Условие равновесия сил при смачивании выражается уравнением

2.3.2. Смачивание и растекание на границе твердое тело – жидкость – газ

В большинстве случаев жидкость на поверхности твердого тела остается в виде капли, большей или меньшей толщины, контактирующей с твердым телом под определенным углом, который называется краевым углом смачивания и обозначается буквой Q (рис. 1.24). Растекание капли по поверхности прекратится при достижении равновесия, которое без учета сил тяжести может быть описано уравнением Юнга:

(1.2.44)

, (1.2.45)

где индексы 1, 2, 3 – обозначают, соответственно, твердую, жидкую и газовую фазы.

Работа адгезии выражается уравнением Дюпре:

(1.2.46)

. (1.2.47)

Рис. 1.24. Капля жидкости на поверхности твердого тела (схема)

Работа адгезии при ,т.е. при полном смачивании, , что эквивалентно работе когезии жидкости. Если Q = 180 o , соs Q = -1 и в соответствии с уравнением (1.2.47) Wa = 0, т.е. жидкость не смачивает твердую поверхность. При Q» 90 o жидкость проявляет слабое смачивание.

Следует помнить, что определение работы адгезии в реальных системах предполагает равновесие фаз, насыщенных относительно друг друга.

Кроме того, твердая поверхность, по которой происходит растекание жидкости, не свободна. Она обычно покрыта пленкой вещества, адсорбированного из газо-паровой фазы. Эта пленка имеет поверхностное давление p, поэтому

, (1.2.48)

Смачивание неоднородных, пористых или шероховатых поверхностей сопровождается запиранием пузырьков воздуха в неровностях. В результате этого краевые углы смачивания сухой и предварительно увлажненной поверхностей различаются. Такое явление носит название «гистерезис смачивания». Гистерезис смачивания проявляется также при загрязнении поверхности, в результате чего она становится неоднородной при закреплении на ней твердых частиц или жировых пленок. В этом случае поверхность ведет себя как составная.

Шероховатость поверхности учитывается введением коэффициента шероховатости r, представляющего отношение площади поверхности реального тела к площади идеально гладкой поверхности, тогда

. (1.2.49)

Можно отметить, что если краевой угол смачивания гладкой поверхности, например полимерной пленки, меньше 90 o , то шероховатость (ткань из волокон этого полимера) уменьшает его, если же он больше 90 o , то шероховатость его увеличивает. Для составной поверхности, которая специфична для большинства текстильных материалов, наличие участков различной природы может быть учтено введением коэффициентов x, характеризующих долю поверхности с различными свойствами. Например, если текстильный материал изготовлен из волокон двух видов 1 и 2, то

. (1.2.50)

Если переплетение нитей таково, что получается сетчатый или дырчатый материал, то уравнение (2.50) принимает вид

, (1.2.50′)

где х2 – доля открытой поверхности.

Как мы обсуждали выше, поверхностное натяжение можно разделить на компоненты дисперсионных и полярных сил, а при нахождении межфазового натяжения для многих жидких границ можно ограничиться лишь дисперсионной составляющей. Такое ограничение позволяет провести обсуждение явления смачивания (по крайней мере, низкоэнергетических поверхностей, к каковым можно отнести подавляющее большинство волокнообразующих полимеров), в рамках теории дисперсионных сил.

Как показал Н. В. Чураев смачивание неполярной жидкостью твердой поверхности возможно, если будет соблюдаться условие смачивания, которое выражается уравнением

, (1.2.51)

где А123 – составная постоянная Гамакера при взаимодействии жидкости (фаза 2) с твердым телом (фаза 1) на границе с воздухом (фаза 3); hmin — наименьшая толщина пленки, которая фактически соответствует Ван-дер-Ваальсову расстоянию, т.е. hmin = (0,22¸0,24) нм. Например, для воды на поверхности тефлона А123 = -7·10 — 21 Дж.

Учет только дисперсионных сил приводит к уравнению

, (1.2.52)

При расчетах углов смачивания твердых поверхностей следует учитывать поверхностное давление пленки, образованной при адсорбции из газо-паровой фазы. Тогда с учетом уравнения (1.2.48), уравнение Юнга (1.2.45) следует записать в виде

. (1.2.53)

Способ расчета поверхностного давления предложили Бэнгхэм и Разорук:

, (1.2.54)

где P – равновесное давление, Г– равновесная адсорбция газа (пара), Ps – давление насыщения.

При больших углах смачивания и слабом взаимодействии жидкости с твердым телом поверхностное давление обычно не учитывают.

Для неполярных жидкостей на низкоэнергетической поверхности твердого тела для работы адгезии было получено выражение

. (1.2.55)

Поэтому уравнение Дюпре (1.2.46) можно записать

. (1.2.55′)

Для дисперсионной составляющей жидкости

, (1.2.56)

где А232 – постоянная Гамакера взаимодействия жидкости через прослойку газа (пара).

Сочетая уравнения (1.2.47), (1.2.55) и (1.2.56), получаем

. (1.2.57)

Очевидно, что Q = 0, т.е. при полном смачивании, cosQ = 1, если

Уравнение (1.2.57) позволяет прогнозировать вероятность смачивания () или наоборот — несмачивания () жидкостью поверхности твердого тела по известным постоянным межмолекулярных сил взаимодействия.

Чаще, однако, прибегают к определению постоянной Гамакера по известному значению межфазового натяжения на границе «твердое тело — газ». Эту характеристику поверхности твердого тела находят при распространении подхода Джирифалько и Гуда, рассмотренного нами выше для границы двух жидкостей, на поверхность раздела «жидкость — твердое тело», уравнения (1.2.23), (1.2.35).

Так приложение уравнения (1.2.34) к уравнению Юнга для случая смачивания неполярной жидкостью поверхности полимерного материала позволяет получить уравнение, известное как уравнение Фоукса, при

. (1.2.58)

Если жидкости неполярны и , то уравнение (1.2.58) переходит в уравнение

. (1.2.59)

Уравнение (1.2.59) Зисман предложил использовать для определения поверхностного натяжения твердых тел. Очевидно, что при cosQ =1, а угол смачивания будет равен нулю (Q = 0), т.е. наступает полное смачивание.

Естественно, что метод Зисмана ограничен некоторыми условиями, в частности, из уравнения (1.2.57) следует, что полное смачивание возможно при дисперсионной неразличимости твердого тела и жидкости, т.е. при А232= А123.

В действительности такого условия никогда невозможно достигнуть хотя бы потому, что если жидкость и твердое тело будут иметь одинаковый химический состав, их постоянные Гамакера будут различаться из-за различий в плотности.

Другое ограничение, связанное с применением метода Зисмана, основано на том, что использовать для измерения краевых углов смачивания следует лишь неполярные жидкости. Наиболее целесообразно применять гомологические ряды жидкостей. При величине поверхностного натяжения жидкостей более 35 мДж/м 2 метод Зисмана уже дает высокую погрешность, так как необходимо учитывать вклад полярных сил, которые в отличие от дисперсионной составляющей могут иметь и отрицательное значение. С другой стороны, приложение для смачивания твердых тел полярными жидкостями уравнения Ву (1.2.36) позволяет рассчитать полярную составляющую поверхностного натяжения жидкости, если для одной из неполярных жидкостей измерить краевой угол смачивания. Для расчета используют уравнение

Рис. 1.25. Зависимость смачивания поверхностей от поверхностного натяжения жидкостей. Материал поверхности: 1- FC-721; 2- ПТФЭ (тефлон); 3 — полиэтилен

. (1.2.60)

Этот метод позволил разделить величину поверхностного натяжения жидкостей на полярную и дисперсионную компоненты и определить поверхностное натяжение многих волокнообразующих полимеров.

Пример зависимости косинуса угла смачивания поверхности пленок различными жидкостями приведен на рис.1.25. Для описания этих зависимостей Зисман предложил использовать эмпирическое уравнение

, (1.2.61)

где bэмпирическая постоянная, sс – «критическое» поверхностное натяжение твердого тела, при котором происходит полное смачивание твердого тела жидкостью. Очевидно, что cos Q =1 при условии sжг = sс .

Как мы обсуждали выше, этот критерий в известной мере является условным, хотя и отражает энергетическое состояние поверхности твердого тела.

Реальное значение поверхностного натяжения твердого тела экспериментально определить невозможно, также как и рассчитать его теоретически. В этой связи метод Зисмана нашел широкое применение в практике исследования полимерных материалов, а также полимерных покрытий тканей, используемых в качестве отделочных материалов

Межфазное натяжение на поверхности раздела твердое тело-жидкость. Смачивание.

Капля жидкости на поверхности твердого тела может вести себя различно (рис. 6.2):

Рис. 6.2. Контактные углы, образованные жидкостями на поверхности твердого тела:

S — твердое тело;

L — капля жидкости;

— краевой угол смачивания

Если жидкость смачивает твердое тело, то она стремится растечься по поверхности.

Контактный угол при этом равен 0 (рис. 6.2а), т.е. при полном смачивании q=0, а cos q=1.

Краевой угол q является мерой смачивания. Он определяется как угол между твердой поверхностью и касательной в точке соприкосновения трех фаз. Угол q отсчитывается в сторону жидкой фазы.

В случае жидкости L2 (рис. 6.2б) тенденция к растеканию по поверхности менее выражена и угол 0 0 .

В третьем примере жидкость не смачивает поверхность (рис. 6.2в) и контактный угол превышает 90 0 . Жидкость стремится уменьшить площадь контакта с твердым телом.

В состоянии равновесия:

Величина носит название адгезионного натяжения.

Уравнение известно как соотношение Юнга-Дюпре, которое устанавливает условие равновесия сил, из которого можно определить ПН твердого тела или межфазное натяжение:

Поверхностные натяжения рассмотрены как силы, приложенные перпендикулярно к единице длины периметра смачивания и действующие по касательной к соответствующим поверхностям (рис. 6.3).

Рис. 6.3. Действие трех сил (пограничных) поверхностного натяжения.

Смачиванию благоприятствует низкая свободная энергия поверхности раздела, высокая поверхностная энергия твердого тела и низкая свободная энергия поверхности жидкости.

и определяются экспериментально, а и расчетным путем.

Величины и обычно неизвестны и чтобы их определить рассматривают молекулярные силы и их работу, определяющую значения всех и .

При этом различают силы когезии (слипания) и адгезии (прилипания).

Первые действуют между молекулами внутри фазы, вторые – в разных фазах.

Работа когезии определяется как сила, необходимая для разрыва однородной объемной фазы, отнесенная к единице площади разрыва.

Поскольку при этом образуется две новых поверхности жидкости, то:

Работа адгезии , также относимая к единице площади, определяется как работа разрыва межфазного поверхностного слоя. Затрачивается она на образование двух новых поверхностей, при этом исчезает исходная межфазная граница:

(Свободная энергия уменьшается за счет работы сил взаимодействия).

Из этих двух уравнений следует уравнение, известное как уравнение Дюпре:

По этому уравнению вычисляют , экспериментально определяя и . Оно показывает, что чем выше адгезия, тем больше , т.е. смачивание.

Таким образом силы межфазного взаимодействия (адгезионные силы) стремятся растянуть каплю, а силы когезии стягивают каплю, препятствуя растеканию.

Определение (поверхностного натяжения твердого тела) представляет определенные трудности. Зисман ввел понятие о — критическом ПН смачивания, позволяющего оценить ПН твердого тела.

Эта величина определяется как значение в точке пересечения графика зависимости от с горизонтальной линией, соответствующей =1.

Жидкость с

где Ф – эмпирический параметр, который можно рассчитать теоретически из молекулярных свойств через константы Гамахера и потенциал Леннарда-Джонса.

iSopromat.ru

Рассмотрим условия равновесия произвольной плоской и пространственной систем сил, включая три основные формы и частные случаи равновесия для систем параллельных и сходящихся сил:

Из основной теоремы статики следует, что любая система сил и моментов, действующих на твердое тело, может быть приведена к выбранному центру и заменена в общем случае главным вектором и главным моментом.

Если система уравновешена, то получаем условия равновесия: R=0, MO=0. Из этих условий для пространственной системы сил получается шесть уравнений равновесия, из которых могут быть определены шесть неизвестных:

Формы условий равновесия

Первая форма

Для плоской системы сил (например, в плоскости Oxy) из этих уравнений получаются только три:

причем оси и точка O, относительно которой пишется уравнение моментов, выбираются произвольно. Это первая форма уравнений равновесия.

Вторая форма

Уравнения равновесия могут быть записаны иначе:

Это вторая форма уравнений равновесия, причем ось Ox не должна быть перпендикулярна линии, проходящей через точки A и B.

Третья форма

Это третья форма уравнений равновесия, причем точки A, B и C не должны лежать на одной прямой.

Предпочтительность написания форм уравнений равновесия зависит от конкретных условий задачи и навыков решающего.

Другие условия равновесия

При действии на тело плоской системы параллельных сил одно из уравнений исчезает и остаются два уравнения (рисунок 1.26, а):



Для пространственной системы параллельных сил (рисунок 1.26, б) могут быть записаны три уравнения равновесия:

Для системы сходящихся сил (линии действия которых пересекаются в одной точке) можно написать три уравнения для пространственной системы:

и два уравнения для плоской системы:

В каждом из вышеприведенных случаев число неизвестных, находимых при решении уравнений, соответствует числу записанных уравнений равновесия.

Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах


источники:

http://helpiks.org/4-59184.html

http://isopromat.ru/teormeh/obzornyj-kurs/uravnenia-ravnovesia-sistemy-sil