Урок равносильные преобразования уравнений никольский

«Равносильность уравнений» в 11 классе
план-конспект урока по алгебре (11 класс) по теме

Урок по алгебре и началам анализа в 11 классе по теме » Равносильность уравнений»..

Скачать:

ВложениеРазмер
План-конспект урока по алгебре и началам анализа в 11 классе по теме: «Равносильность уравнений»628 КБ

Предварительный просмотр:

Урок по алгебре и началам анализа в 11 классе

Тема: «Равносильность уравнений»

Тип уроков: комбинированные уроки изучения нового материала, обобщения и систематизации знаний.

  • обобщить и систематизировать знания учащихся по наиболее важным вопросам, связанным с преобразованиями и решением уравнений с одной переменной.
  • развитие мышления учащихся; развитие познавательного интереса и умений учебно-познавательной деятельности.
  • воспитание организованности, самоконтроля и взаимоконтроля.

Организационные формы общения: индивидуальная, групповая.

Оборудование: модуль «Решение иррациональных уравнений».

I Организационный этап — 2 мин.

II Актуализация опорных знаний — 4 мин.

III Цели урока — 2 мин.

IV Изучение теоретического материала и способов деятельности — 20 мин.

V Закрепление учебного материала — 12 мин.

V Закрепление учебного материала — 25 мин.

VI Самостоятельная работа — 10 мин.

VII Домашнее задание — 3 мин.

VIII Выводы по уроку — 2 мин.

I Организационный этап

II Актуализация опорных знаний

Краткое обсуждение с учащимися тех теоретических знаний, которыми они обладают и пользуются при решении уравнений.

Допустим, нам необходимо решить уравнение

Преобразуем данное уравнение, выстраивая цепочку уравнений и стараясь получить уравнение вида а х = b , т.е. линейное уравнение

6х — 15 = 2х + 5, 6х — 2х = 5 + 15, 4х = 20.

Откуда получаем, что 5 — корень уравнения. Причём, как последнего уравнения, так и любого из уравнений данной цепочки, так как они являются равносильными уравнениями. По сути, решением уравнения и является выстраивание подобных цепочек уравнений.

Однако при преобразовании уравнений (и неравенств в том числе) далеко не всегда легко получить им равносильные уравнения. И как быть тогда?

Изучением этих крайне важных вопросов нам и предстоит заняться.

Мы вернёмся к целому ряду понятий, связанных с решением уравнений, с которыми вы неплохо знакомы, и посмотрим на них как бы несколько иначе, глубже, обобщим и дополним рядом важных и принципиальных положений.

IV Изучение теоретического материала и способов деятельности

1) Определение. Два уравнения с одной переменной f(х) = g(х) и h(х) = р(х) называют равносильными, если они имеют одинаковые корни или если оба уравнения не имеют корней.

Например, уравнения — 4 = 0 и ( х + 2)(2 Х — 4 ) = 0 равносильны; равносильны и уравнения х 2 + 1 = 0 и = — 2 — они не имеют корней.

2) Определение . Если каждый корень уравнения f(х) = g(х) (1)

является в то же время корнем уравнения h(х) = р(х) (2),

то уравнение (2) называется следствием уравнения (1).

Например, уравнение х — 2 = 3 имеет корень 5 , уравнение — 25 = 0 имеет корни ± 5 . Так как корень уравнения х — 2 = 3 является корнем уравнения х 2 — 25 = 0 , то уравнение х 2 — 25 = 0 является следствием,, уравнения х — 2 = 3.

Следовательно, два уравнения называют равносильными тогда и только тогда, когда каждое из них является следствием другого.

3) Если в ходе преобразований, при переходе от одного из уравнений к уравнению-следствию, мы неуверенны в равносильности выполняемого перехода, то у последнего уравнения могут появиться посторонние корни в отношении исходного уравнения. Поэтому все полученные корни уравнения- следствия необходимо проверить, подставляя их в исходное уравнение. Тем самым, проверка найденных корней уравнения является не проверкой верности выполненных технических преобразований, а неотъемлемой частью, этапом решения уравнения.

4) Итак, мы выяснили, что в процессе решения уравнений (а ещё более при решении неравенств) на каждом этапе преобразований крайне важно знать, равносильный ли переход мы совершаем. Сформулируем и обсудим ряд важных для нас положений.

Теорема 1. Если какой-либо член уравнения перенести из одной части уравнения в другую с противоположным знаком, то получится уравнение, равносильное данному уравнению.

Теорема 2. Если обе части уравнения возвести в одну и ту же нечётную степень, то получится уравнение, равносильное данному уравнению.

Теорема 3 . Показательное уравнение (где > 1, 1 ) равносильно уравнению f(х) = g(х).

Определение . Областью определения уравнения f(х) = g(х) или ОДЗ переменной уравнения называется множество тех значений х , при которых одновременно имеют смысл обе части уравнения f(х) = g(х).

Теорема 4 . Если обе части уравнения f(х) = g(х) умножить на одно и то же выражение h(х), которое имеет смысл всюду в области определения (ОДЗ) уравнения f(х) = g(х) и при этом нигде в этой области h(х) 0 , то уравнения f(х) = g(х) и h(х)∙ f(х) = h(х) g(х) равносильны.

То есть, мы можем обе части уравнения умножать или делить на одно и то же отличное от нуля число, не нарушая при этом равносильности уравнений.

Теорема 5. Если обе части уравнения f(х) = g(х) неотрицательны на ОДЗ уравнения, то после возведения обеих его частей в одну и ту же степень n получится уравнение g n (x), равносильное исходному уравнению.

Теорема 6. Если f(х)>0, = g(х)>0 , то уравнение log α 2 f(x) = log α g(x) , где а>0, , равносильно уравнению f(х) = g(х).

5) Рассмотрим применение теоретических положений на практике. Пусть нам дано уравнение х — 1 = 3 , корень которого равен 4 .

а) Умножив обе части уравнения на выражение х — 2 , получим уравнение (х — 1 )(х — 2) = 3(х — 2). Решим полученное уравнение

х 2 — Зх + 2 = Зх — 6, х 2 — 6х + 8 = 0, x 1 = 2, х 2 = 4.

То есть, уравнение-следствие имеет два корня 2 и 4 , причём, 2 -посторонний корень для исходного уравнения. Каким образом у исходного уравнения появился посторонний корень? — Если бы мы вначале преобразовали исходное уравнение к виду х — 4 = 0 . За тем домножили обе части уравнения на х — 2 . То получили бы уравнение (х — 4)(х — 2) = 0 , которое равносильно совокупности уравнении . Тогда понятно, что уравнение х — 2 = 0 , по отношению к исходному уравнению х — 4 = 0 , является посторонним уравнением, отсюда и появление постороннего корня. Фактически мы умножили обе части исходного уравнения на выражение х — 2 , допуская при этом его равенство нулю, что невозможно по теореме 4 .

б) Возведём в квадрат обе части уравнения х — 1 = 3 . Получим уравнение-следствие (х-1) 2 = 9 . Откуда х 2 — 2х — 8 = 0, х 1 = — 2, х 2 = 4 . Вновь у уравнения-следствия появляется посторонний корень по отношению к исходному уравнению. Преобразовав уравнение (х-1) 2 = 9 к виду (х-4)(х+ 2)=0 , получаем постороннее уравнение х + 2 = 0 и посторонний корень -2 . Нарушено условие теоремы 5: возводя в квадрат, мы «забыли», что при возведении в квадрат должно выполняться условие х — 1 >0 .

в) Рассмотрим уравнение ln (2х — 4) = 1n(3х — 5). Потенцируя, получим уравнение 2х — 4 = Зх — 5. Откуда х = 1 . Проверкой убеждаемся, что 1 является посторонним корнем для исходного уравнения. В данном случае произошло не появление постороннего уравнения, а расширение ОДЗ исходного уравнения. У исходного уравнения ОДЗ: (2; + ), у полученного уравнения ОДЗ — вся числовая прямая. Тем самым не нарушены требования теоремы 6.

6) Выводы. Исходное уравнение преобразуется в процессе решения в уравнение-следствие, значит, необходимо обязательное выполнение проверки всех найденных корней, если: расширилась ОДЗ уравнения; возводились в одну и ту же чётную степень обе части уравнения; выполнялось умножение обеих частей уравнения на одно и тоже выражение с переменной.

V Закрепление учебного материала

1) № 1663; № 1665(а, в); № 1666 (а, б).

2) Переходя к решению уравнений, мы будем стараться учесть следующие два момента. С одной стороны наши решения уравнений должны содержать необходимое теоретическое обоснование нашей деятельности. С другой стороны мы будем учитывать, что в дальнейшем, при решении неравенств, в большинстве случаев от нас потребуется обеспечение равносильности переходов в преобразованиях, и поэтому уже на данном этапе — при решении уравнений, мы будем отрабатывать именно эти навыки, дабы обеспечить преемственность способов деятельности.

Пусть на дано уравнение g(x) Возведя в квадрат обе части уравнения, получим уравнение f(х) = g 2 (х) которое можно записать так:

( -g(x)) ( +g(x))=0

Откуда получаем совокупность уравнений: .

Имеем постороннее уравнение, и могут появиться посторонние корни. Следовательно, необходима проверка корней. Если мы захотим выполнить равносильный переход и обойтись без проверки, то исходное уравнение

равносильно смешанной системе:

3) Решим уравнения (двумя способами):

а) Первый способ. Решение. ОДЗ уравнения: х > — 11 . После возведения обеих частей уравнения в квадрат, получим уравнение-следствие х 2 -Зх-10 = 0 с корнями — 2 и 5 . Оба корня принадлежат ОДЗ уравнения, но это не меняет сути дела и мы вынуждены выполнить проверку корней.

Проверка. Подставив x 1 = — 2 , получим — неверное равенство, — 2 — посторонний корень.

Подставив х 2 = 5 , получим или 4 = 4 — верное равенство, 5 корень исходного уравнения.

а) Второй способ . Решение. Исходное уравнение равносильно системе

или решение системы и исходного

уравнения х 2 = 5.

б) Первый способ . Решение. ОДЗ уравнения: . Возведя обе части

уравнения в квадрат и приведя подобные слагаемые, получим уравнение х 2 — х = 0 . Откуда x 1 = 0, х 2 = 1 . Опять оба корня принадлежат ОДЗ уравнения, но будут ли они корнями исходного уравнения ничего сказать нельзя.

Проверка . Подставив x 1 = 0 , получим — верное равенство, 0 — корень исходного уравнения.

Подставив х 2 = 1 , получим — верное равенство, 1 — корень исходного уравнения.

б) Второй способ. Решение. Исходное уравнение равносильно системе

или . Откуда решение системы и исходного уравнения 0 и 1 .

в) Первый способ. Решение. ОДЗ уравнения: -1 . Возведя обе части уравнения в квадрат и приведя подобные слагаемые, получим уравнение . Откуда x 1 = 0, х 2 = . Оба корня принадлежат ОДЗ

уравнения. Выполним проверку.

Проверка . Подставив x 1 = 0 , получим — неверное равенство, 0 -посторонний корень.

Подставив х 2 = , получим — неверное равенство, -посторонний корень.

Оба корня принадлежат ОДЗ переменной уравнения, но при этом являются посторонними корнями. Ответ: корней нет.

в) Второй способ . Решение. Исходное уравнение равносильно системе или . Система решений не имеет, значит, и уравнение тоже решений не имеет.

Ответ: корней нет.

г) Первый способ . Решение. ОДЗ уравнения задаётся решением системы , или которая решений не имеет. Значит, ОДЗ уравнения — пустое множество, уравнение решений не имеет.

Ответ: корней нет.

г) Второй способ . Решение. Исходное уравнение равносильно системе или Система решений не имеет, значит, и исходное уравнение тоже решений не имеет.

Ответ: корней нет .

Решение. Произведение двух сомножителей равно нулю, если хотя бы один из сомножителей равен нулю, а второй сомножитель при этом имеет смысл.

а) х 2 — 9 = 0, х = ± 3.

Проверим, имеет ли смысл при этих значениях второй сомножитель.

При x 1 =-3, — имеет смысл, поэтому — 3 — корень уравнения; при х 2 = 3, — не имеет смысла, 3 не является корнем уравнения.

Уравнение равносильно системе или

Решением системы является число 1 . Так как х 2 — 9 имеет смысл при всех значениях переменной, то 1 является и корнем исходного уравнения.

5) Выводы. При решении иррациональных уравнений — возведении обеих частей уравнения в чётную степень, принадлежность полученных корней ОДЗ уравнения не позволяет сделать вывод, о том являются ли эти корни посторонними или нет. Поэтому выполнение проверки корней обязательно и это этап решения уравнения. Если корень не принадлежит ОДЗ то он, конечно, посторонний корень уравнения. В то же время, записывая систему равносильную уравнению, мы не нарушаем логики решения уравнения: ведь уравнение с пустой ОДЗ равносильно системе, не имеющей решений.

VI Самостоятельная работа

Решить уравнение двумя способами.

I вариант II вариант

VII Домашнее задание

§ 55 по учебнику; № 1673 по задачнику (решить двумя способами).

Технологическая карта урока: «Равносильные преобразования уравнений и их решение»

Просмотр содержимого документа
«Технологическая карта урока: «Равносильные преобразования уравнений и их решение»»

Технологическая карта урока №9:

Педагог: Самуткин Элезарь Валериянович

Предмет: Алгебра. Класс: 8

Учебник (УМК): С.М. Никольский, М.К. Потапов, Н.Н. Решетников, А.В. Шевкин. Алгебра. 8 класс. – М.: Просвещение, 2018. – 303 с.

Тема урока: Равносильные преобразования уравнений и их решение.

Тип урока: Комбинированный.

Оборудование: компьютер, мультипроектор.

Цель темы как достигаемые образовательные результаты:

создать условия для формирования представлений о решении произвольных рациональных уравнений, левые и правые части которых –дробно-рациональные выражения, при помощи равносильных преобразований.

Предметные: сформировать у обучающихся умение решать рациональные уравнения при помощи равносильных преобразований.

Регулятивные уметь ставить цели, планировать свою деятельность, осуществлять самоконтроль и самооценку, осуществлять оценку результата действия, различать способ и результат действия; корректировать процесс (решения рациональных уравнений при помощи равносильных преобразований), оценивать равносильность выполнения действий;

Коммуникативные – планировать учебное сотрудничество, уметь вести диалог, аргументированно высказывать свои суждения, договариваться и приходить к общему решению в совместной деятельности; умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи; выстраивать аргументацию, приводить примеры и контрпримеры;

Познавательные – формулировать проблемы и самостоятельное создавать способы решения проблемы творческого и поискового характера, уметь читать математический текст и находить информацию в учебнике по заданной теме, на наглядно-интуитивном уровне проводить наблюдение, анализ и делать выводы; подведение под понятие (рационального уравнения, равносильности уравнений), логически мыслить, рассуждать; работать по правилу, алгоритму и образцу, владеть общим приемом решения уравнений; рефлексия и оценка способов и условий действия;

Личностные: смыслообразование (обучающийся задается вопросом, какое значение имеет изучение данного понятия), формирование ответственного отношения к успешной учебной деятельности.

Цели урока как планируемые результаты обучения, планируемый уровень достижения целей: обучающийся выделяет равносильные уравнения и неравносильные, применяет равносильные преобразования для приведения произвольного рационального уравнения к уравнению, одна часть которого алгебраическая дробь, а другая – нуль, применяет алгоритм решения таких уравнений, исследует число корней уравнения.

Способ оценивания результата

Знание: способность воспроизвести правило решения рационального уравнения с произвольной левой и правой частью

Опрос, взаимопроверка и взаимооценка

Понимание: способность различить равносильные уравнения от неравносильных, применять равносильные преобразования для приведения рационального уравнения к требуемому виду, способность выделять потерянные корни и приобретенных посторонних корней.

Групповая и самостоятельная работа над учебными примерами с итоговой проверкой

Применение: способность привести примеры равносильных и неравносильных преобразований рациональных уравнений до уравнения, одна часть которого алгебраическая дробь, а другая – нуль.

Анализ: способность анализировать уравнения в зависимости от состава левой и правой части, возможности его приведения к уравнению с нулевой правой частью, сделать вывод о равносильности проводимых преобразований, о числе корней

В ходе модерации

Синтез: умение преобразовать разные типы уравнений и устанавливать их равносильность, обобщать методы равносильных преобразований, обосновывать отсутствие посторонних корней, потери корней.

В ходе фасилитации, опроса и самопрезентации

Оценка: способность формулировать правило решения произвольных рациональных уравнений и аргументировать вывод о числе их корней.

Тест. Взаимооценка по ходу решения примеров.

Технологическая карта урока №9 (продолжение)

Урок алгебры в 11-м классе на тему «Равносильность преобразований»

Разделы: Математика

Цели урока:

  • Повторить основные понятия темы;
  • Проанализировать процесс решения уравнений (неравенств) и обосновать цепочку переходов от исходного уравнения (неравенства) к равносильному;
  • Способствовать познавательной активности учащихся при помощи информационных технологий;
  • Создавать условия для реализации творческих способностей учащихся.

Тип урока: Защита проекта, урок обобщения знаний, повторения.

Учитель: Решая сложные задания (особенно из части С), мы постоянно сталкиваемся с моментами, где в кажущейся простой ситуации мы допускаем ошибки. В чем проблема?

Иногда при решении уравнений случаются неприятности: появляются «лишние» корни, теряются «нужные», а иногда непонятно, что делать дальше, потому, что неизвестное исчезло, а осталось «уравнение» 0 = 2 или 1 = 1. Чтобы справляться с такими неприятностями, надо хорошо понимать, что такое уравнение, и что мы делаем с ним в процессе решения. (далее привожу выступление ученика по его проекту).

Докладчик: Начну с определения уравнения [слайд №3]

Уравнением называется запись f = g, где f и g — две функции, заданные на одном и том же множестве А. Множество А называется областью определения уравнения (или ОДЗ). Таким образом, чтобы задать уравнение, мало написать f = g, еще надо указать А — его область определения (сл.№4)

Обычно область определения уравнения не упоминается — нам говорят «решите уравнение», например, данное: х 2 + 2 = 4х и мы сразу понимаем, что область определения уравнения — любое число, т.к. при этом условии имеет смысл и f, и g.

Я разобрала на составные части процесс решения уравнения, чтобы точно узнать, откуда берутся ошибки, и какие меры предосторожности надо принимать.

Пусть дано уравнение [слайд №5]

Упростив его левую и правую части по отдельности, получим

Разделим числитель и знаменатель левой части на х 2 , а правой — на х, сделаем подстановку . Получим уравнение [слайд 6]

откуда. . Отсюда и = 0 или и = 1.

,
решений не дает.

,
x=1.

Казалось бы, уравнение решено. Если, однако, попытаться подставить в исходное уравнение х = 1, то мы убедимся, что это – не корень (на нуль делить нельзя!) [слайд№8] С другой стороны, легко проверить, что х = 0 – корень уравнения, который мы почему-то не нашли. Где же мы ошиблись? (идет обсуждение).

В уравнении: , мы делили числители и знаменатели дробей на х, что можно делать только при; стало быть, если 0 является корнем, то при этой операции мы его потеряем. В таких случаях проще всего сразу подставить х = 0 в уравнение и посмотреть, корень ли это. Убедившись, что в данном случае это – корень, и запомнив это, пойдем дальше. Но удобнее всего было бы перенести все в левую часть и привести к общему знаменателю: [слайд №9] .

Решение этого уравнения очевидно (дробь равна нулю, если ее числитель равен нулю, а знаменатель не равен нулю). Рассмотрим простейшее иррациональное уравнение. [слайд № 10]

Пример 1. (1)

Решение. Возведя обе части в квадрат, получим квадратное уравнение(2). Все решения исходного уравнения (1) являются решениями уравнения (2) (если числа равны, то и их квадраты равны). Иными словами, уравнение (2) является следствием уравнения (1). Однако среди решений уравнения (2) могут быть не только нужные нам числа: ведь и данное (3):после возведения в квадрат даст то же самое уравнение (2), а значит, все корни этого «постороннего» уравнения, если таковые есть, также будут корнями (2). [Слайд №11]. Поэтому, решив уравнение (2), надо еще отобрать среди найденных корней те, которые удовлетворяют нашему уравнению (1). В нашем случае это сделать совсем просто: решая (2), квадратное, находим ; подстановкой в (1) убеждаемся, что подходит, а нет.

Но часто бывает ситуация, когда подстановкой проверить корни почти невозможно.

Пример 2. (слайд №12) (1) Возводим в квадрат, получаем уравнение:

(2). Находим корни: .

Мы выполнили неравносильные преобразования, возможно получили посторонние корни (решения уравнения (3), которое тоже при возведении в кв. дает (2), но как же теперь выбрать то, что нам нужно? Во всяком случае, подставлять такие числа в исходное уравнение (1) — занятие бесперспективное. Обратите внимание, что все корни квадратного уравнения – это либо корни нашего исходного уравнения, либо корни «постороннего» уравнения (3).

Т.к.. , то всякий корень уравнения– неотрицательное число, а всякий корень уравнения– неположительное число. А нам нужен корень только исходного, значит неотрицательное число. И в ответ выходит положительный корень. Ответ. .

[Слайд №13] Итак, уравнение равносильно системе:

Уравнение Б является следствием уравнения А, если все корни уравнения А являются корнями уравнения Б. Уравнения А и Б равносильны, если множества их корней совпадают. [слайд №14].

Считаю, что лучше тщательно изучить ход решения и выяснить, на каком этапе могли появиться «лишние» корни, и какие именно. Конечно, желательно, чтобы каждое новое уравнение было бы равносильно исходному (тогда лишних корней появиться не может), но этого можно добиться не всегда.

Я проанализировала некоторые ситуации при выполнении преобразований и выделила главные моменты. Что произойдет с естественной областью определения уравнения, если в нем заменить:

a) (ОДЗ сужается: была: , стала: )
б) (ОДЗ расширилась: была: , стала: x-любой)
г) ( )
д) (идет обсуждение)

Кстати, к этому сводится известная шутка – «доказательство» равенства 2 = 4: [слайд №16]

Поэтому, чтобы избежать таких «шуток», надо пользоваться равенствами: [слайд №17]

Решая уравнение из домашнего задания

я столкнулась с проблемами.

(Уравнение решается у доски и в тетрадях, затем докладчик продолжает).

0) Выпишем ОДЗ: .

1) Перейдем в левой части к логарифму по основанию 2 и разложим квадратные трехчлены на линейные множители:

.

2) Т.К. в ОДЗ , разделим обе части на и прологарифмируем степень в правой части: , получим:

.

3) Перенесем все в левую часть и вынесем за скобки [слайд№19]

или .

4) Приравнивая к нулю сомножители, получим совокупность уравнений:

а) ;
.
Ответ: .

б) ;
;
;

В данном случае на каждом из шагов выполнялись равносильные преобразования, учитывая ОДЗ. Значит, проверку можно не выполнять.

Проанализируем, какие ошибки возможны при решении: [слайд №20] (идет обсуждение).

0) Забудем про ОДЗ.

1)
2) , (допущены ошибки при логарифмировании степени).
3) или .

Здесь уже приобретен посторонний корень (мы же не учли ОДЗ) и подготовлена потеря корней. (Применение неверной формулы сузило ОДЗ: изначально , теперь строго > 4).

4) [Слайд №21] Тогда ;

а) если сократить на , то произойдет потеря корня и мы получим данный неверный ответ а) ,
б) если вынести за скобки, то , все равно уйдем от правильного ответа б) .

Я СДЕЛАЛА ВЫВОДЫ ИЗ РЕШЕННОГО ПРИМЕРА. [слайд №22]

1) Опасно делить обе части уравнения на выражение, содержащее неизвестное (можно потерять корни).
2) Если уравнение содержит общий множитель c неизвестным, его следует вынести за скобки и привести уравнение к совокупности двух, равных нулю.
3) При решении уравнений нельзя делать ошибок типа – они могут привести к потере корней (из-за сужения ОДЗ).

Рассмотрим конкретный пример из задания С1 ЕГЭ прошлого 2007 года.

Задание: найти точки максимума функции

Решение: (решение у доски, в тетрадях, затем продолжает докладчик) [слайды №23-24]

1) Найдем ОДЗ:
2) Преобразуем функцию:
3) Для нахождения точек максимума, найдем производную функции: . И стационарные точки: x= -1, x= 0, x=2
4) Определим знаки производной и поведение функции:

Выходит, что точек максимума две: x= -1 и x= 2. Но x= -1 не входит в область определения функции. Поэтому точка максимума одна: x=2.

Вывод: необходимо учитывать ОДЗ при решении любых задач, а особенно в тех случаях, когда выполняются неравносильные преобразования. Как в данном примере: область определения расширилась после того, как мы упростили функцию.

[Слайд №26] Ход решения неравенств устроен примерно так же, как и ход решения уравнений. Стоит добавить, что множество решений неравенства обычно бесконечно. Проверить все найденные числа трудно, поэтому необходимо избегать переходов к неравносильным неравенствам.

Пример 1. [слайд №27]

Хотелось бы, конечно, возвести обе части в квадрат, это возможно только при неотрицательности обеих частей. Но что же нам делать с теми х, для которых правая часть отрицательна? А ничего не делать, для всякого решения неравенства правая часть больше левой, являющейся неотрицательным числом в ОДЗ, и, стало быть, сама неотрицательна. Итак, следствием нашего неравенства будет такая система:

, где возведенное в квадрат неравенство, неотрицательность правой части ОДЗ

Пример 2. [слайд №28]

Решение. Здесь опять же заведомо можно возвести в квадрат только тогда, когда . Однако теперь уже нельзя отбросить тех, для которых правая часть отрицательна:

Итак, у нас получилось два случая: если правая часть неотрицательна , то из нашего неравенства следует система Если же правая часть отрицательна, то нер-во верно на ОДЗ (ведь тогда отрицательная правая часть должна быть меньше положительной левой, а это верно на ОДЗ) и следует система где неотрицательность меньшей части и ОДЗ.

Неравенство равносильно такой совокупности двух систем:

Пример 3. [слайд №29]

Решение. На сей раз обе части неравенства всегда неотрицательны, так что возведение в квадрат дает неравенство, равносильное исходному на его естественной области определения. Возведение в квадрат дает неравенство: , (8) область определения дает неравенства: (9) и (10).

Мы не учитываем (10), т.к. если правое, меньшее, подкоренное выражение неотрицательно, то левое и подавно неотрицательно. Стало быть, из неравенства следует такая система:

, возведенное в кв. нер-во и неотрицательность меньшей части.

Неравенство равносильно системе: [слайд № 30]

Учитель: Используя результаты ваших исследовательских работ, в данном случае Оксаны, мы проанализировали различные ситуации, выяснили причины появления таких неприятных моментов в нашей практике, как “лишние” корни, потеря нужных. Рекомендую всем заинтересованным в качественном решении использовать эти выводы.

2. Решить уравнения, неравенства:

1. 12 — 7х + х 2 = 4(х-3) .
2. log2(x 3 -4) – log4(x 3 — 4) = log2 \/ x 6 -11x 3 +28
3. (21х-2х 2 +65) * * log3 |x-9|.>0.


источники:

http://demo.multiurok.ru/files/tekhnologicheskaia-karta-uroka-ravnosilnye-preobra.html

http://urok.1sept.ru/articles/522194