Урок логарифмические уравнения и системы

Решение логарифмических уравнений и систем уравнений. Подготовка к ЕГЭ

Разделы: Математика

Ученик проходит в несколько лет дорогу, на которую человечество употребило тысячелетие.
Однако его следует вести к цели не с завязанными глазами, а зрячим:
он должен воспринимать истину, не как готовый результат, а должен её открывать.
Учитель должен руководить этой экспедицией открытий, следовательно, также присутствовать
не только в качестве простого зрителя. Но ученик должен напрягать свои силы;
ему ничто не должно доставаться даром.
Даётся только тому, кто стремится.
(А. Дистервег)

Форма урока: комбинированный урок

Тип урока: Урок повторного контроля знаний.

Обобщение и закрепление пройденного материала.

Цели урока:

  • Образовательная — обобщение знаний учащихся по теме «Логарифмические уравнения и системы уравнений; закрепить основные приемы и методы решения логарифмических уравнений и систем уравнений; ознакомить учащихся с видами заданий повышенной сложности по данной теме в ЕГЭ.
  • Развивающая — развитие логического мышления для сознательного восприятия учебного материала, внимание, зрительную память, активность учащихся на уроке. Предоставить каждому из учащихся проверить свой уровень подготовки по данной теме.
  • Воспитывающая — воспитание познавательной активности, формирование личностных качеств: точность и ясность словесного выражения мысли; сосредоточенность и внимание; настойчивость и ответственность, положительной мотивации к изучению предмета, аккуратности, добросовестности и чувство ответственности. Осуществить индивидуальный подход и педагогическую поддержку каждого ученика через разноуровневые задания и благоприятную психологическую атмосферу.

Задачи урока:

  • выработать у учащихся умение пользоваться алгоритмом решения логарифмических уравнений.
  • осуществить формирование первоначальных знаний в виде отдельных навыков после определенной тренировки решения уравнений и систем уравнений.
  • познакомить учащихся с частными случаями и отработать навыки по решению таких уравнений и систем уравнений.

Методы и педагогические приемы:

  • Методы самообучения
  • Приемы устного опроса.
  • Приемы письменного контроля.
  • Коллективная учебная деятельность.
  • Организация работы в группах.
  • Повышение интереса к учебному материалу.

Оборудование:

  • компьютер, мультимедийный проектор и экран;
  • тетради;

Раздаточный материал: задания для самостоятельной работы.

План урока:

  1. Организационный момент (1 мин)
  2. Проверка домашнего задания (3 мин)
  3. Входной контроль (повторение теоретического материала) (15 мин)
  4. Этап обобщения знаний учащихся. Решение уравнений и систем уравнений (45 мин)
  5. Разноуровневая самостоятельная работа (проверка знаний учащихся) (20 мин)
  6. Итоги урока (4 мин)
  7. Домашнее задание (2 мин)

1. Организационный момент

Взаимное приветствие; проверка готовности учащихся к уроку, организация внимания.

2. Проверка домашнего задания

Установить правильность и осознанность выполнения домашнего задания всеми учащимися; установить пробелы в знаниях.

3. Входной контроль (повторение теоретического материала)

Организация устной фронтальной работы с классом по повторению логарифмических формул и способов решения логарифмических уравнений.

Решение простейших уравнений:

а) и

б) и

2) Найдите Х, если х>0:

[1/5]

[4]

Перечислите: основные способы решения логарифмических уравнений.

Способы решения логарифмических уравнений

  • По определению логарифма.
  • Метод потенцирования.
  • Метод введения новой переменной.
  • Решение уравнений логарифмированием его обеих частей.
  • Функционально-графический способ.

На экране уравнения:

  1. log2(3 — 6x) = 3
  2. lg(х 2 — 2х) = lg (2х + 12)
  3. 5 х + 1 — 5 х — 1 = 24
  4. х lg х = 10000
  5. 3 2х + 5 = 3 х + 2 + 2
  6. log3 2 x — log3 x = 3
  7. log2x — log4x = 3
  8. 2 x = x 2 — 2x

Среди данных уравнений выбрать логарифмические. Определить способ решения каждого уравнения. Решите уравнения.

По окончанию работы правильность решения уравнений осуществляется с помощью экрана.

Устно ответить на следующие вопросы (если имеется не один корень):

  • Найти наименьший корень уравнения.
  • Найти сумму корней уравнения.
  • Найти разность корней уравнения.
  • Найти произведение корней уравнения.
  • Найти частное корней уравнения

Самооценка и взаимооценка деятельности учащихся (результаты заносятся в листы самоконтроля).

4. Этап обобщения знаний учащихся

Решение логарифмических уравнений из заданий ЕГЭ части В и С.

№ 1 (В) Найдите корень (или сумму корней, если их несколько) уравнения log6(3x + 88) — log6 11 = log6 x. [1]

№ 2 (B) Найдите произведение всех корней уравнения

. [1]

№ 3 (B) Найдите сумму корней уравнения = log4 (x — 3) + 2. [2]

№ 4 (C) найти наибольший корень уравнения: log2(2+5)+ log0,5(-х-0,5) = 1 [-4]

№ 5 (C) Решите уравнение — log6 x + 34 = () 2 + x. [2]

Уравнения №1-3 решает по два ученика на обратных крыльях доски с последующей проверкой решения всем классом.

Уравнение №4,5 решает ученик с подробным комментарием.

По окончании самооценка и взаимооценка учащихся (результаты заносятся в листы самоконтроля).

Простейшими логарифмическими уравнениями будем называть уравнения следующих видов:

log a x = b, a > 0, a 1.

log a f(x) = b, a > 0, a 1.

Эти уравнения решаются на основании определения логарифма: если logb a = c, то a = b c .

Решить уравнение log2 x = 3.

Решение. Область определения уравнения x > 0. По определению логарифма x = 2 3 , x = 8 принадлежит области определения уравнения.

Уравнения вида loga f(x) = b, a > 0, a 1.

Уравнения данного вида решаются по определению логарифма с учётом области определения функции f(x).

Обычно область определения находится отдельно, и после решения уравнения f(x) = a b проверяется, принадлежат ли его корни области определения уравнения.

Пример. Решить уравнение log3(5х — 1) = 2.

ОДЗ: 5х — 1 > 0; х > 1/5.

Пример. Решить уравнение

Решение. Область определения уравнения находится из неравенства 2х 2 — 2х — 1 > 0. Воспользуемся определением логарифма:

Применим правила действий со степенями, получим 2х 2 — 2х — 1 = 3. Это уравнение имеет два корня х = -1; х = 2. Оба полученные значения неизвестной удовлетворяют неравенству 2х 2 — 2х — 1 > 0, т.е. принадлежат области определения данного уравнения, и, значит, являются его корнями.

Уравнения этого вида решаются по определению логарифма с учётом области определения уравнения. Данное уравнение равносильно следующей системе

Чаще всего, область определения логарифмического уравнения находится отдельно, и после решения уравнения (f(x)) c = b или равносильного уравнения проверяется, принадлежат ли его корни найденной области.

Пример. Решить уравнение

Решение. Данное уравнение равносильно системе

Суть метода заключается в переходе от уравнения

На основании свойства монотонности логарифмической функции заключаем, что f(x) = g(x).

Нужно отметить, что при таком переходе может нарушиться равносильность уравнения. В данном уравнении f(x) > 0, g(x) > 0, а в полученном после потенцирования эти функции могут быть как положительными, так и отрицательными. Поэтому из найденных корней уравнения f(x) = g(x) нужно отобрать те, которые принадлежат области определения данного уравнения. Остальные корни будут посторонними.

Решение. Область определения уравнения найдётся из системы неравенств:

х> -1,5+ , х 2 — 3х — 5 = 7 — 2х,

х 2 — х — 12 = 0, откуда х1 = -3, х2 = 4. Число 4 не удовлетворяет системе неравенств.

Cведение уравнений к виду log a f(x) = log a g(x) с помощью свойств логарифмов по одному основанию.

Если уравнение содержит логарифмы по одному основанию, то для приведения их к виду log a f(x) = log a g(x) используются следующие свойства логарифмов:

logb a + logb c = logb (a*c), где a > 0; c > 0; b > 0, b 1,

logb a — logb c = logb (a/c), где a > 0; c > 0; b > 0, b 1,

m logb a = logb a m , где a > 0; b > 0, b 1; m R.

Пример 1. Решить уравнение log6 (x — 1) = 2 — log6 (5x + 3).

Решение. Найдём область определения уравнения из системы неравенств

Применяя преобразования, приходим к уравнению

log6 ((x — 1)(5x + 3)) = 2, далее, потенцированием, к уравнению

(х — 1)(5х + 3) = 36, имеющему два корня х = -2,6; х = 3. Учитывая область определения уравнения, х = 3.

Пример 2. Решить уравнение

Решение. Найдём область определения уравнения, решив неравенство (3x — 1)(x + 3) > 0 методом интервалов.

Учитывая, что разность логарифмов равна логарифму частного, получим уравнение log5 (x + 3) 2 = 0. По определению логарифма (х + 3) 2 = 1, х = -4, х = -2. Число х = -2 посторонний корень.

Пример 3. Решить уравнение log2 (6 — x) = 2 log6 x.

Решение. На области определения 0 2 , откуда х = -3, х = 2. Число х = -3 посторонний корень.

Метод потенцирования применяется в том случае, если все логарифмы, входящие в уравнение, имеют одинаковое основание. Для приведения логарифмов к общему основанию используются формулы:

Пример 1. Решить уравнение

Решение. Область определения уравнения 1 1. Приведём логарифмы к основанию 3, используя формулу (4).

Пример 3. Решить уравнение

Решение. Область определения уравнения x > -1, x 0. Приведём логарифмы к основанию 3, используя формулу (2).

Умножим обе части уравнения на log 3(x + 1) ? 0 и перенесем все слагаемые в левую часть уравнения. Получим (log 3(x + 1)-1) 2 = 0, откуда log 3(x + 1) = 1 и x = 2.

3. Введение новой переменной

Рассмотрим два вида логарифмических уравнений, которые введением новой переменной приводятся к квадратным.

где a > 0, a 1, A, В, Сдействительные числа.

Пусть t = loga f(x), t R. Уравнение примет вид t 2 + Bt + C = 0.

Решив его, найдём х из подстановки t = loga f(x). Учитывая область определения, выберем только те значения x, которые удовлетворяют неравенству f(x) > 0.

Пример 1. Решить уравнение lg 2 x — lg x — 6 = 0.

Решение. Область определения уравнения — интервал (0; ).Введём новую переменную t = lg x, t R.

Уравнение примет вид t 2 — t — 6 = 0. Его корни t1 = -2, t2 = 3.

Вернёмся к первоначальной переменной lg x = -2 или lg x = 3, х = 10 -2 или х = 10 3 .

Оба значения x удовлетворяют области определения данного уравнения (х > 0).

Пример 2. Решить уравнение

Решение. Найдём область определения уравнения

Применив формулу логарифма степени, получим уравнение

Так как х 2 — 4t + 4 = 0

имеет два равных корня t1,2 = 2. Вернёмся к первоначальной переменной log3 (-x) = 2, отсюда —х = 9, х = -9. Значение неизвестной принадлежит области определения уравнения.

где a > 0, a 1, A, В, Сдействительные числа, A 0, В 0.

Уравнения данного вида приводятся к квадратным умножением обеих частей его на loga f(x) 0. Учитывая, что loga f(x) logf(x) a=1

(свойство logb a = 1/ loga b), получим уравнение

Замена loga f(x)=t, t R приводит его к квадратному At 2 + Ct + B = 0.

Из уравнений loga f(x)= t1, logb f(x)= t2 найдем значения x и выберем среди них принадлежащие области определения уравнения:

f(x) > 0, f(x) 1.

Пример. Решить уравнение

Решение. Область определения уравнения находим из условий x+2>0, x+2 1, т.е. x >-2, x -1.

Умножим обе части уравнения на log5 (x+2) 0, получим

или, заменив log5 (x+2) = t, придем к квадратному уравнению

Возвращаемся к первоначальной переменной:

Оба корня принадлежат области определения уравнения.

ОДЗ: x > 0, х 1

Используя формулу перехода к новому основанию, получим

Ответ:

4. Приведение некоторых уравнений к логарифмическим логарифмированием обеих частей.

Переход от уравнения вида f(x) = g(x) к уравнению loga f(x) = loga g(x), который возможен если f(x) >0, g(x) >0, a >0, a 1, называется логарифмированием.

Методом логарифмирования можно решать:

Уравнения вида

Область определения уравнения — интервал (0, ). Прологарифмируем обе части уравнения по основанию a, затем применим формулы логарифма степени и произведения

Приведем подобные и получим линейное уравнение относительно loga x.

Пример. Решить уравнение 3 2log 4 x+2 =16x 2 .

Решение. Область определения x >0. Прологарифмируем обе части по основанию 4.

Используя свойства логарифмов, получим

Область определения уравнения — интервал (0, ). Прологарифмируем обе части уравнения по основанию a, получим

Применим формулы логарифма степени и логарифма произведения

Введем новую переменную t=loga x , t R. Решив квадратное уравнение At 2 + (B-а)t-loga C=0, найдем его корни t1 и t2. Значение x найдем из уравнений t1 = loga x и t2=loga x и выберем среди них принадлежащие области определения уравнения.

Пример 1. Решить уравнение

Решение. Область определения уравнения х > 0. Так как при х > 0 обе части уравнения положительны, а функция y = log3 t монотонна, то

Введём новую переменную t, где t = log3 x, t R.

Пример 2. Решить уравнение

Решение. Область определения уравнения х >1. Обе части уравнения положительны, прологарифмируем их по основанию 2, получим

Применим формулы логарифма степени и логарифма частного:

Введем новую переменную t=log2x, получим квадратное уравнение t 2 — 3t + 2 = 0,

1) Найти наибольший корень уравнения: lq(x+6) — 2 = 1 /2lq(2x -3) — lq25

3) Пусть (х0;y0) — решение системы уравнений

4) Пример .Решите систему уравнений

Решение. Решим эту систему методом перехода к новым переменным:

Заметим, что x>0 и у R является областью определения данной системы.

Логарифмируя обе части второго уравнения по основанию 3, получим:

Тогда по обратной теореме Виета переменные и и v являются корнями квадратного уравнения

z 2 -z-12 = 0

Следовательно, решения данной системы найдем как множество решений совокупности двух систем а) и б):

а) б)

Решениями указанных систем являются соответственно пары (27;4), (; -3).

Ответ: (27; 4), (; -3).

5) Пример. Решите систему уравнений

Перейдем к новым переменным:

x = 2 u >0, 1оg2 у = v, у = 2 v >0.

В новых переменных данная система имеет вид:

Следовательно, и и v являются корнями квадратного уравнения :

z 2 -42 + 3 = 0

Отсюда следует, что достаточно решить систему

Другое решение найдем из-за симметричности х и у, т. е. если (х; y) — решение, то (у; х) также является решением.

5. Самостоятельная работа.

1. Вычислите значение выражения: 11-3log3

2. Решите уравнения:

3.Решите систему уравнений :

1. Вычислите значение выражения: 13-3log2

2. Решите уравнения:

6.Подведение итогов урока:

Учитывая контингент учащихся данного класса, можно сделать вывод о том, что в целом учащиеся усвоили материал по данной теме.

Конспект урока на тему «Решение систем логарифмических уравнений»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

Конспект урока по теме «Решение систем логарифмических уравнений»

Цель урока. Формирование умений решать системы логарифмических уравнений.

I. Проверка домашнего задания

Проводится коллективное обсуждение выполнения домашних упражнений по записям решения упражнений подготовленными к началу урока.

II. Самостоятельная работа

а) l g(x2 — 2х) = lg(2x + 12). (3 балла)

б) х lg х = 10. (3 балла)

в) log4 x + 3log4 x = 7. (3 балла)

г) log2 (x2 + 4 x + 1) + 1 = log2(6 x + 2). (3 балла)

а) lg(2×2 + 3x) = lg(6x + 2). (3 балла)

б) xlgx = 10 000. (3 балла)

в) log9 x + 2log9 x = 5. (3 балла)

г) log2 (x2 — 3) + 1 = log2(6x — 10). (3 балла)

Ответы: В-1. а) 6; -2; б) 10; 0,1; в) 4; г) 0.

В-2. а) 2; б) 100; 0,01; в) 9; г) 2.

III. Решение систем логарифмических уравнений

При решении систем логарифмических уравнений используют те же способы, что и при решении алгебраических систем. Рассмотрим примеры.

Пример 1. Решите систему уравнений:

Решение

Добавим и вычтем почленно уравнения системы, тогда получим:

Пример 2. Решите систему уравнений

Решение

Тогда имеем или .

Проверкой убеждаемся, что(9; 7), (7; 9) — развязки системы.

IV. Формирование умений решать системы логарифмических уравнений

Решение упражнений № 14.8 (б), 14.11 (а), 14.12 (б).

V. Подведение итогов урока

VI. Домашнее задание

§ 14, п.14.1, №14.10 (а; б), 14.11 (б). Повторить свойства логарифмической функции.

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 956 человек из 80 регионов

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 685 человек из 75 регионов

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 314 человек из 70 регионов

Ищем педагогов в команду «Инфоурок»

Дистанционные курсы для педагогов

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 569 515 материалов в базе

Другие материалы

  • 15.06.2017
  • 420
  • 0
  • 15.06.2017
  • 455
  • 0
  • 15.06.2017
  • 5382
  • 328
  • 15.06.2017
  • 255
  • 0
  • 15.06.2017
  • 1469
  • 18
  • 15.06.2017
  • 832
  • 4
  • 15.06.2017
  • 2899
  • 20

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 15.06.2017 1321
  • DOCX 49.5 кбайт
  • 56 скачиваний
  • Оцените материал:

Настоящий материал опубликован пользователем Игнатьева Наталья Львовна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

  • На сайте: 4 года и 11 месяцев
  • Подписчики: 0
  • Всего просмотров: 23649
  • Всего материалов: 25

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Тринадцатилетняя школьница из Индии разработала приложение против буллинга

Время чтения: 1 минута

В России могут объявить Десятилетие науки и технологий

Время чтения: 1 минута

У 76% российских учителей оклад ниже МРОТ

Время чтения: 2 минуты

Полный перевод школ на дистанционное обучение не планируется

Время чтения: 1 минута

Рособрнадзор не планирует переносить досрочный период ЕГЭ

Время чтения: 0 минут

В Забайкалье в 2022 году обеспечат интернетом 83 школы

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Разработка урока «Решение логарифмических уравнений»
план-конспект урока по алгебре (11 класс) на тему

Разработка урока по алгебре и началам анализа по теме «Логарифмические уравнения» по учебнику А.Н. Колмогорова, 11 класс. Урок повторения и обобщения основных способов решения логарифмических уравнений.

Скачать:

ВложениеРазмер
urok_reshenie_logarifmicheskikh_uravneniy.docx24.97 КБ
reshenie_logarifmicheskikh_uravneniy.pptx185.56 КБ

Предварительный просмотр:

Тема: Решение логарифмических уравнений

Цель: повторить основные методы решения логарифмических уравнений, предупредить появление типичных ошибок;

научить осуществлять отбор уравнений для решения различными методами;

развитие умений решать логарифмические уравнения;

осуществить индивидуальный подход и педагогическую поддержку каждого учащегося через разноуровневые задания и благоприятную психологическую атмосферу.

Оборудование: компьютер с проектором для демонстрации презентации, презентация, памятки по решению логарифмических уравнений, раздаточный материал для самостоятельной работы.

Тип урока: закрепление знаний

Распределение этапов урока по времени

1.Оргмомент (2 мин.)

2. Проверка теоретических знаний (5мин.)

3. Повторение алгоритмов решения логарифмических уравнений различными методами (10 мин)

4. Самостоятельная работа с последующей проверкой (20 мин.)

5. Подведение итогов урока (2 мин.)

Сообщение темы, целей и задач урока, его основных моментов (слайд 2)

  1. Проверка теоретических знаний (слайды 3-4)
  1. Фронтальный опрос:

— Что такое уравнение?

— Что понимают под логарифмическим уравнением?

— Что называется корнем уравнения?

— Что значит решить уравнение?

2) Устный счёт «Верно или нет»

Верно ли утверждение:

Если 2 x =7, то x= Если 3 x =5, то x=

Если = 3, то x = 6 Если = x, то x = -2

Если = 2, то x = 8 Если = 4, то x =16

  1. Повторение алгоритмов решения логарифмических уравнений различными методами (слайды 5-9)

— Назовите методы решения логарифмических уравнений, рассмотренные ранее на уроках

а) Решение уравнений на основании определения логарифма

б) Метод потенцирования, под потенцированием понимается переход от равенства, содержащего логарифмы, к равенству, не содержащему их.

в) Метод приведения логарифмического уравнения к квадратному.

г) Метод логарифмирования обеих частей уравнения.

— А сейчас давайте мы с вами подробнее остановимся на каждом из названных методов

а) на основании определения логарифма

Простейшее логарифмическое уравнение

  1. f(x) = a b (по определению логарифма)
  2. отбор корней удовлетворяющих ОДЗ
  1. Решить f(x) = g(x)
  2. Отбор корней удовлетворяющих ОДЗ

в) приведение логарифмического уравнения к квадратному

Метод введения новой переменной

Решим квадратное уравнение

  1. Обе части уравнения прологарифмируем по основанию a
  2. Отбор корней удовлетворяющих ОДЗ
  1. Самостоятельная работа по отработке навыков решения

— А сейчас необходимо выполнить самостоятельную работу на применение этих методов. Сначала необходимо определить метод решения уравнения, а затем решить. Задания первого варианта соответствуют уровню А заданий ЕГЭ и оцениваются отметкой «3», второй вариант – уровни А и В оценивается на «4», третий вариант – уровни В и С, оценка «5». Те, кто выполняют задания 1 варианта, могут воспользоваться памятками-образцами, некоторым достаточно будет воспользоваться только памятками без образцов, ну а кто претендует на «5» решают без подсказок. Каждый ученик выбирает задание по своим возможностям, если учащийся справился со своим заданием, то он может выбрать задание посложнее. При наличии времени можно вызвать к доске 2-3 учащихся к доске, продемонстрировать решение заданий.

  1. 29
  2. 7
  3. 25
  4. 11
  1. Укажите промежуток, которому принадлежит корень уравнения:
  1. (-∞;-2)
  2. )
  3. +∞)
  1. Укажите промежуток, которому принадлежит корень уравнения:
  1. Укажите промежуток, которому принадлежит корень уравнения:
  1. -7
  2. -3
  3. 7
  4. 3
  1. Найдите произведение корней уравнения: log 2 2 x- 5 + 6 = 0
  1. 13
  2. -36
  3. 32
  4. 9
  1. Найдите сумму корней уравнения
  1. Найдите произведение корней уравнения: log 2 2 x- 5 + 6 = 0
  1. 13
  2. -36
  3. 32
  4. 9
  1. Найдите сумму корней уравнения:
  2. Найдите целые корни уравнения:
  3. Решите уравнение:


источники:

http://infourok.ru/konspekt-uroka-na-temu-reshenie-sistem-logarifmicheskih-uravneniy-1980895.html

http://nsportal.ru/shkola/algebra/library/2014/10/16/razrabotka-uroka-reshenie-logarifmicheskikh-uravneniy