Уравнения высшего порядка 10 класс

Урок алгебры в 10-м классе (занятие элективного курса) по теме «Методы решения уравнений высших степеней»

Презентация к уроку

На занятии изучается методика решения уравнений высших степеней. Рассматриваются два метода: разложение на множители и замена переменной. Понижение степени уравнений с помощью деления многочленов по схеме Горнера и приведение различных уравнений к замене переменной. Дана историческая справка исследования уравнений высших степеней. Представлена презентация урока.

Метод разложения на множители.

Этот метод основан на применении теоремы Безу. Если число α является корнем многочлена P(x) степени n, то его можно представить в виде P(x) = (x — α)Q(x), где Q(x) — многочлен степени (n-1).Теорема Безу: “Остаток от деления многочлена Р(х) на двучлен (x — α) равен P(α), т.е. значению многочлена при x = α” Таким образом, если известен хотя бы один корень уравнения Р(х)=0 степени n, то с помощью теоремы Безу можно свести задачу к решению уравнения степени (n-1), понизить степень уравнения. Теорема. Пусть несократимая дробь p/q является корнем уравнения a0x n + a1x n-1 + . + ax-1x+ an = 0 с целыми коэффициентами, тогда число p – является делителем свободного члена an, а q – делителем старшего коэффициента a0. У многочлена с целыми коэффициентами целые корни являются делителями свободного члена. Таким образом, зная корень многочлена, его легко разложить на множители, т.е. разделить P(x) на (x — α) “углом” или по схеме Горнера.

Дифференциальные уравнения высших порядков: ЛОДУ, примеры решения.

Можно выделить 5 возможных метода для определения y0 — общего решения линейного однородного дифференциального уравнения n-ого порядка с постоянными коэффициентами:

1. В случае, когда все решения характеристического уравнения являются действительными и различными, значит, линейно независимые частные решения принимают вид:

,

а общее решение линейного однородного дифференциального уравнения n-ого порядка с постоянными коэффициентами записывают так:

.

Найти общее решение ЛОДУ 3-го порядка с постоянными коэффициентами:

.

Для начала записываем характеристическое уравнение и находим его корни, перед этим произведя разложение многочлена в левой части равенства на множители методом группировки:

Каждый из трех корней характеристического уравнения являются действительными и различными, значит, общее решение линейного однородного дифференциального уравнения 3-го порядка с постоянными коэффициентами принимает вид:

.

2. Когда каждое решение характеристического уравнения оказывается действительными и одинаковыми, т.е.,

,

значит, линейно независимые частные решения ЛОДУ n-ого порядка с постоянными коэффициентами принимают вид:

,

а общее решение линейного однородного дифференциального уравнения (ДУ) принимает вид:

Найти общее решение ДУ

.

Характеристическое уравнение этого линейного однородного дифференциального уравнения 4-го порядка выглядит так:

.

Обратившись к формуле бинома Ньютона, переписываем характеристическое уравнение как , из чего видим четырехкратный корень k0 = 2.

Т.о., общим решением заданного ЛОДУ с постоянными коэффициентами является:

.

3. Когда решениями характеристического уравнения ЛОДУ n-ого порядка с постоянными коэффициентами оказываются разные комплексно сопряженные пары , n=2m, тогда линейно независимые частные решения такого линейного однородного дифференциального уравнения принимает вид:

а общее решение записывается так:

Проинтегрировать ЛОДУ 4-го порядка с постоянными коэффициентами .

Характеристическое уравнение этого линейного однородного дифференциального уравнения:

.

Произведя некоторые несложные преобразования и группирования имеем:

Откуда находим 2 пары комплексно сопряженных корней характеристического уравнения и . Тогда, общим решением заданного ЛОДУ n-ого порядка с постоянными коэффициентами является:

4. Когда решениями характеристического уравнения оказываются совпадающие комплексно сопряженные пары , тогда линейно независимые частные решения ЛОДУ n-ого порядка с постоянными коэффициентами выглядят так:

,

а общим решением этого линейного однородного дифференциального уравнения является:

Найти общее решение линейного однородного дифференциального уравнения с постоянными коэффициентами:

.

Первым шагом записываем характеристическое уравнение этого ЛОДУ с постоянными коэффициентами и определяем его корни:

Т.е., решением характеристического уравнения является двукратная комплексно сопряженная пара . Тогда общее решение заданного ЛОДУ с постоянными коэффициентами будет:

.

5. Могут возникнуть любые комбинации случаев, описанных выше, т.е., некоторые корни характеристического уравнения ЛОДУ n-ого порядка с постоянными коэффициентами являются действительными и различными, некоторые являются действительными и совпадающими, некоторые являются различными комплексно сопряженными парами и некоторые совпадающими комплексно сопряженными парами.

Найти общее решение ДУ

.

Характеристическое уравнение этого ЛОДУ с постоянными коэффициентами выглядит так:

.

Многочлен в левой части равенства можно разложить на множители. Из делителей свободного члена вычисляем двукратный корень k1=k2=2 и корень k3=-3. Далее, применяя схему Горнера, приходим к разложению:

.

Из квадратного уравнения находим оставшиеся корни .

Т.о., общее решение заданного ЛОДУ с постоянными коэффициентами выглядит как:

.

Уравнения высших степеней
методическая разработка по алгебре (10 класс) на тему

Рассмотренны шесть различных типов уравнений высших степеней и тексты контрольной работы в четырёх вариантах!

Скачать:

ВложениеРазмер
уравнения высших степеней101.75 КБ

Предварительный просмотр:

Подписи к слайдам:

Уравнения высших степеней (корни многочлена от одной переменной).

П лан лекции. № 1 . Уравнения высших степеней в школьном курсе математики. № 2 . Стандартный вид многочлена. № 3 .Целые корни многочлена. Схема Горнера. № 4. Дробные корни многочлена. № 5. Уравнения вида: ( х + а )( х + в )( х + с ) … = А № 6. Возвратные уравнения. № 7. Однородные уравнения. № 8. Метод неопределенных коэффициентов. № 9. Функционально – графический метод. № 10. Формулы Виета для уравнений высших степеней. № 11. Нестандартные методы решения уравнений высших степеней.

Уравнения высших степеней в школьном курсе математики . 7 класс. Стандартный вид многочлена. Действия с многочленами. Разложение многочлена на множители. В обычном классе 42 часа , в спец классе 56 часов. 8 спецкласс . Целые корни многочлена, деление многочленов, возвратные уравнения, разность и сумма п – ых степеней двучлена, метод неопределенных коэффициентов. Ю.Н. Макарычев « Дополнительные главы к школьному курсу алгебры 8 класса», М.Л.Галицкий Сборник задач по алгебре 8 – 9 класс». 9 спецкласс . Рациональные корни многочлена. Обобщенные возвратные уравнения. Формулы Виета для уравнений высших степеней. Н.Я. Виленкин « Алгебра 9 класс с углубленным изучением. 11 спецкласс . Тождественность многочленов. Многочлен от нескольких переменных. Функционально – графический метод решения уравнений высших степеней.

Стандартный вид многочлена. Многочлен Р( х ) = а ⁿ х ⁿ + а п-1 х п-1 + … + а₂х ² + а₁х + а₀. Называется многочленом стандартного вида. а п х ⁿ — старший член многочлена а п — коэффициент при старшем члене многочлена. При а п = 1 Р( х ) называется приведенным многочленом. а ₀ — свободный член многочлена Р( х ). п – степень многочлена.

Целые корни многочлена. Схема Горнера. Теорема № 1. Если целое число а является корнем многочлена Р( х ), то а – делитель свободного члена Р( х ). Пример № 1 . Решите уравнение. Х⁴ + 2х³ = 11х² – 4х – 4 Приведем уравнение к стандартному виду. Х⁴ + 2х³ — 11х² + 4х + 4 = 0. Имеем многочлен Р( х ) = х ⁴ + 2х³ — 11х² + 4х + 4 Делители свободного члена: ± 1, ± 2, ±4. х = 1 корень уравнения т.к. Р(1) = 0, х = 2 корень уравнения т.к. Р(2) = 0 Теорема Безу. Остаток от деления многочлена Р( х ) на двучлен ( х – а) равен Р(а). Следствие. Если а – корень многочлена Р( х ), то Р( х ) делится на ( х – а ). В нашем уравнении Р( х ) делится на ( х – 1) и на ( х – 2), а значит и на ( х – 1) ( х – 2). При делении Р( х ) на ( х ² — 3х + 2) в частном получается трехчлен х ² + 5х + 2 = 0, который имеет корни х =( -5 ± √17)/2

Дробные корни многочлена. Теорема №2. Если р / g корень многочлена Р( х ), то р – делитель свободного члена, g – делитель коэффициента старшего члена Р( х ). Пример № 2. Решите уравнение. 6х³ — 11х² — 2х + 8 = 0. Делители свободного члена: ±1, ±2, ±4, ±8. Ни одно из этих чисел не удовлетворяет уравнению. Целых корней нет. Натуральные делители коэффициента старшего члена Р( х ): 1, 2, 3, 6. Возможные дробные корни уравнения: ±2/3, ±4/3, ±8/3. Проверкой убеждаемся, что Р(4/3) = 0. Х = 4/3 корень уравнения. По схеме Горнера разделим Р( х ) на ( х – 4/3).

Примеры для самостоятельного решения. Решите уравнения: 9х³ — 18х = х – 2, х ³ — х ² = х – 1, х ³ — 3х² -3х + 1 = 0, Х ⁴ — 2х³ + 2х – 1 = 0, Х⁴ — 3х² + 2 = 0, х ⁵ + 5х³ — 6х² = 0, х ³ + 4х² + 5х + 2 = 0, Х⁴ + 4х³ — х ² — 16х – 12 = 0 4х³ + х ² — х + 5 = 0 3х⁴ + 5х³ — 9х² — 9х + 10 = 0. Ответы: 1) ±1/3; 2 2) ±1, 3) -1; 2 ±√3 , 4) ±1, 5) ± 1; ±√2 , 6) 0; 1 7) -2; -1, 8) -3; -1; ±2, 9) – 5/4 10) -2; — 5/3; 1.

Уравнения вида ( х + а)( х + в)( х + с )( х + d )… = А. Пример №3 . Решите уравнение ( х + 1)( х + 2)( х + 3)( х + 4) =24. а = 1, в = 2, с = 3, d = 4 а + d = в + с. Перемножаем первую скобку с четвертой и вторую с третьей. ( х + 1)( х + 4)( х + 20( х + 3) = 24. ( х ² + 5х + 4)( х ² + 5х + 6) = 24. Пусть х ² + 5х + 4 = у, тогда у( у + 2) = 24, у² + 2у – 24 = 0 у₁ = — 6, у₂ = 4. х ² + 5х + 4 = -6 или х ² + 5х + 4 = 4. х ² + 5х + 10 = 0, Д о при х > о. Функция f ( х ) возрастающая при х > о, а значение f (о) = -2. Очевидно, что уравнение имеет один положительный корень ч.т.д. Пример №17. Решите уравнение 8х(2х² — 1)(8х⁴ — 8х² + 1) = 1. И.Ф.Шарыгин « Факультативный курс по математике для 11 класса».М. Просвещение 1991 стр90. 1. l х l 1 2х² — 1 > 1 и 8х⁴ -8х² + 1 > 1 2. Сделаем замену х = cosy , у € (0; п ). При остальных значениях у, значения х повторяются, а уравнение имеет не более 7 корней. 2х² — 1 = 2 cos²y – 1 = cos2y , 8х⁴ — 8х² + 1 = 2(2х² — 1)² — 1 = 2 cos²2y – 1 = cos4y . 3. Уравнение принимает вид 8 cosycos2ycos4y = 1. Умножаем обе части уравнения на siny . 8 sinycosycos2ycos4y = siny . Применяя 3 раза формулу двойного угла получим уравнение sin8y = siny , sin8y – siny = 0

Окончание решения примера №17. Применяем формулу разности синусов. 2 sin7y/2 · cos9y/2 = 0 . Учитывая, что у € (0;п), у = 2пк/3, к = 1, 2, 3 или у = п /9 + 2пк/9, к =0, 1, 2, 3. Возвращаясь к переменной х получаем ответ: Cos2 п /7, cos4 п /7, cos6 п /7, cos п /9, ½, cos5 п /9, cos7 п /9 . Примеры для самостоятельного решения. Найти все значения а, при которых уравнение ( х ² + х )( х ² + 5х + 6) = а имеет ровно три корня. Ответ: 9/16. Указание: построить график левой части уравнения. F max = f(0) = 9/16 . Прямая у = 9/16 пересекает график функции в трех точках. Решите уравнение ( х ² + 2х)² — ( х + 1)² = 55. Ответ: -4; 2. Решите уравнение ( х + 3)⁴ + ( х + 5)⁴ = 16. Ответ: -5; -3. Решите уравнение 2( х ² + х + 1)² -7( х – 1)² = 13( х ³ — 1).Ответ: -1; -1/2, 2;4 Найдите число действительных корней уравнения х ³ — 12х + 10 = 0 на [-3; 3/2]. Указание: найти производную и исследовать на монот .

Примеры для самостоятельного решения ( продолжение). 6. Найдите число действительных корней уравнения х ⁴ — 2х³ + 3/2 = 0. Ответ: 2 7. Пусть х ₁, х ₂, х ₃ — корни многочлена Р( х ) = х ³ — 6х² -15х + 1. Найдите Х₁² + х ₂² + х ₃². Ответ: 66. Указание: примените теорему Виета. 8. Докажите, что при а > о и произвольном вещественном в уравнение х ³ + ах + в = о имеет только один вещественный корень. Указание: проведите доказательство от противного. Примените теорему Виета. 9. Решите уравнение 2( х ² + 2)² = 9( х ³ + 1). Ответ: ½; 1; (3 ± √13)/2. Указание: приведите уравнение к однородному, используя равенства Х² + 2 = х + 1 + х ² — х + 1, х ³ + 1 = ( х + 1)( х ² — х + 1). 10. Решите систему уравнений х + у = х ², 3у – х = у². Ответ: (0;0),(2;2), (√2; 2 — √2), (- √2 ; 2 + √2). 11. Решите систему: 4у² -3ху = 2х –у, 5х² — 3у² = 4х – 2у. Ответ: ( о;о ), (1;1),(297/265; — 27/53).

Контрольная работа. 1 вариант. 1. Решите уравнение ( х ² + х ) – 8( х ² + х ) + 12 = 0. 2. Решите уравнение ( х + 1)( х + 3)( х + 5)( х + 7) = — 15. 3. Решите уравнение 12х²( х – 3) + 64( х – 3)² = х ⁴. 4. Решите уравнение х ⁴ — 4х³ + 5х² — 4х + 1 = 0 5. Решите систему аравнений : х ² + 2у² — х + 2у = 6, 1,5х² + 3у² — х + 5у = 12.

2 вариант 1. ( х ² — 4х)² + 7( х ² — 4х) + 12 = 0. 2. х ( х + 1)( х + 5)( х + 6) = 24. 3. х ⁴ + 18( х + 4)² = 11х²( х + 4). 4. х ⁴ — 5х³ + 6х² — 5х + 1 = 0. 5. х ² — 2ху + у² + 2х²у – 9 = 0, х – у – х²у + 3 = 0. 3 вариант . 1. ( х ² + 3х)² — 14( х ² + 3х) + 40 = 0 2. ( х – 5)(х-3)( х + 3)( х + 1) = — 35. 3. х4 + 8х²( х + 2) = 9( х+ 2)². 4. х ⁴ — 7х³ + 14х² — 7х + 1 = 0. 5. х + у + х ² + у ² = 18, ху + х ² + у² = 19.

4 вариант. ( х ² — 2х)² — 11( х ² — 2х) + 24 = о. ( х -7)(х-4)(х-2)( х + 1) = -36. Х⁴ + 3( х -6)² = 4х²(6 – х ). Х⁴ — 6х³ + 7х² — 6х + 1 = 0. Х² + 3ху + у² = — 1, 2х² — 3ху – 3у² = — 4. Дополнительное задание: Остаток от деления многочлена Р( х ) на ( х – 1) равен 4, остаток от делении на ( х + 1) равен2, а при делении на ( х – 2) равен 8. Найти остаток от деления Р( х ) на ( х ³ — 2х² — х + 2).

Ответы и указания: вариант № 1 № 2. № 3. № 4. № 5. 1. — 3; ±2; 1 1;2;3. -5; -4; 1; 2. Однородное уравнение: u = x -3, v =x² -2 ; -1; 3; 4. (2;1); (2/3;4/3). Указание: 1·(-3) + 2· 2 2. -6; -2; -4±√6. -3±2√3; — 4; — 2. 1±√11; 4; — 2. Однородное уравнение : u = x + 4, v = x² 1 ; 5;3±√13. (2;1); (0;3); ( — 3; 0). Указание: 2· 2 + 1. 3. -6; 2; 4; 12 -3; -2; 4; 12 -6; -3; -1; 2. Однородное u = x+ 2, v = x² -6 ; ±3; 2 (2;3), (3;2), (-2 + √7; -2 — √7); (-2 — √7; -2 + √7). Указание: 2 -1. 4. (3±√5)/2 2±√3 2±√3; (3±√5)/2 (5 ± √21)/2 (1;-2), (-1;2). Указание: 1·4 + 2 .

Решение дополнительного задания. По теореме Безу: Р(1) = 4, Р(-1) = 2, Р(2) = 8. Р( х ) = G(x) ( х ³ — 2х² — х + 2) + ах² + вх + с. Подставляем 1; — 1; 2. Р(1) = G(1) ·0 + а + в + с = 4, а + в+ с = 4. Р(-1) = а – в + с = 2, Р(2) = 4а² + 2в + с = 8. Решая полученную систему из трех уравнений получим: а = в = 1, с = 2. Ответ: х ² + х + 2.

Критерий № 1 — 2 балла. 1 балл – одна вычислительная ошибка. № 2,3,4 – по 3 балла. 1 балл – привели к квадратному уравнению. 2 балла – одна вычислительная ошибка. № 5. – 4 балла. 1 балл – выразили одну переменную через другую. 2 балла – получили одно из решений. 3 балла – одна вычислительная ошибка. Дополнительное задание: 4 балла. 1 балл – применили теорему Безу для всех четырех случаев. 2 балла – составили систему уравнений. 3 балла – одна вычислительная ошибка.

По теме: методические разработки, презентации и конспекты

Способы решения уравнений высших степеней. 8 класс

Данную презентацию использую при решении уравнений высших степеней в 8 классе. Решать квадратные уравнения школьники научились по формулам, а если уравнение выше второй степени? Есть ли алгоритм.

Конспект урока. Тема: «Решение уравнений высших степеней» 8 класс

Полное описание урока. Как решать уравнения выше второго порядка? Есть ли алгоритм решения? На эти и другие вопросы отвечает данный материал.

Урок-защита проектов «Решение уравнений высших степеней» 9 класс

Конспект урока по алгебре в 9 классе «Решение уравнений высших степеней», на котором учащиеся защищали свои проекты.Презентации учащихся: Решение биквадратных уравнений, Решение возвратных уравнений, .

Открытый урок по алгебре «Уравнения высших степеней»

урок по алгебре «Уравнения высших степеней».

Презентация программы элективного курса для 9-х классов «В мире уравнений высших степеней»

Это презентация поможет сформировать программу элективного курса для предпрофильной подготовки девятиклассников по теме «В мире уравнений высших степеней».

Уравнения высших степеней

Предлагаемый курс содержит недостаточно проработанные в базовом курсе школьной математики вопросы и своим содержанием сможет привлечь внимание учащихся 10 классов, которым интересна математика. .

Контрольная работа по алгебре по теме: «Многочлены. Уравнения и системы уравнений высших степеней. Теорема Безу. Повторение». 9 класс ( углубленный уровень).

В контрольной работе содержится подборка заданий углубленного уровня по теме «Многочлены. Теорема Безу. Деление с остатком. Повторение». Для сильных ребят в этой теме необходимо рассмотреть .


источники:

http://www.calc.ru/Differentsialnyye-Uravneniya-Vysshikh-Poryadkov-Lodu-Primery.html

http://nsportal.ru/shkola/algebra/library/2015/06/20/uravneniya-vysshih-stepeney