Уравнения зависимости кинематических величин от времени

Анализ графиков зависимости кинематических величин от времени при равномерном и равноускоренном движении

Анализ графиков зависимости кинематических величин от времени при равномерном и равноускоренном движении.

Информация, которую можно почерпнуть из графиков зависимостей кинематических величин, может быть разнообразной. Рассмотрим пример, условившись, что все зависимости временные и данные представлены в системе СИ.


На рис.1 представлен график зависимости проекции скорости от времени для тела, движущегося вдоль оси времени О t . Дополнительно зависимость v ( t ) указана аналитически в учебных целях. На рис.2-рис.4 показаны результаты изучения исходной информации.

Рис.1. Зависимость проекции скорости от времени для тела, движущегося вдоль оси О t

Исходя только из графической информации, можно выяснить следующее:

1. Охарактеризуем тип движения на каждом участке: первые 2 с движение происходило с постоянной скоростью v 1( t ) = 2, затем в течение 3 с тело двигалось равнозамедленно с ускорением а2( t ) = -2. На участке от 6 с до 10 с движение тела было равноускоренным, а3( t ) = 3. (Напомним, что ускорение есть скорость изменения скорости, то есть производная скорости по времени. Для определения ускорения по графику нужно разницу координат по оси скорости разделить на соответствующий временой интервал)

2. Укажем, когда тело останавливалось, а когда имело максимальную по модулю скорость: 3 с и 8 с – моменты остановки ( пересечение графика с осью времени О t ). Два раза в момент времени 6 с и 10 с тело имело максимальную скорость 6 метров в секунду.

3. Построим график зависимости проекции ускорения от времени (рис. 2).

4. Проанализируем, на каких участках вектор ускорения сонаправлен с вектором скорости. Сопоставим рисунки №1 и №2и выясним, на каких временных интервалах вектор ускорения был сонаправлен с вектором скорости. Выберем временные интервалы, на которых знаки проекций скорости и ускорения совпадают. Это интервалы (3с-6с) и (8с-10с).

Рис.2. График зависимости проекции ускорения от времени

5.Найдем среднюю путевую скорость за первые 6 секунд. Напомним, что для этого нужно весь путь(за первые 6 с) разделить на время его прохождения(6 с). Численно путь равен площади фигуры, ограниченной графиком зависимости v ( t ) и осью абсцисс. Пользуясь тем, что масштаб по осям задан в системе СИ, вычисляя площадь прямоугольного треугольника ка половину произведения катетов, получаем значение пути: S = S 1+ S 2+ S 3 = 2 x 2 +0,5 x 2 x 1+0.5 x 3 x 6 = 14. Таким образом, средняя скорость равна 2,33 метров в секунду. На рис.3 заштрихована площадь, численно равная пути, пройденному телом за 6 с. Это отражает тот факт, что функция S ( t ) является первообразной для функции v ( t ). Рис.3. Путь, пройденный телом, численно равен площади под графиком функции v ( t ).

6. Напишем уравнение движнения тела на каждом участке, условившись, что оно находилось в начале координат в начальный момент времени, т. е. х(0) = 0.Первые 2 с движение было равномерное, S 1( t ) = 2 t . График – прямая линия, угловой коэффициент которой равен проекции скорости на участке. Поскольку S 1(2) = 4, а проекция скорости к началу второго участка равна 2, проекция ускорения –2, то согласно уравнению равноускоренного движения, получаем:


S 2( t ) = 4 + 2( t -2)- 2( t -2)2/2 = 4+2 t -4-( t 2 –4 t +4) = — t 2 +6 t -4. Величина ( t -2)-отражает временной сдвиг момента начала равнозамедленного движения. Найдем координату тела в момент t = 6. S 2(6) = — 62 +6х6-4 = -4. Проекция скорости к началу третьего участка равна -6, проекция ускорения 3,аналогично, с учетом временного сдвига ( t -6), получаем, что S 3( t ) = t -6)+ 3( t -6)2/2 = -4-6 t +36+1,5( t 2 –12 t +36) = 1,5 t 2 -24 t +86.График зависимости перемещения от времени представлен на рис.4.

Рис.4. Зависимость проекции перемещения от времени для тела, движущегося вдоль оси О t

График перемещения на втором и третьем участках представляет участки парабол с вершинами в моменты времени 3 с и 8 с – моменты остановки тела. Отметим, что график

S ( t ) не испытывает изломов, это обусловлено непрерывностью мгновенных изменений скорости. Для получения графика зависимости пути от времени достаточно заметить, что путь все время увеличивается, убывающие участки графика необходимо симметрично отразить вверх. (Проделайте это самостоятельно).

В заключение, обратим внимание на то, как важно обращать внимание на обозначения осей абсцисс и ординат. Рассмотрим рис.5 и определим, в какой момент времени скорость движения тела была равна 5 м/с, когда она была равна 0, а когда принимала максимальное значение? Постараемся найти среднюю скорость за первые 5 секунд.

Заметим, что движение было равномерным на каждом участке, причем с первой по третью секунду тело не двигалось (координата не менялась). Скорость на первом участке была равна 5 метров в секунду, на интервале (3с – 5с) она достигала 2,5 метров в секунду, а после 5 секунды была равна 6 метров в секунду. Максимальная скорость достигалась после 5 секунды. График идет наиболее круто. Ускорение на всех участках было равно нулю.

Найдем среднюю скорость движения тела за первые 5 секунд. По графику определяем, что тело за 5 секунд прошло 10 метров. Следовательно, средняя путевая скорость равна 2 м/с.

На рис.6 представлен график зависимости проекции скорости от времени для этого тела.

Сопоставление этих двух заданий показывает, что приемы анализа графиков зависимостей кинематических величин являются универсальными, необходимо только четко представлять себе задания и внимательно читать вопросы, чтобы не попасться в ловушку. На рис.5 указаны уравнения зависимости перемещения от времени на каждом участке, попробуйте получить их самостоятельно.

В тестовой форме такие или подобные вопросы часто встречаются в вариантах КИМ(контрольно-измерительных материалах) ЕГЭ.

1. , и др. “Физика – 10”, М., “Просвещение”, 2005.

2. , , .”Решения ключевых задач по физике для профильной школы”, м., “Илекса”,2008.

3. Официальный сайт Федерального института педагогических измерений. www. *****

Кинематика в физике — основные понятия, формулы и определения с примерами

Содержание:

Основная задача механики — описание движения тел, т. е. выяснение закона (уравнения) их движения. Как отмечал А. Эйнштейн, наиболее фундаментальная проблема, остававшаяся нерешенной на протяжении тысячелетий, — это проблема движения. Собственно, учение о движении стало наукой лишь со времен Галилео Галилея и Исаака Ньютона.

Кинематика, изучает конкретные механические та их взаимодействия с другими телами. Она фактически объединяет простейшие пространственно-временные зависимости, в частности изменение координат тела со временем (как функцию времени).

Поэтому кинематику часто называют геометрией движения.

Кинематика изучает механические движения тел без учета их взаимодействия с другими телами.

Кинематика

Физика изучает разнообразные явления и процессы, происходящие вокруг нас. Как вам известно, в зависимости от их природы различают механические, тепловые, электрические, магнитные, световые и другие физические явления. Раздел физики, который объясняет движение и взаимодействие тел, называется механикой.

Слово «механика» впервые ввел Аристотель. Оно означает «машина».
Механика — одна из древнейших наук. Ее возникновение и развитие связано с практическими потребностями человека. Первые труды по механике, в которых рассматривались свойства простых механизмов и машин, появились еще в Древней Греции. Весомый вклад в ее становление сделали такие корифеи науки, как Аристотель (IV в. до н. э.), Архимед (III в. до н. э.), Леонардо да Винчи (XV в.), Галилео Галилей (XVII в.) и др. В завершенном виде как классическая теория она получила обоснование в работе Исаака Ньютона «Математические начала натуральной философии» (1687 г.). Современная механика, в основе которой лежит теория относительности, создана в начале XX в. Альбертом Эйнштейном.

Основная задача механики состоит в том, чтобы на основании параметров движения тела: координат, пройденного пути, перемещения, угла поворота, скорости, силы и т. д. — найти закон или уравнение, которое описывает это движение.

Основная задача механики состоит в том, чтобы найти уравнение движения тела с помощью параметров, описывающих это движение.
Т. е. если мы при помощи этих физических величин сможем установить положение тела в любой момент времени, то основная задача механики считается решенной. В зависимости от способов ее решения в механике выделяют три раздела: кинематика, динамика и статика.

Кинематика изучает, как движется тело, не вникая в причины, вызывающие именно такое движение. Поэтому кинематические уравнения состоят лишь из пространственных характеристик механического движения: пройденного пути, изменения координат тела, скорости и т. д. В них нет сил, изменяющих это движение.

В переводе с греческого слово кинематика» (kinematos) означает движение.

Механическое движение и траектория движения

Чаще всего в обыденной жизни мы наблюдаем явление, которое называется механическим движением. Например, автомобиль едет по дороге, в небе «плывут» тучи, ребенок катается на качелях, Луна вращается вокруг Земли и т. д. Во всех этих случаях происходит изменение положения одного тела или его частей относительно других. Чтобы убедиться в этом, необходимо выбрать тело отсчета, относительно которого можно фиксировать положение движущегося тела в любой момент времени. Тело отсчета выбирают произвольно. В приведенных примерах это может быть столб или дерево возле дороги, дом, поверхность Земли и т. д.

Для того чтобы описать движение тела, необходимо точно знать его местоположение в пространстве в произвольный момент времени, т. е. уметь определять изменение положения тела в пространстве относительно других тел с течением времени. Как известно, легче всего это можно сделать с помощью системы координат. Например, зафиксировать «адрес» тела как определенное его положение в пространстве, измерив расстояния или углы в некоторой системе координат.

Например, в географии положение тела на земной поверхности задается двумя числами на пересечении меридиана и параллели, которые называются географической долготой и широтой. В математике «адрес» точки чаще всего определяют ее координатами, в частности в прямоугольной (декартовой) системе координат на плоскости — это расстояния х и у (рис. 1.1).
Взаимные изменения положения тела или его частей в пространстве с течением времени называются механическим движением.

Систему координат, как правило, связывают с телом отсчета. В данном случае движущееся тело характеризуется изменением положения в пространстве относительно тела отсчета, т. е. изменением его координат с течением времени.

Математически это можно записать в таком виде: х = x(t); у = y(t).

Для того чтобы определить такое изменение в любой момент времени, с телом отсчета и системой координат необходимо связать средство измерения времени, к примеру секундомер или хронометр. Тогда тело отсчета, связанную с ним систему координат и секундомер как единое целое называют системой отсчета.

Как известно, реальные физические тела имеют форму и объем. Поэтому однозначно задать их положение в пространстве не всегда представляется возможным, поскольку различные их части имеют разные координаты. Однако эту проблему можно упростить, если не брать во внимание размеры тела. Такое возможно лишь при определенных условиях.

Чтобы выяснить их, рассмотрим движение автомобиля. На значительных расстояниях, например на шоссе между Киевом и Харьковом, размерами автомобиля можно пренебречь, поскольку они значительно меньше расстояния между этими городами. Поэтому нет необходимости рассматривать особенности движения каждой части кузова автомобиля — достаточно его представить как движение точки.

Таким образом, для упрощения описания движения тел, когда их размерами при определенных условиях можно пренебречь, применяют понятие материальной точки. Это условное тело, не имеющее размеров, которое определяет положение реального тела в пространстве при помощи координат такой, материальной точки. Ее геометрический образ — невесомая точка, не имеющая размеров. В случае поступательного движения, при котором все точки тела движутся одинаково, любое тело можно считать материальной точкой.

Материальная точка — это физическая модель, при помощи которой представляют реальное тело, пренебрегая его размерами.

Часто кроме движущихся предметов мы наблюдаем тела, пребывающие в состоянии покоя. Однако абсолютно неподвижных тел в природе не существует.

Рассмотрим такой пример. В вагоне на столе стоит бутылка с водой (рис. 1.2). Во время движения поезда разные наблюдатели — пассажир в купе и провожающий на перроне — оценят ее состояние движения по-разному. Для сидящего пассажира она неподвижна, поскольку расстояние от него до бутылки не изменяется. Для провожающего на перроне 16 она движется, потому что изменяет свое положение с течением времени в системе отсчета, связанной с перроном.

Следовательно, состояние покоя является относительным, равно как и состояние движения, поскольку зависит от выбранной системы отсчета. Поэтому в дальнейшем при рассмотрении движения тела мы в первую очередь будем определяться с выбором системы отсчета, потому что от этого нередко зависит сложность уравнений, описывающих данное движение. Правильный выбор системы отсчета ведет к упрощению уравнений движения.

Состояние покоя и состояние движения тела относительны, поскольку зависят от выбора системы отсчета.

Рассмотрим движущееся тело, последовательно фиксируя его положение в определенные моменты времени. Если теперь соединить все точки, в которых побывало тело во время своего движения, то получим мнимую линию, которая называется траекторией движения. Траектория движения может быть видимой (след от самолета на небосклоне, линия от карандаша или ручки при записи в тетради) и невидимой (полет птички, движение теннисного мяча и т. д.).

По форме траектории механическое движение бывает прямолинейным и криволинейным (рис. 1.3).

Положение броуновской частички через определенные промежутки времени.

Рис. 1.3. Различные формы траектории

Траектория прямолинейного движения — прямая линия. Например, падение тела с определенной высоты или движение шарика по наклонному желобу. Во время криволинейного движения тело перемещается по произвольной кривой. Часто реальное движение тел является комбинацией прямолинейного и криволинейного движений. Например, комбинированным есть движение автобуса по маршруту: на разных участках траектория его движения может быть и прямолинейной, и криволинейной.

Поскольку движение тел происходит в определенных системах отсчета, то и траектория рассматривается относительно них. Ведь она отображает во времени последовательные положения тела в некоторой системе отсчета. Поэтому она будет отличаться формой в различных системах отсчета, т. е. траектории движения также относительны. Например, все точки колеса велосипеда относительно его оси описывают окружность, однако в системе отсчета, связанной с землей, эта линия более сложная (рис. 1.4).


Рис. 1.4. Траектория движения точки обода колеса велосипеда

Путь и перемещение

Зная траекторию движения, можно определить путь, пройденный телом: для этого необходимо измерить длину траектории между начальной и конечной точками движения.

Путь — это длина траектории, которую проходит тело или материальная точка за определенный интервал времени. Он обозначается латинской буквой l. Данная физическая величина является скалярной и характеризуется лишь значением длины траектории движения.

В Международной системе единиц (СИ) путь измеряется в метрах (м). На практике используют также другие единицы пути — километр (км), сантиметр (см) и др.

Часто, для того чтобы более полно охарактеризовать движение тела и найти его новое положение, кроме пройденного пути (длины траектории), необходимо указать также направление, в котором двигалось тело. Например, водителю автомобиля приходится ехать по извилистой дороге (рис. 1.5).

Пройденный путь — это длина дороги I, по которой ехал автомобиль. Водитель же совершил перемещение в пространстве из точки А в точку В, которое можно найти, соединив начальное и конечное положение тела прямой линией, указав при этом направление движения.

Следовательно, направленный отрезок прямой, соединяющий начальное положение движущегося тела с конечным, называется перемещением. Перемещение — это векторная величина. Оно обозначается латинской буквой Его значение характеризуется модулем вектора перемещения или для упрощения записи s.

Путь и перемещение могут отличаться своими значениями. Чтобы убедиться в этом, рассмотрим движение велосипедиста по окружности радиуса R= 100 м (рис. 1.6).

Допустим велосипедист стартует в точке А. Проехав половину окружности, он окажется в точке В. Пройденный им путь равен дуге а модуль перемещения = 2R = 200 м.

В момент времени, когда велосипедист проедет окружности, пройденный им путь будет равен значение перемещения Когда велосипедист сделает полный оборот, пройденный путь будет равен модуль перемещения при этом равен нулю Таким образом, перемещение может равняться нулю даже в том случае, если тело перед этим осуществляло движение. Это возможно, когда начальное и конечное положения тела совпадают.

Путь и перемещение имеют также одинаковые значения, когда тело движется прямолинейно лишь в одном направлении.

В рассмотренном нами примере пройденный путь и перемещение разные, отличаются по своему значению. Возникает вопрос: могут ли они совпадать, быть одинаковыми? Можно легко убедиться в том, что такое возможно, если, во-первых, траектория движения будет прямой, во-вторых, движение происходит в одну сторону. Как подтверждение этого, рассмотрим — такой пример.

Допустим, что автомобиль движется прямолинейно по шоссе из пункта А в пункт В, а затем возвращается в пункт С. Расстояние между пунктами 2 км и 4 км соответственно, все они размещены на одной прямой (рис. 1.7).

Двигаясь из пункта А в пункт В, автомобиль проходит путь = 2 км + 4 км = 6 км, и модуль его перемещения равен = 6 км. Т. е. в данном случае путь и перемещение совпадают: После того как автомобиль развернулся и приехал в пункт С, его перемещение равно = 2 км, а пройденный путь составляет = 6 км + 4 км = 10 км, т. е. пройденный путь и перемещение отличаются:

Следовательно, пройденный путь и перемещение по своему значению одинаковы лишь в том случае, если тело движется по прямой и не изменяет направление движения.

Равномерное прямолинейное движение

Простейшим видом механического движения является равномерное прямолинейное движение. Это такое движение, при котором тело, двигаясь по прямой, за любые одинаковые интервалы времени совершает одинаковые перемещения. Его траектория — прямая линия. Поэтому его можно описать переменой одной из координат, например х = x(t), если координатная ось совпадает с направлением движения.

Пусть тело в начальный момент движения имеет координату (рис. 1.8); через некоторое время, совершив перемещение оно будет иметь координату х. Перемещение, характеризующее изменение положения тела в пространстве с течением времени, может происходить с разной скоростью. Скорость равномерного движения — это физическая величина, равная отношению перемещения ко времени, в течение которого оно произошло:

Как известно, в СИ скорость
измеряется в метрах за секунду (м/с). 1 м/с — это скорость такого равномерного прямолинейного движения, при которой тело за 1 с совершает перемещение 1 м. На практике используют также другие единицы скорости, например километр в час:

Поскольку перемещение — векторная величина, а время t -скалярная и всегда больше 0, то скорость также векторная величина, направление которой совпадает с направлением перемещения (рис. 1.9).

При равномерном движении значение скорости остается постоянным, поскольку за любые равные интервалы времени совершаются равные перемещения.

Как известно, основной задачей механики является определение положения тела в пространстве в произвольный момент времени. Следовательно, чтобы ее решить, надо найти координаты тела либо их изменение во времени: х — x(t). В механике такое уравнение называется уравнением движения. При решении задач с использованием уравнения движения векторные величины, характеризующие движение тела, записывают в проекциях на соответствующую ось. Следовательно, из формулы (1) получаем:

Из рисунков 1.8 и 1.9 понятно, что Воспользовавшись формулой (2), получим уравнение равномерного прямолинейного движения:

поэтому
Уравнения равномерного прямолинейного движения:


Рассмотрим теперь различные случаи равномерного прямолинейного движения (рис. 1.10).

Из рисунка следует, что если направление движения тела совпадает с направлением координатной оси, то > 0 и координата тела с течением времени возрастает: где v — модуль скорости.

Если же направление движения тела противоположно направлению координатной оси, то 0) либо устремляться вниз ( 0 (рис. 1.15) либо 0 и 0, скорость движения увеличивается, ведь > 0, вектор совпадает с направлением движения.

Если скорость тела со временем уменьшается то вектор ускорения будет противоположным к направлению движения (рис. 1.25).

В данном случае в соответствии с выбранным направлением координатной оси ОХ проекция ускорения будет отрицательной

Вместе с тем знак проекции ускорения не определяет характер движения — оно ускоряющееся или замедляющееся, в зависимости от выбора системы отсчета. В этом легко убедиться, если рассмотреть случай, когда оба тела движутся в противоположных направлениях. Тогда одно из тел имеет положительную проекцию ускорения а другое — отрицательную хотя оба движутся равноускоренно.

Из формул (1) и (2) можно получить кинематическое уравнение скорости для равноускоренного движения:


или в проекциях на ось ОХ:

Выведем теперь кинематическое уравнение перемещения для равноускоренного движения. Учтем, что скорость во время такого движения постоянно изменяется, например сначала она равна а в конце движения она будет v. Поэтому в формуле перемещения можно воспользоваться понятием средней скорости (известное из курса физики 8-го класса):

Подставив в данную формулу уравнение (3) и произведя некоторые преобразования, получим:

или в проекциях на ось ОХ:

Если начальная скорость тела равна 0 то кинематическое уравнение перемещения приобретает вид:

или в проекциях на ось ОХ:

Для прямолинейного движения, учитывая, что получим кинематическое уравнение для координат или уравнение равноускоренного движения:

или для случая, когда = 0:

Следует помнить, что в ходе решения задач необходимо учитывать знаки проекций в соответствующих уравнениях.

При определении проекции перемещения не всегда известно время, в течение которого происходило движение. Тогда можно воспользоваться иным уравнением. Чтобы его получить, подставим в кинематическое уравнение выражение Сделав некоторые математические преобразования (предлагаем произвести их самостоятельно), получим формулу:


Отсюда Если

Задача №5

Водитель начинает тормозить в тот момент, когда спидометр автомобиля фиксирует скорость 72 км/ч. Через какое время автомобиль остановится, если он двигался с ускорением Каким был его тормозной путь?
Дано:

По условию задачи спидометр показывает начальную скорость автомобиля Движение автомобиля во время торможения — замедляющееся, поэтому вектор ускорения направлен в противоположную сторону от направления движения. Конечная скорость автомобиля v = 0 (он остановился).

следовательно, 0 = — at, отсюда

Ответ: автомобиль остановился через 10 с, проехав 100 м.

Задача №6

Шарик толкнули по наклонному желобу вверх со скоростью 6 м/с. Шарик движется с ускорением 0,5 Найти скорость шарика через 8 с и 14 с после начала движения.
Дано:


Решение

Направим ось ОХ вдоль желоба (см. рис.).

Учитывая знаки проекций скорости и ускорения, имеем

Отсюда уравнение для имеет такой вид:

Для имеем:

Анализируя полученные результаты, можно сделать вывод, что в первом случае шарик двигался вверх (> 0), а во втором случае он скатывался вниз, поскольку 0), либо падать вниз ( 0, то график имеет вид, представленный на рисунке 1.28. На графике зависимости координаты от времени, если вершина параболы смещается по оси ординат вверх или вниз в зависимости от значения

Если = 0 и

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Уравнения зависимости кинематических величин от времени

Графическое представление равномерного прямолинейного движения

Механическое движение представляют графическим способом. Зависимость физических величин выражают при помощи функций. Обозначают:

V (t) — изменение скорости со временем

S(t) — изменение перемещения (пути) со временем

a(t) — изменение ускорения со временем

За висимость ускорения от времени. Так как при равномерном движении ускорение равно нулю, то зависимость a(t) — прямая линия, которая лежит на оси времени.

Зависимость скорости от времени. Так как тело движется прямолинейно и равномерно ( v = const ), т.е. скорость со временем не изменяется, то график с зависимостью скорости от времени v(t) — прямая линия, параллельная оси времени.

Проекция перемещения тела численно равна площади прямоугольника АОВС под графиком, так как величина вектора перемещения равна произведению вектора скорости на время, за которое было совершено перемещение.

Правило определения пути по графику v(t): при прямолинейном равномерном движении модуль вектора перемещения равен площади прямоугольника под графиком скорости.

Зависимость перемещения от времени. График s(t) — наклонная линия :

Из графика видно, что проекция скорости равна:

Рассмотрев эту формулу, мы можем сказать, чем больше угол, тем быстрей движется тело и оно проходит больший путь за меньшее время.

Правило определения скорости по графику s(t): Тангенс угла наклона графика к оси времени равен скорости движения.

Неравномерное прямолинейное движение.

Равномерное движение это движение с постоянной скоростью. Если скорость тела меняется, говорят, что оно движется неравномерно.

Движение, при котором тело за равные промежутки времени совершает неодинаковые перемещения, называют неравномерным или переменным движением.

Для характеристики неравномерного движения вводится понятие средней скорости.

Средняя скорость движения равна отношению всего пути, пройденного материальной точкой к промежутку времени, за который этот путь пройден.

В физике наибольший интерес представляет не средняя, а мгновенная скорость, которая определяется как предел, к которому стремится средняя скорость за бесконечно малый промежуток времени Δt:

Мгновенной скоростью переменного движения называют скорость тела в данный момент времени или в данной точке траектории.

Мгновенная скорость тела в любой точке криволинейной траектории направлена по касательной к траектории в этой точке.

Различие между средней и мгновенной скоростями показано на рисунке.

Движение тела, при котором его скорость за любые равные промежутки времени изменяется одинаково, называют равноускоренным или равнопеременным движением.

Ускорение — это векторная физическая величина, характеризующая быстроту изменения скорости, численно равная отношению изменения скорости к промежутку времени, в течение которого это изменение произошло.

Если скорость изменяется одинаково в течение всего времени движения, то ускорение можно рассчитать по формуле:

Vx — Скорость тела при равноускоренном движении по прямой

Vx o — Начальная скорость тела

ax — Ускорение тела

t — Время движения тела

Ускорение показывает, как быстро изменяетcя скорость тела. Если ускорение положительно, значит скорость тела увеличивается, движение ускоренное. Если ускорение отрицательно, значит скорость уменьшается, движение замедленное.

Единица измерения ускорения в СИ [м/с 2 ].

Ускорение измеряют акселерометром

Уравнение скорости для равноускоренного движения: vx = vxo + axt

Уравнение равноускоренного прямолинейного движения (перемещение при равноускоренном движении):

Sx — Перемещение тела при равноускоренном движении по прямой

Vx o — Начальная скорость тела

Vx — Скорость тела при равноускоренном движении по прямой

ax — Ускорение тела

t — Время движения тела

Еще формулы, для нахождения перемещения при равноускоренном прямолинейном движении, которые можно использовать при решении задач:

— если известны начальная, конечная скорости движения и ускорение.

— если известны начальная, конечная скорости движения и время всего движения

Графическое представление неравномерного прямолинейного движения

Механическое движение представляют графическим способом. Зависимость физических величин выражают при помощи функций. Обозначают:

V(t) — изменение скорости со временем

S(t) — изменение перемещения (пути) со временем

a(t) — изменение ускорения со временем

Зависимость ускорения от времени. Ускорение со временем не изменяется, имеет постоянное значение, график a(t) — прямая линия, параллельная оси времени.

Зависимость скорости от времени. При равномерном движении скорость изменяется, согласно линейной зависимости vx = vxo + axt . Графиком является наклонная линия.

Правило определения пути по графику v(t): Путь тела — это площадь треугольника (или трапеции) под графиком скорости.

Правило определения ускорения по графику v(t): Ускорение тела — это тангенс угла наклона графика к оси времени. Если тело замедляет движение, ускорение отрицательное, угол графика тупой, поэтому находим тангенс смежного угла.

Зависимость пути от времени. При равноускоренном движении путь изменяется, согласно квадратной зависимости:

В координатах зависимость имеет вид:


источники:

http://www.evkova.org/kinematika-v-fizike

http://www.sites.google.com/site/opatpofizike/teoria/teoria-10-klass/graficeskoe-predstavlenie-dvizenia