Уравнениями реакций докажите характер оксидов

Как доказать характер оксида

Оксид – химическое соединение, которое состоит из двух элементов. Один из элементовоксида — кислород. По характеруоксиды классифицируются на кислотные и основные. Кислотность или основностьможно доказать, зная химические свойства веществ, и подтвердить знания реакциями на практике.

Кислотными свойствами обладают оксиды, которые при взаимодействии с гидроксидами образуют соли с водой. Добавьте к исследуемому оксиду основание. Получили соль с водой – оксид кислый. CO₂ + Ba(OH)₂ →BaCO₃↓ +H₂OSO₃ + Ba(OH)₂ →BaSO₄↓ + H₂O

Кислотные оксиды образуют с основными оксидами соли. Смешайте с предполагаемым кислотным оксидом заведомо известный основной оксид. Получили соль – оксид кислотный.CO₂ + BaO →BaCO₃↓SO₃ + BaO →BaSO₄↓

Кислотные оксиды, взаимодействуя с водой, образуют кислоты. Прилейте в пробирку с оксидом воду, образовалась кислота – оксид был кислый. Если реакция прошла без видимых изменений, опустите в пробирку лакмусовую бумажку. Кислота окрашивает лакмус в красный цвет.CO₂ + H₂O → H₂CO₃ (мгновенно разлагается) → CO₂↑ + H₂OSO₃ + H₂O → H₂SO₄

Основными свойствами обладают те оксиды, которые при реакции с кислотами образуют воду и соли. Добавьте в пробирку с оксидом кислоту. Образовалась соль – оксид основной. Na₂O + H₂SO₄→ Na₂SO₄+ H₂OBaO + H₂SO₄→ BaSO₄↓+ H₂O

Основные оксиды при взаимодействии с кислотными образуют соль. Прилейте в пробирку с предполагаемым основным оксидом какой-нибудь кислотный оксид, в результате должна образоваться соль.Na₂O + SO₃ →Na₂SO₄CaO + SO₃ → CaSO₄↓

С водой основные оксиды дают гидроксиды. Прилейте в пробирку с оксидом воду, слегка встряхните и опустите лакмусовую бумажку. Синий цвет лакмусовой бумаги говорит о том, что в пробирке образовалось основание, соответственно, исходный оксид был основным.Na₂O + H₂O →2 NaOHBaO + H₂O → Ba(OH)₂

Амфотерные (переходные) оксиды реагируют как с кислотами так и с основаниями, при этом они образуют соли. Разделите раствор с амфотерным оксидом на две порции. К первой части прилейте щелочь, ко второй добавьте кислоту. Образовались соли – амфотерность доказана.ZnO + H₂SO₄→ZnSO₄ + H₂OZnO + 2NaOH = Na₂ZnO₂ + H₂O

Оксиды: классификация, получение и химические свойства

Оксиды — это сложные вещества, состоящие из атомов двух элементов, один из которых — кислород со степенью окисления -2. При этом кислород связан только с менее электроотрицательным элементом.

В зависимости от второго элемента оксиды проявляют разные химические свойства. В школьном курсе оксиды традиционно делят на солеобразующие и несолеобразующие. Некоторые оксиды относят к солеобразным (двойным).

Двойные оксиды — это некоторые оксиды , образованные элементом с разными степенями окисления.

Солеобразующие оксиды делят на основные, амфотерные и кислотные.

Основные оксиды — это оксиды, обладающие характерными основными свойствами. К ним относят оксиды, образованные атомами металлов со степень окисления +1 и +2.

Кислотные оксиды — это оксиды, характеризующиеся кислотными свойствами. К ним относят оксиды, образованные атомами металлов со степенью окисления +5, +6 и +7, а также атомами неметаллов.

Амфотерные оксиды — это оксиды, характеризующиеся и основными, и кислотными свойствами. Это оксиды металлов со степенью окисления +3 и +4, а также четыре оксида со степенью окисления +2: ZnO, PbO, SnO и BeO.

Несолеобразующие оксиды не проявляют характерных основных или кислотных свойств, им не соответствуют гидроксиды. К несолеобразующим относят четыре оксида: CO, NO, N2O и SiO.

Классификация оксидов

Получение оксидов

Общие способы получения оксидов:

1. Взаимодействие простых веществ с кислородом :

1.1. Окисление металлов: большинство металлов окисляются кислородом до оксидов с устойчивыми степенями окисления.

Например , алюминий взаимодействует с кислородом с образованием оксида:

Не взаимодействуют с кислородом золото, платина, палладий.

Натрий при окислении кислородом воздуха образует преимущественно пероксид Na2O2,

Калий, цезий, рубидий образуют преимущественно пероксиды состава MeO2:

Примечания : металлы с переменной степенью окисления окисляются кислородом воздуха, как правило, до промежуточной степени окисления (+3):

Железо также горит с образованием железной окалины — оксида железа (II, III):

1.2. Окисление простых веществ-неметаллов.

Как правило, при окислении неметаллов образуется оксид неметалла с высшей степенью окисления, если кислород в избытке, или оксид неметалла с промежуточной степенью окисления, если кислород в недостатке.

Например , фосфор окисляется избытком кислорода до оксида фосфора (V), а под действием недостатка кислорода до оксида фосфора (III):

Но есть некоторые исключения .

Например , сера сгорает только до оксида серы (IV):

Оксид серы (VI) можно получить только окислением оксида серы (IV) в жестких условиях в присутствии катализатора:

2SO2 + O2 = 2SO3

Азот окисляется кислородом только при очень высокой температуре (около 2000 о С), либо под действием электрического разряда, и только до оксида азота (II):

Не окисляется кислородом фтор F2 (сам фтор окисляет кислород). Не взаимодействуют с кислородом прочие галогены (хлор Cl2, бром и др.), инертные газы (гелий He, неон, аргон, криптон).

2. Окисление сложных веществ (бинарных соединений): сульфидов, гидридов, фосфидов и т.д.

При окислении кислородом сложных веществ, состоящих, как правило, из двух элементов, образуется смесь оксидов этих элементов в устойчивых степенях окисления.

Например , при сжигании пирита FeS2 образуются оксид железа (III) и оксид серы (IV):

Сероводород горит с образованием оксида серы (IV) при избытке кислорода и с образованием серы при недостатке кислорода:

А вот аммиак горит с образованием простого вещества N2, т.к. азот реагирует с кислородом только в жестких условиях:

А вот в присутствии катализатора аммиак окисляется кислородом до оксида азота (II):

3. Разложение гидроксидов. Оксиды можно получить также из гидроксидов — кислот или оснований. Некоторые гидроксиды неустойчивы, и самопроизвольную распадаются на оксид и воду; для разложения некоторых других (как правило, нерастворимых в воде) гидроксидов необходимо их нагревать (прокаливать).

гидроксид → оксид + вода

Самопроизвольно разлагаются в водном растворе угольная кислота, сернистая кислота, гидроксид аммония, гидроксиды серебра (I), меди (I):

2AgOH → Ag2O + H2O

2CuOH → Cu2O + H2O

При нагревании разлагаются на оксиды большинство нерастворимых гидроксидов — кремниевая кислота, гидроксиды тяжелых металлов — гидроксид железа (III) и др.:

4. Еще один способ получения оксидов — разложение сложных соединений — солей .

Например , нерастворимые карбонаты и карбонат лития при нагревании разлагаются на оксиды:

Соли, образованные сильными кислотами-окислителями (нитраты, сульфаты, перхлораты и др.), при нагревании, как правило, разлагаются с с изменением степени окисления:

Более подробно про разложение нитратов можно прочитать в статье Окислительно-восстановительные реакции.

Химические свойства оксидов

Значительная часть химических свойств оксидов описывается схемой взаимосвязи основных классов неорганических веществ.

Химические свойства основных оксидов

Подробно про химические свойства оксидов можно прочитать в соответствующих статьях:

Уравнениями реакций докажите характер оксидов

Названия оксидов строится таким образом: сначала произносят слово «оксид», а затем называют образующий его элемент. Если элемент имеет переменную валентность, то она указывается римской цифрой в круглых скобках в конце названия:
Na I 2O – оксид натрия; Са II О – оксид кальция;
S IV O2 – оксид серы (IV); S VI O3 – оксид серы (VI).

По химическим свойствам оксиды делятся на две группы:
1. Несолеобразующие (безразличные) – не образуют солей, например: NO, CO, H2O;
2. Солеобразующие, которые, в свою очередь, подразделяются на:
основные – это оксиды типичных металлов со степенью окисления +1,+2 (I и II групп главных подгрупп, кроме бериллия) и оксиды металлов в минимальной степени окисления, если металл обладает переменной степенью окисления (CrO, MnO);
кислотные – это оксиды типичных неметаллов (CO2, SO3, N2O5) и металлов в максимальной степени окисления, равной номеру группы в ПСЭ Д.И.Менделеева (CrO3, Mn2O7);
амфотерные оксиды (обладающие как основными, так и кислотными свойствами, в зависимости от условий проведения реакции) – это оксиды металлов BeO, Al2O3, ZnO и металлов побочных подгрупп в промежуточной степени окисления (Cr2O3, MnO2).

Например, оксиду кальция CaO отвечает гидроксид кальция Ca(OH)2, оксиду кадмия CdO – гидроксид кадмия Cd(OH)2.

Например, оксиду серы (IV) соответствует сернистая кислота H2SO3 .

Оксиды, гидратные соединения которых проявляют свойства как кислот, так и оснований, называются амфотерными.
Например: оксид алюминия Al2O3, оксид марганца (IV) MnO2.


источники:

http://chemege.ru/oxides/

http://www.sites.google.com/site/school302project/temy/10-himiceskie-svojstva-oksidov-osnovnyh-amfoternyh-kislotnyh