Урок на тему уравнения и системы уравнений

Открытый урок по теме «Решение систем уравнений различными способами»

Разделы: Математика

Цели урока:

  1. Систематизация знаний, умений и навыков при решении систем уравнений различными способами.
  2. Развитие: вычислительных навыков устного и письменного счета, умений применять знания на практике в новых условиях, межпредметных связей с историей, астрономией и информатикой.
  3. Воспитание интереса к предмету, патриотизма, чувства прекрасного, гордости за свою страну, самостоятельности и умения работать в заданном темпе.
  4. Развитие слухового и слухо-зрительного восприятия. Формирование математически грамотной речи учащихся.

Тип урока: урок обобщения и систематизации знаний, умений и навыков.

Словарь: средневековый ученый, Николай Коперник, российский ученый, Константин Эдуардович Циолковский, Галактика, Солнце, способ подстановки, способ сложения, выразить одну переменную через другую.

Ход урока

I. Организационный момент.

  1. Организационный момент.
  2. Устная работа.
  3. Самостоятельная работа.
  4. Физминутка.
  5. Выполнение упражнений.
  6. Домашнее задание.
  7. Итог урока.

Сегодня у нас с вами необычный урок. Мы с вами очередной раз совершим виртуальное путешествие. Мы отправимся с вами в путешествие по необъятным просторам космического пространства. Как вы думаете, почему я выбрала такое путешествие? (потому что скоро 12 апреля – День космонавтики). Совершенно верно.

II. Устная работа.

Перед началом нашего путешествия необходимо размяться и ответить на несколько вопросов. (Приложение 1, Слайд 2)

  1. Какие способы решения систем уравнений вы знаете?
  2. Является ли пара чисел (2; — 1) решением системы уравнений?

  1. Выразите одну переменную через другую.
    1) х + у = 2;
    2) х – 2у = 4.

III. Самостоятельная работа.

Решить систему уравнений: (Приложение 1, Слайд 3)

IV. Физминутка.

Прежде чем вы приступите к работе надо выполнить физминутку.

V. Выполнение упражнений.

Итак, мы отправляемся.

Впервые человек начал задумываться о космосе очень давно. Еще в XV веке средневековый ученый Коперник обратил свой взор в небо. (Приложение 1, Слайд 4)

Российский ученый Циолковский мечтал о полетах людей в космос и даже придумывал эскизы ракет. (Приложение 1, Слайд 5)

Мечту Константина Эдуардовича Циолковского воплотил в реальность советский конструктор космических ракет Сергей Павлович Королев. (Приложение 1, Слайд 6)

А полетел в космос первый в мире советский космонавт Юрий Алексеевич Гагарин (Приложение 1, Слайд 7)

Вот и мы с вами совершим сегодня путешествие в практически неизведанные дали космического пространства.

Для того чтобы перемещаться по необъятным просторам космоса нам необходимо определять координаты нашего местонахождения.

В космосе есть своя определенная система координат, но сегодня мы воспользуемся координатами, полученными при решении систем уравнений двумя способами: способом подстановки и способом сложения.

Ну, что? Приступим к решению?

1. Решить систему уравнений способом подстановки: (Приложение 1, Слайд 8).

Выберите правильный ответ. (Приложение 1, Слайд 12).

Молодцы! Мы определили координаты расположения одной из многочисленных галактик. Это наша Галактика в которой мы живем. (Приложение 1, Слайд 15).

Кто прочитает, что это за галактика?

2. Решить систему уравнений способом сложения или вычитания: (Приложение 1, Слайд 9).

Выберите правильный ответ. (Приложение 1, Слайд 13).

Хорошо! А сейчас мимо нас пролетает комета с данными координатами (комета Галлея).

Прочитайте, что это за комета? (Приложение 1, Слайд 16).

3. Решить систему уравнений любым удобным способом: (Приложение 1, Слайд 10).

1 способ (подстановки)

2 способ (сложения)

Выберите правильный ответ. (Приложение 1, Слайд 14).

Молодцы! А теперь мы оказались возле звезды по имени Солнце.

Кто прочитает, что это за звезда? (Приложение 1, Слайд17).

VI. Домашнее задание.

1. Решить систему уравнений любым удобным способом: (Приложение 1, Слайд 11).

1 способ (подстановки).

2 способ (сложения).

VII. Итог урока.

Алгебра. Урок 4. Уравнения, системы уравнений

Смотрите бесплатные видео-уроки на канале Ёжику Понятно по теме “Уравнения”.

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Линейные уравнения

Линейные уравнения

Линейное уравнение – уравнение вида a x = b , где x – переменная, a и b некоторые числа, причем a ≠ 0 .

Примеры линейных уравнений:

  1. 3 x = 2
  1. 2 7 x = − 5

Линейными уравнениями называют не только уравнения вида a x = b , но и любые уравнения, которые при помощи преобразований и упрощений сводятся к этому виду.

Как же решать уравнения, которые приведены к виду a x = b ? Достаточно поделить левую и правую часть уравнения на величину a . В результате получим ответ: x = b a .

Как распознать, является ли произвольное уравнение линейным или нет? Надо обратить внимание на переменную, которая присутствует в нем. Если старшая степень, в которой стоит переменная, равна единице, то такое уравнение является линейным уравнением.

Для того, чтобы решить линейное уравнение , необходимо раскрыть скобки (если они есть), перенести «иксы» в левую часть, числа – в правую, привести подобные слагаемые. Получится уравнение вида a x = b . Решение данного линейного уравнения: x = b a .

Примеры решения линейных уравнений:

  1. 2 x + 1 = 2 ( x − 3 ) + 8

Это линейное уравнение, так как переменная стоит в первое степени.

Попробуем преобразовать его к виду a x = b :

Для начала раскроем скобки:

2 x + 1 = 4 x − 6 + 8

В левую часть переносятся все слагаемые с x , в правую – числа:

Теперь поделим левую и правую часть на число ( -2 ) :

− 2 x − 2 = 1 − 2 = − 1 2 = − 0,5

Это уравнение не является линейным уравнением, так как старшая степень, в которой стоит переменная x равна двум.

Это уравнение выглядит линейным на первый взгляд, но после раскрытия скобок старшая степень становится равна двум:

x 2 + 3 x − 8 = x − 1

Это уравнение не является линейным уравнением.

Особые случаи (в 4 задании ОГЭ они не встречались, но знать их полезно)

  1. 2 x − 4 = 2 ( x − 2 )

Это линейное уравнение. Раскроем скобки, перенесем иксы влево, числа вправо:

2 x − 2 x = − 4 + 4

И как же здесь искать x , если его нет? После выполнения преобразований мы получили верное равенство (тождество), которое не зависит от значения переменной x . Какое бы значение x мы ни подставляли бы в исходное уравнение, в результате всегда получается верное равенство (тождество). Значит x может быть любым числом. Запишем ответ к данном линейному уравнению.

Это линейное уравнение. Раскроем скобки, перенесем иксы влево, числа вправо:

2 x − 4 = 2 x − 16

2 x − 2 x = − 16 + 4

В результате преобразований x сократился, но в итоге получилось неверное равенство, так как . Какое бы значение x мы ни подставляли бы в исходное уравнение, в результате всегда будет неверное равенство. А это означает, что нет таких значений x , при которых равенство становилось бы верным. Запишем ответ к данному линейному уравнению.

Квадратные уравнения

Квадратное уравнение – уравнение вида a x 2 + b x + c = 0, где x – переменная, a , b и c – некоторые числа, причем a ≠ 0 .

Алгоритм решения квадратного уравнения:

  1. Раскрыть скобки, перенести все слагаемые в левую часть, чтобы уравнение приобрело вид: a x 2 + b x + c = 0
  2. Выписать, чему равны в числах коэффициенты: a = … b = … c = …
  3. Вычислить дискриминант по формуле: D = b 2 − 4 a c
  4. Если D > 0 , будет два различных корня, которые находятся по формуле: x 1,2 = − b ± D 2 a
  5. Если D = 0, будет один корень, который находится по формуле: x = − b 2 a
  6. Если D 0, решений нет: x ∈ ∅

Примеры решения квадратного уравнения:

  1. − x 2 + 6 x + 7 = 0

a = − 1, b = 6, c = 7

D = b 2 − 4 a c = 6 2 − 4 ⋅ ( − 1 ) ⋅ 7 = 36 + 28 = 64

D > 0 – будет два различных корня:

x 1,2 = − b ± D 2 a = − 6 ± 64 2 ⋅ ( − 1 ) = − 6 ± 8 − 2 = [ − 6 + 8 − 2 = 2 − 2 = − 1 − 6 − 8 − 2 = − 14 − 2 = 7

Ответ: x 1 = − 1, x 2 = 7

a = − 1, b = 4, c = − 4

D = b 2 − 4 a c = 4 2 − 4 ⋅ ( − 1 ) ⋅ ( − 4 ) = 16 − 16 = 0

D = 0 – будет один корень:

x = − b 2 a = − 4 2 ⋅ ( − 1 ) = − 4 − 2 = 2

a = 2, b = − 7, c = 10

D = b 2 − 4 a c = ( − 7 ) 2 − 4 ⋅ 2 ⋅ 10 = 49 − 80 = − 31

D 0 – решений нет.

Также существуют неполные квадратные уравнения (это квадратные уравнения, у которых либо b = 0, либо с = 0, либо b = с = 0 ). Смотрите видео, как решать такие квадратные уравнения!

Разложение квадратного трехчлена на множители

Квадратный трехчлен можно разложить на множители следующим образом:

a x 2 + b x + c = a ⋅ ( x − x 1 ) ⋅ ( x − x 2 )

где a – число, коэффициент перед старшим коэффициентом,

x – переменная (то есть буква),

x 1 и x 2 – числа, корни квадратного уравнения a x 2 + b x + c = 0 , которые найдены через дискриминант.

Если квадратное уравнение имеет только один корень , то разложение выглядит так:

a x 2 + b x + c = a ⋅ ( x − x 0 ) 2

Примеры разложения квадратного трехчлена на множители:

  1. − x 2 + 6 x + 7 = 0 ⇒ x 1 = − 1, x 2 = 7

− x 2 + 6 x + 7 = ( − 1 ) ⋅ ( x − ( − 1 ) ) ( x − 7 ) = − ( x + 1 ) ( x − 7 ) = ( x + 1 ) ( 7 − x )

  1. − x 2 + 4 x − 4 = 0 ; ⇒ x 0 = 2

− x 2 + 4 x − 4 = ( − 1 ) ⋅ ( x − 2 ) 2 = − ( x − 2 ) 2

Если квадратный трехчлен является неполным, ( ( b = 0 или c = 0 ) то его можно разложить на множители следующими способами:

  • c = 0 ⇒ a x 2 + b x = x ( a x + b )
  • b = 0 ⇒ применить формулу сокращенного умножения для разности квадратов.

Дробно рациональные уравнения

Пусть f ( x ) и g ( x ) – некоторые функции, зависящие от переменной x .

Дробно рациональное уравнение – это уравнение вида f ( x ) g ( x ) = 0 .

Для того, чтобы решить дробно рациональное уравнение, надо вспомнить, что такое ОДЗ и когда оно возникает.

ОДЗ – область допустимых значений переменной.

В выражении вида f ( x ) g ( x ) = 0

ОДЗ: g ( x ) ≠ 0 (знаменатель дроби не может быть равен нулю).

Алгоритм решения дробно рационального уравнения:

  1. Привести выражение к виду f ( x ) g ( x ) = 0 .
  2. Выписать ОДЗ: g ( x ) ≠ 0.
  3. Приравнять числитель дроби к нулю f ( x ) = 0 и найти корни.
  4. Указать в ответе корни из числителя, исключив те корни, которые попали в ОДЗ.

Пример решения дробного рационального уравнения:

Решить дробно рациональное уравнение x 2 − 4 2 − x = 1.

Решение:

Будем действовать в соответствии с алгоритмом.

  1. Привести выражение к виду f ( x ) g ( x ) = 0 .

Переносим единичку в левую часть, записываем к ней дополнительный множитель, чтобы привести оба слагаемых к одному общему знаменателю:

x 2 − 4 2 − x − 1 \ 2 − x = 0

x 2 − 4 2 − x − 2 − x 2 − x = 0

x 2 − 4 − ( 2 − x ) 2 − x = 0

x 2 − 4 − 2 + x 2 − x = 0

x 2 + x − 6 2 − x = 0

Первый шаг алгоритма выполнен успешно.

Обводим в рамочку ОДЗ, не забываем про него: x ≠ 2

  1. Приравнять числитель дроби к нулю f ( x ) = 0 и найти корни:

x 2 + x − 6 = 0 – Квадратное уравнение. Решаем через дискриминант.

a = 1, b = 1, c = − 6

D = b 2 − 4 a c = 1 2 − 4 ⋅ 1 ⋅ ( − 6 ) = 1 + 24 = 25

D > 0 – будет два различных корня.

x 1,2 = − b ± D 2 a = − 1 ± 25 2 ⋅ 1 = − 1 ± 5 2 = [ − 1 + 5 2 = 4 2 = 2 − 1 − 5 2 = − 6 2 = − 3

  1. Указать в ответе корни из числителя, исключив те корни, которые попали в ОДЗ.

Корни, полученные на предыдущем шаге:

Значит, в ответ идет только один корень, x = − 3.

Системы уравнений

Системой уравнений называют два уравнения с двумя неизвестными (как правило, неизвестные обозначаются x и y ) , которые объединены в общую систему фигурной скобкой.

Пример системы уравнений

Решить систему уравнений – найти пару чисел x и y , которые при подстановке в систему уравнений образуют верное равенство в обоих уравнениях системы.

Существует два метода решений систем линейных уравнений:

  1. Метод подстановки.
  2. Метод сложения.

Алгоритм решения системы уравнений методом подстановки:

  1. Выразить из любого уравнения одну переменную через другую.
  2. Подставить в другое уравнение вместо выраженной переменной полученное значение.
  3. Решить уравнение с одной неизвестной.
  4. Найти оставшуюся неизвестную.

Решить систему уравнений методом подстановки

Решение:

  1. Выразить из любого уравнения одну переменную через другую.
  1. Подставить в другое уравнение вместо выраженной переменной полученное значение.
  1. Решить уравнение с одной неизвестной.

3 ( 8 − 2 y ) − y = − 4

y = − 28 − 7 = 28 7 = 4

  1. Найти оставшуюся неизвестную.

x = 8 − 2 y = 8 − 2 ⋅ 4 = 8 − 8 = 0

Ответ можно записать одним из трех способов:

Решение системы уравнений методом сложения.

Метод сложения основывается на следующем свойстве:

Идея метода сложения состоит в том, чтобы избавиться от одной из переменных, сложив уравнения.

Решить систему уравнений методом сложения

Давайте избавимся в данном примере от переменной x . Суть метода состоит в том, чтобы в первом и во втором уравнении перед переменной x стояли противоположные коэффициенты. Во втором уравнении перед x стоит коэффициент 3 . Для того, чтобы метод сложения сработал, надо чтобы перед переменной x оказался коэффициент ( − 3 ) . Для этого домножим левую и правую часть первого уравнения на ( − 3 ) .

Теперь, когда перед переменной в обоих уравнениях стоят противоположные коэффициенты, при сложении левых частей уравнений переменная x исчезнет.

( − 3 x − 6 y ) + ( 3 x − y ) = ( − 24 ) + ( − 4 )

− 3 x − 6 y + 3 x − y = − 24 − 4

y = − 28 − 7 = 28 7 = 4

Осталось найти переменную x . Для этого подставим y = 4 в любое из двух уравнений системы. Например, в первое.

Ответ можно записать одним из трех способов:

Задание №9 из ОГЭ 2020. Типовые задачи и принцип их решения.

Конспект урока «Методы решения систем уравнений»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

Тема : Методы решения систем уравнений

Тип урока : Объяснение нового материала .

образовательные ( формирование познавательных УУД ) :

повторить графический метод решения систем

уравнений, алгоритмы методов подстановки и

алгебраического сложения при решении систем

научить применять данные методы при решении систем,

содержащих уравнения второй степени;

научить решать системы уравнений методом введения

воспитательные (формирование коммуникативных и личностных УУД ) :

учить преодолевать трудности и не боятся их;

воспитывать познавательную активность.

развивающие ( формирование регулятивных УУД )

развивать умения правильно выбрать метод решения;

способствовать развитию мыслительных операций таких

как анализ и обобщение;

интеллектуальное, эмоциональное, личностное развитие

Тип урока: Урок изучения нового материала.

Оборудование: компьютер, мультимедийный проектор, экран, стенды с графиками.

Технологии: Здоровьесбережения, развития исследовательских умений, проблемного обучения, индивидуального и коллективного проектирования.

Формы работы учащихся: фронтальная работа с классом, исследовательская работа в группах, использование презентации, работа с текстом учебника, работа у доски и в тетрадях.

Личностные: мотивация образовательной деятельности на основе демонстрации презентации и проблемных ситуаций; самостоятельность в приобретении новых знаний и практических умений; воспитывать уважение к математике, умение видеть математические задачи в окружающем нас мире.

Коммуникативные : формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию, развитие монологической и диалогической речи, умения выражать свои мысли и выслушивать собеседника, воспитание сдержанности, культуры взаимоотношений;

Познавательные: приобретение опыта самостоятельного поиска и анализа информации путем практических действий, развитие мышления и внимания учащихся;

Регулятивные: овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки цели, планирования, самоконтроля и оценки результата своей деятельности.

Предметные: овладеть различными методами решения систем уравнений, видеть и находить наиболее рациональные методы решения.


источники:

http://epmat.ru/modul-algebra/urok-4-uravneniya-sistemy-uravnenij/

http://infourok.ru/konspekt-uroka-metodi-resheniya-sistem-uravneniy-3865930.html