то такое уравнение с помощью замены \(f(x)=t\) сводится к квадратному уравнению.

Часто при решении таких уравнений используются
основные тождества: \[\begin <|ccc|>\hline \sin^2 \alpha+\cos^2 \alpha =1&& \mathrm\, \alpha \cdot \mathrm\, \alpha =1\\ &&\\ \mathrm\, \alpha=\dfrac<\sin \alpha><\cos \alpha>&&\mathrm\, \alpha =\dfrac<\cos \alpha><\sin \alpha>\\&&\\ 1+\mathrm^2\, \alpha =\dfrac1 <\cos^2 \alpha>&& 1+\mathrm^2\, \alpha=\dfrac1<\sin^2 \alpha>\\&&\\ \hline \end\]
формулы двойного угла: \[\begin <|lc|cr|>\hline \sin <2\alpha>=2\sin \alpha\cos \alpha & \qquad &\qquad & \cos<2\alpha>=\cos^2\alpha -\sin^2\alpha\\ \sin \alpha\cos \alpha =\dfrac12\sin <2\alpha>&& & \cos<2\alpha>=2\cos^2\alpha -1\\ & & & \cos<2\alpha>=1-2\sin^2 \alpha\\ \hline &&&\\ \mathrm\, 2\alpha = \dfrac<2\mathrm\, \alpha><1-\mathrm^2\, \alpha> && & \mathrm\, 2\alpha = \dfrac<\mathrm^2\, \alpha-1><2\mathrm\, \alpha>\\&&&\\ \hline \end\]

Пример 1. Решить уравнение \(6\cos^2x-13\sin x-13=0\)

С помощью формулы \(\cos^2\alpha=1-\sin^2\alpha\) уравнение сводится к виду:
\(6\sin^2x+13\sin x+7=0\) . Сделаем замену \(t=\sin x\) . Т.к. область значений синуса \(\sin x\in [-1;1]\) , то \(t\in[-1;1]\) . Получим уравнение:

\(6t^2+13t+7=0\) . Корни данного уравнения \(t_1=-\dfrac76, \ t_2=-1\) .

Таким образом, корень \(t_1\) не подходит. Сделаем обратную замену:
\(\sin x=-1 \Rightarrow x=-\dfrac<\pi>2+2\pi n, n\in\mathbb\) .

Пример 2. Решить уравнение \(5\sin 2x=\cos 4x-3\)

С помощью формулы двойного угла для косинуса \(\cos 2\alpha=1-2\sin^2\alpha\) имеем:
\(\cos4x=1-2\sin^22x\) . Сделаем эту подстановку и получим:

\(2\sin^22x+5\sin 2x+2=0\) . Сделаем замену \(t=\sin 2x\) . Т.к. область значений синуса \(\sin 2x\in [-1;1]\) , то \(t\in[-1;1]\) . Получим уравнение:

\(2t^2+5t+2=0\) . Корни данного уравнения \(t_1=-2, \ t_2=-\dfrac12\) .

Таким образом, корень \(t_1\) не подходит. Сделаем обратную замену: \(\sin 2x=-\dfrac12 \Rightarrow x_1=-\dfrac<\pi><12>+\pi n, \ x_2=-\dfrac<5\pi><12>+\pi n, n\in\mathbb\) .

Пример 3. Решить уравнение \(\mathrm\, x+3\mathrm\,x+4=0\)

Т.к. \(\mathrm\,x\cdot \mathrm\,x=1\) , то \(\mathrm\,x=\dfrac1<\mathrm\,x>\) . Сделаем замену \(\mathrm\,x=t\) . Т.к. область значений тангенса \(\mathrm\,x\in\mathbb\) , то \(t\in\mathbb\) . Получим уравнение:

\(t+\dfrac3t+4=0 \Rightarrow \dfrac=0\) . Дробь равна нулю, когда числитель равен нулю, а знаменатель отличен от нуля. Таким образом:

Сделаем обратную замену:

\(\blacktriangleright\) Кубические тригонометрические уравнения
Если после преобразования уравнение приняло следующий вид: \[<\Large>\] где \(a\ne 0, \ f(x)\) — одна из функций \(\sin x, \cos x, \mathrm\,x, \mathrm\, x\) ,
то такое уравнение с помощью замены \(f(x)=t\) сводится к кубическому уравнению.

Часто при решении таких уравнений в дополнение к предыдущим формулам используются
формулы тройного угла: \[\begin <|lc|cr|>\hline &&&\\ \sin <3\alpha>=3\sin \alpha -4\sin^3\alpha &&& \cos<3\alpha>=4\cos^3\alpha -3\cos \alpha\\&&&\\ \hline \end\]

Пример 4. Решить уравнение \(11\cos 2x-3=3\sin 3x-11\sin x\)

При помощи формул \(\sin 3x=3\sin x-4\sin^3x\) и \(\cos2x=1-2\sin^2x\) можно свести уравнение к уравнению только с \(\sin x\) :

\(12\sin^3x-9\sin x+11\sin x-3+11-22\sin^2 x=0\) . Сделаем замену \(\sin x=t, \ t\in[-1;1]\) :

\(6t^3-11t^2+t+4=0\) . Подбором находим, что один из корней равен \(t_1=1\) . Выполнив деление в столбик многочлена \(6t^3-11t^2+t+4\) на \(t-1\) , получим:

\((t-1)(2t+1)(3t-4)=0 \Rightarrow\) корнями являются \(t_1=1, \ t_2=-\dfrac12, \ t_3=\dfrac43\) .

Таким образом, корень \(t_3\) не подходит. Сделаем обратную замену:

\(\blacktriangleright\) Однородные тригонометрические уравнения второй степени: \[I. \quad <\Large>, \quad a\ne 0,c\ne 0\]

Заметим, что в данном уравнении никогда не являются решениями те значения \(x\) , при которых \(\cos x=0\) или \(\sin x=0\) . Действительно, если \(\cos x=0\) , то, подставив вместо косинуса ноль в уравнение, получим: \(a\sin^2 x=0\) , откуда следует, что и \(\sin x=0\) . Но это противоречит основному тригонометрическому тождеству, т.к. оно говорит о том, что если \(\cos x=0\) , то \(\sin x=\pm 1\) .

Аналогично и \(\sin x=0\) не является решением такого уравнения.

Значит, данное уравнение можно делить на \(\cos^2 x\) или на \(\sin^2 x\) . Разделим, например, на \(\cos^2 x\) :

Таким образом, данное уравнение при помощи деления на \(\cos^2x\) и замены \(t=\mathrm\,x\) сводится к квадратному уравнению:

\(at^2+bt+c=0\) , способ решения которого вам известен.

Уравнения вида \[I’. \quad <\Large>, \quad a\ne0,c\ne 0\] с легкостью сводятся к уравнению вида \(I\) с помощью использования основного тригонометрического тождества: \[d=d\cdot 1=d\cdot (\sin^2x+\cos^2x)\]

Заметим, что благодаря формуле \(\sin2x=2\sin x\cos x\) однородное уравнение можно записать в виде

\(a\sin^2 x+b\sin 2x+c\cos^2x=0\)

Пример 5. Решить уравнение \(2\sin^2x+3\sin x\cos x=3\cos^2x+1\)

Подставим вместо \(1=\sin^2x+\cos^2x\) и получим:

\(\sin^2x+3\sin x\cos x-4\cos^2x=0\) . Разделим данное уравнение на \(\cos^2x\) :

\(\mathrm^2\,x+3\mathrm\,x-4=0\) и сделаем замену \(t=\mathrm\,x, \ t\in\mathbb\) . Уравнение примет вид:

\(t^2+3t-4=0\) . Корнями являются \(t_1=-4, \ t_2=1\) . Сделаем обратную замену:

\(\blacktriangleright\) Однородные тригонометрические уравнения первой степени: \[II.\quad <\Large>, a\ne0, b\ne 0\]

Заметим, что в данном уравнении никогда не являются решениями те значения \(x\) , при которых \(\cos x=0\) или \(\sin x=0\) . Действительно, если \(\cos x=0\) , то, подставив вместо косинуса ноль в уравнение, получим: \(a\sin x=0\) , откуда следует, что и \(\sin x=0\) . Но это противоречит основному тригонометрическому тождеству, т.к. оно говорит о том, что если \(\cos x=0\) , то \(\sin x=\pm 1\) .

Аналогично и \(\sin x=0\) не является решением такого уравнения.

Значит, данное уравнение можно делить на \(\cos x\) или на \(\sin x\) . Разделим, например, на \(\cos x\) :

\(a \ \dfrac<\sin x><\cos x>+b \ \dfrac<\cos x><\cos x>=0\) , откуда имеем \(a\mathrm\, x+b=0 \Rightarrow \mathrm\, x=-\dfrac ba\)

Пример 6. Решить уравнение \(\sin x+\cos x=0\)

Разделим правую и левую части уравнения на \(\sin x\) :

\(1+\mathrm\, x=0 \Rightarrow \mathrm\, x=-1 \Rightarrow x=-\dfrac<\pi>4+\pi n, n\in\mathbb\)

\(\blacktriangleright\) Неоднородные тригонометрические уравнения первой степени: \[II.\quad <\Large>, a\ne0, b\ne 0, c\ne 0\]

Существует несколько способов решения подобных уравнений. Рассмотрим те из них, которые можно использовать для любого такого уравнения:

1 СПОСОБ: при помощи формул двойного угла для синуса и косинуса и основного тригонометрического тождества: \(<\large<\sin x=2\sin<\dfrac x2>\cos<\dfrac x2>, \qquad \cos x=\cos^2 <\dfrac x2>-\sin^2 <\dfrac x2>,\qquad c=c\cdot \Big(\sin^2 <\dfrac x2>+\cos^2 <\dfrac x2>\Big)>>\) данное уравнение сведется к уравнению \(I\) :

Пример 7. Решить уравнение \(\sin 2x-\sqrt3 \cos 2x=-1\)

Распишем \(\sin 2x=2\sin x\cos x, \ \cos 2x=\cos^2x-\sin^2 x, \ -1=-\sin^2 x-\cos^2x\) . Тогда уравнение примет вид:

\((1+\sqrt3)\sin^2x+2\sin x\cos x+(1-\sqrt3)\cos^2x=0\) . Данное уравнение с помощью деления на \(\cos^2x\) и замены \(\mathrm\,x=t\) сводится к:

\((1+\sqrt3)t^2+2t+1-\sqrt3=0\) . Корнями этого уравнения являются \(t_1=-1, \ t_2=\dfrac<\sqrt3-1><\sqrt3+1>=2-\sqrt3\) . Сделаем обратную замену:

2 СПОСОБ: при помощи формул выражения функций через тангенс половинного угла: \[\begin <|lc|cr|>\hline &&&\\ \sin<\alpha>=\dfrac<2\mathrm\, \dfrac<\alpha>2><1+\mathrm^2\, \dfrac<\alpha>2> &&& \cos<\alpha>=\dfrac<1-\mathrm^2\, \dfrac<\alpha>2><1+\mathrm^2\, \dfrac<\alpha>2>\\&&&\\ \hline \end\] уравнение сведется к квадратному уравнению относительно \(\mathrm\, \dfrac x2\)

Пример 8. Решить то же уравнение \(\sin 2x-\sqrt3 \cos 2x=-1\)

\(\dfrac<(\sqrt3+1)t^2+2t+1-\sqrt3><1+t^2>=0 \Rightarrow (\sqrt3+1)t^2+2t+1-\sqrt3=0\) (т.к. \(1+t^2\geqslant 1\) при всех \(t\) , то есть всегда \(\ne 0\) )

Таким образом, мы получили то же уравнение, что и, решая первым способом.

3 СПОСОБ: при помощи формулы вспомогательного угла.
\[<\large\,\sin (x+\phi),>> \quad \text <где >\cos \phi=\dfrac a<\sqrt>\]

Для использования данной формулы нам понадобятся формулы сложения углов: \[\begin <|lc|cr|>\hline &&&\\ \sin<(\alpha\pm \beta)>=\sin\alpha\cdot \cos\beta\pm \sin\beta\cdot \cos\alpha &&& \cos<(\alpha\pm \beta)>=\cos\alpha\cdot \cos\beta \mp \sin\alpha\cdot \sin\beta\\ &&&\\ \hline \end\]

Пример 9. Решить то же уравнение \(\sin 2x-\sqrt3 \cos 2x=-1\)

Т.к. мы решаем уравнение, то можно не преобразовывать левую часть, а просто разделить обе части уравнения на \(\sqrt<1^2+(-\sqrt3)^2>=2\) :

\(\dfrac12\sin 2x-\dfrac<\sqrt3>2\cos 2x=-\dfrac12\)

Заметим, что числа \(\dfrac12\) и \(\dfrac<\sqrt3>2\) получились табличные. Можно, например, взять за \(\dfrac12=\cos \dfrac<\pi>3, \ \dfrac<\sqrt3>2=\sin \dfrac<\pi>3\) . Тогда уравнение примет вид:

\(\sin 2x\cos \dfrac<\pi>3-\sin \dfrac<\pi>3\cos 2x=-\dfrac12 \Rightarrow \sin\left(2x-\dfrac<\pi>3\right)=-\dfrac12\)

Решениями данного уравнения являются:

Заметим, что при решении уравнения третьим способом мы добились “более красивого” ответа (хотя ответы, естественно, одинаковы), чем при решении первым или вторым способом (которые, по сути, приводят уравнение к одному и тому же виду).
Таким образом, не стоит пренебрегать третьим способом решения данного уравнения.

\(\blacktriangleright\) Если тригонометрическое уравнение можно свести к виду \[<\Large>, \text <где >a\ne 0, b\ne 0,\] то с помощью формулы \[<\large<(\sin x\pm\cos x)^2=1\pm2\sin x\cos x>> \ \ (*)\] данное уравнение можно свести к квадратному.

Для этого необходимо сделать замену \(t=\sin x\pm \cos x\) , тогда \(\sin x\cos x=\pm \dfrac2\) .

Заметим, что формула \((*)\) есть не что иное, как формула сокращенного умножения \((A\pm B)^2=A^2\pm 2AB+B^2\) при подстановке в нее \(A=\sin x, B=\cos x\) .

Пример 10. Решить уравнение \(3\sin 2x+3\cos 2x=16\sin x\cos^3x-8\sin x\cos x\) .

Вынесем общий множитель за скобки в правой части: \(3\sin 2x+3\cos 2x=8\sin x\cos x(2\cos^2 x-1)\) .
По формулам двойного угла \(2\sin x\cos x=\sin 2x, 2\cos^2x-1=\cos 2x\) имеем: \[3(\sin 2x+\cos 2x)=4\sin 2x\cos 2x\] Заметим, что полученное уравнение как раз записано в необходимом нам виде. Сделаем замену \(t=\sin 2x+\cos 2x\) , тогда \(\sin 2x\cos 2x=\dfrac2\) . Тогда уравнение примет вид: \[3t=2t^2-2 \Rightarrow 2t^2-3t-2=0\] Корнями данного уравнения являются \(t_1=2, t_2=-\dfrac12\) .

По формулам вспомогательного аргумента \(\sin2x+\cos 2x=\sqrt2\sin\left(2x+\dfrac<\pi>4\right)\) , следовательно, сделав обратную замену: \[\left[ \begin \begin &\sqrt2\sin\left(2x+\dfrac<\pi>4\right)=2\\[1ex] &\sqrt2\sin\left(2x+\dfrac<\pi>4\right)=-\dfrac12 \end \end \right. \Rightarrow \left[ \begin \begin &\sin\left(2x+\dfrac<\pi>4\right)=\sqrt2\\[1ex] &\sin\left(2x+\dfrac<\pi>4\right)=-\dfrac1 <2\sqrt2>\end \end \right.\] Первое уравнение корней не имеет, т.к. область значений синуса находится в пределах от \(-1\) до \(1\) . Значит: \(\sin\left(2x+\dfrac<\pi>4\right)=-\dfrac1 <2\sqrt2>\Rightarrow \left[ \begin \begin &2x+\dfrac<\pi>4=-\arcsin <\dfrac1<2\sqrt2>>+2\pi n\\[1ex] &2x+\dfrac<\pi>4=\pi+\arcsin <\dfrac1<2\sqrt2>>+2\pi n \end \end \right. \Rightarrow \)
\(\Rightarrow \left[ \begin \begin &x=-\dfrac12\arcsin <\dfrac1<2\sqrt2>>-\dfrac<\pi>8+\pi n\\[1ex] &x=\dfrac<3\pi>8+\dfrac12\arcsin <\dfrac1<2\sqrt2>>+\pi n \end \end \right. \ \ n\in\mathbb\)

\(\blacktriangleright\) Формулы сокращенного умножения в тригонометрическом варианте:

\(I\) Квадрат суммы или разности \((A\pm B)^2=A^2\pm 2AB+B^2\) :

\((\sin x\pm \cos x)^2=\sin^2 x\pm 2\sin x\cos x+\cos^2x=(\sin^2 x+\cos^2 x)\pm 2\sin x\cos x=1\pm \sin 2x\)

\(II\) Разность квадратов \(A^2-B^2=(A-B)(A+B)\) :

\((\cos x-\sin x)(\cos x+\sin x)=\cos^2x-\sin^2x=\cos 2x\)

\(III\) Сумма или разность кубов \(A^3\pm B^3=(A\pm B)(A^2\mp AB+B^2)\) :

\(\sin^3x\pm \cos^3x=(\sin x\pm \cos x)(\sin^2x\mp \sin x\cos x+\cos^2x)=(\sin x\pm \cos x)(1\mp \sin x\cos x)=\)

\(=(\sin x\pm \cos x)(1\mp \frac12\sin 2x)\)

\(IV\) Куб суммы или разности \((A\pm B)^3=A^3\pm B^3\pm 3AB(A\pm B)\) :

\((\sin x\pm \cos x)^3=(\sin x\pm \cos x)(\sin x\pm \cos x)^2=(\sin x\pm \cos x)(1\pm \sin 2x)\) (по первой формуле)


источники:

http://www.math-solution.ru/math-task/trigonometry-equality

http://shkolkovo.net/theory/24