Условия единственности и множественности решений системы линейных уравнений

VMath

Инструменты сайта

Основное

Навигация

Информация

Действия

Содержание

Системы линейных уравнений

Обозначим через $ \mathbb A_<> $ любое из множеств $ \mathbb Q_<>, \mathbb R_<> $ или $ \mathbb C_<> $.

Примеры систем уравнений над $ \mathbb R $.

Относительно числа $ m_<> $ уравнений не делается ни какого предположения: оно может быть меньше, больше или равно числу переменных $ n_<> $. Если $ m_<>>n $ то система называется переопределенной. Решением системы уравнений называется любой набор значений переменных $ x_1=\alpha_<1>,\dots, x_n = \alpha_n $, обращающий каждое из уравнений в истинное равенство. Система называется совместной если она имеет хотя бы одно решение и несовместной в противном случае.

Можно доказать (см. результаты ☟ НИЖЕ ), что все возможности для произвольной системы ограничиваются следующими вариантами:

1. система совместна и имеет единственное решение;

2. cистема совместна и имеет бесконечное множество решений;

3. cистема несовместна.

При этом все решения будут находиться в том же множестве $ \mathbb A_<> $, что и коэффициенты системы.

Матричная форма записи

Для системы линейных уравнений относительно переменных $ x_1,x_2,\dots,x_n $ $$ \left\< \begin a_<11>x_1 &+a_<12>x_2&+ \ldots&+a_<1n>x_n &=b_1,\\ a_<21>x_1 &+a_<22>x_2&+ \ldots&+a_<2n>x_n &=b_2,\\ \dots & & & & \dots \\ a_x_1 &+a_x_2&+ \ldots&+a_x_n &=b_m. \end \right. $$ матрицей системы называется матрица $$ A=\left( \begin a_ <11>& a_ <12>& \dots & a_ <1n>\\ a_ <21>& a_ <22>& \dots & a_ <2n>\\ \dots &&& \dots \\ a_ & a_ & \dots & a_ \end \right)_ \ ; $$ cтолбец $$ <\mathcal B>= \left( \begin b_ <1>\\ b_ <2>\\ \vdots \\ b_ \end \right) $$ называется столбцом правых частей системы, а столбец $$ X= \left( \begin x_ <1>\\ x_ <2>\\ \vdots \\ x_ \end \right) $$ — столбцом неизвестных. Используя правило умножения матриц, систему можно записать в матричном виде: $$ AX= <\mathcal B>\ . $$ Любое решение $ x_1=\alpha_1,\dots,x_n=\alpha_n $ системы можно также записать в виде столбца: $$ X=\left( \begin \alpha_1 \\ \vdots \\ \alpha_n \end \right) \in \mathbb A^n \ . $$ Матрица, составленная из всех коэффициентов системы уравнений: $$ [A \mid \mathcal B ]= \left( \begin a_ <11>& a_ <12>& \dots & a_ <1n>& b_1 \\ a_ <21>& a_ <22>& \dots & a_ <2n>& b_2 \\ \dots &&& & \dots \\ a_ & a_ & \dots & a_ & b_m \end \right)_ \ , $$ т.е. конкатенацией матрицы $ A_<> $ и столбца правых частей $ <\mathcal B>_<> $ называется расширенной матрицей системы л.у.

Исключение переменных (метод Гаусса)

метода достаточно проста.

Пример. Решить систему уравнений $$ \left\< \begin 2x_1&-3x_2&-x_3&=3 \\ 4x_1&-3x_2&-5x_3&=6 \\ 3x_1&+5x_2&+9x_3&=-8 \end \right. $$

Решение. Выразим из первого уравнения $ x_ <1>$ $$ x_1=\frac<3> <2>x_2+\frac<1> <2>x_3 + \frac<3> <2>$$ и подставим в оставшиеся уравнения $$ 4 \left(\frac<3> <2>x_2+\frac<1> <2>x_3 + \frac<3><2>\right) -3\,x_2-5\,x_3=6 \ <\color\iff > \ 3x_2-3x_3 = 0 $$ $$ \ <\color\iff > \ x_2-x_3=0 \ ; $$ $$ 3 \left(\frac<3> <2>x_2+\frac<1> <2>x_3 + \frac<3><2>\right) +5x_2+9x_3=-8 \ <\color\iff > \ \frac<19> <2>x_2 +\frac<21><2>x_3=-\frac<25> <2>$$ $$ <\color\iff > 19x_2 +21x_3=-25 \ . $$ Два получившихся уравнения не зависят от неизвестной $ x_ <1>$ — она оказалась исключенной из этих уравнений. Иными словами, мы получили новую подсистему уравнений $$ \left\< \begin x_2&-x_3&=0 \\ 19x_2&+21x_3&=-25, \end \right. $$ которой должны удовлетворять неизвестные $ x_ <2>$ и $ x_ <3>$. Продолжаем действовать по аналогии: выразим из первого уравнения $ x_ <2>$ через $ x_ <3>$: $$x_2=x_3 $$ и подставим во второе: $$ 40 x_3 =-25 \ \iff \ x_3=-\frac<5> <8>\ . $$ Итак, значение одной компоненты решения получено. Для нахождения оставшихся подставим значение $ x_ <3>$ в полученные по ходу решения соотношения: $$ x_2=x_3=-\frac<5> <8>\ \Rightarrow \ x_1=\frac<3> <2>x_2+\frac<1> <2>x_3 + \frac<3><2>=\frac<1> <4>\ . $$

Ответ. $ x_<1>=1/4, x_2=-5/8, x_3=-5/8 $.

Теперь осталось формализовать изложенную идею метода (сформулировав допустимые правила действия над уравнениями — те, что в принципе, очевидны из здравого смысла ), а также исследовать возможные последствия его применения к системам общего вида.

Исключение переменных

Элементарными преобразованиями системы л.у. называются преобразования следующих трех типов:

1. перестановка двух уравнений;

2. умножение обеих частей уравнения на любое отличное от нуля число;

3. прибавление к одному уравнению любого другого, умноженного на произвольное число: пара уравнений $$ \begin a_x_1 +a_x_2+ \ldots+a_x_n &=&b_j,\\ a_x_1 +a_x_2+ \ldots+a_x_n &=&b_k \end $$ заменяется парой $$ \begin (a_+ <\color\lambda > a_) x_1 &+ (a_+ <\color\lambda > a_) x_2 &+ \ldots &+ (a_+ <\color\lambda > a_) x_n &=&b_j + <\color\lambda > b_k\, , \\ a_x_1 &+a_x_2&+ \ldots &+a_x_n &=&b_k \, . \end $$

Теорема. Любое элементарное преобразование системы л.у. переводит эту систему в ей эквивалентную, т.е. имеющую то же множество решений, что и исходная.

Задача. С помощью элементарных преобразований привести систему л.у. к наиболее простому виду: такому, из которого легко было бы установить множество решений.

Предположим, что первое уравнение системы содержит явно неизвестную $ x_ <1>$, т.е. $ a_<11>^<> \ne 0 $. Исключим эту неизвестную из всех оставшихся уравнений. С этой целью вычтем из второго уравнения первое, домноженное на $ a_<21>/a_<11>^<> $. Получим $$\left(a_<22>— \frac>> a_ <12>\right)x_2 + \dots + \left(a_<2n>— \frac>> a_ <1n>\right)x_n = b_2 — \frac>> b_1 \ , $$ Аналогичное преобразование — вычитание из третьего уравнения системы первого, умноженного на $ a_<31>/a_<11>^<> $, позволяет исключить $ x_ <1>$ из этого уравнения, т.е. заменить его на $$\left(a_<32>— \frac>> a_ <12>\right)x_2 + \dots + \left(a_<3n>— \frac>> a_ <1n>\right)x_n = b_3 — \frac>> b_1 \ . $$ Продолжаем процесс далее. В конечном итоге исключаем $ x_ <1>$ из всех уравнений кроме первого: $$ \left\< \begin a_<11>x_1 &+a_<12>x_2&+ \ldots&+a_<1n>x_n &=b_1,\\ &a_<22>^<[1]>x_2&+ \ldots&+a_<2n>^<[1]>x_n &=b_2^<[1]>,\\ &\dots & & & \dots \\ &a_^<[1]>x_2&+ \ldots&+a_^<[1]>x_n &=b_m^<[1]>. \end \right. \ \ npu \ \ \begin a_^ <[1]>&= & \displaystyle a_ — \fraca_<1k>>> ,\\ b_j^ <[1]>&= & \displaystyle b_j — \fracb_1>> . \end $$ Полученная система эквивалентна исходной системе, однако она имеет более простой вид: в ней выделилась подсиcтема $$ \left\< \begin a_<22>^<[1]>x_2&+ \ldots&+a_<2n>^<[1]>x_n &=b_2^<[1]>,\\ \dots & & & \dots \\ a_^<[1]>x_2&+ \ldots&+a_^<[1]>x_n &=b_m^<[1]>, \end \right. $$ которая не зависит от переменной $ x_ <1>$. К этой новой подсистеме можно применить те же рассуждения, что и к исходной системе, поставив теперь целью исключение переменной $ x_ <2>$.

Понятно, что процесс исключения может быть продолжен и далее. Теперь посмотрим, где он может прерваться. Может так случиться, что очередная, $ \ell_<> $-я подсистема имеет коэффициент $ a_<\ell \ell>^ <[\ell-1]>$ равным нулю, что не позволит алгоритму идти дальше — т.е. исключить переменную $ x_<\ell>^<> $ из оставшихся уравнений (в принципе, такое могло случиться уже на первом шаге, если бы коэффициент $ a_<11>^<> $ был бы равен нулю). Возможные варианты дальнейших действий:

1. если хотя бы один коэффициент при $ x_<\ell>^<> $ в одном из оставшихся уравнений отличен от нуля: $ a_^<[\ell-1]>\ne 0^<> $, то это уравнение переставляется с $ \ell_<> $-м;

2. если при всех $ j\ge \ell^<> $ коэффициенты $ a_^ <[\ell-1]>$ равны нулю, то переменная $ x_<\ell>^<> $ не входит ни в одно оставшееся уравнение, и можно перейти к исключению переменной $ x_<\ell+1>^<> $.

Поскольку число переменных конечно, то алгоритм исключения должен завершиться за конечное число шагов. Чем он может завершиться? Окончательная система должна иметь вид: $$ \left\< \begin a_<11>x_1 +&a_<12>x_2&+ \ldots& +a_<1 <\mathfrak r>>x_<\mathfrak r>& +a_ <1 ,<\mathfrak r>+1>x_<<\mathfrak r>+1>&+ \ldots + & a_<1n>x_n &=b_1,\\ &a_<22>^<[1]>x_2&+ \ldots& +a_<2 <\mathfrak r>>^ <[1]>x_<\mathfrak r>& +a_<2 ,<\mathfrak r>+1>^ <[1]>x_<<\mathfrak r>+1>&+ \ldots + & a_<2n>^ <[1]>x_n &=b_2^<[1]>,\\ & & \ddots & & & & & \dots \\ & & & a_ <<\mathfrak r><\mathfrak r>>^<[<\mathfrak r>-1]>x_ <\mathfrak r>& + a_ <<\mathfrak r>, <\mathfrak r>+1>^<[<\mathfrak r>-1]>x_<<\mathfrak r>+1>& + \ldots + & a_ <<\mathfrak r>,n>^<[<\mathfrak r>-1]>x_n &=b_<\mathfrak r>^<[<\mathfrak r>-1]>, \\ & & & & & & 0 &=b_<<\mathfrak r>+1>^<[<\mathfrak r>-1]>, \\ & & & & & & \dots & \\ & & & & & & 0 &=b_^<[<\mathfrak r>-1]>, \\ \end \right. $$ при $ <\mathfrak r>\le n_<> $. Заметим, что все коэффициенты этой системы будут принадлежать тому же множеству, что и коэффициенты исходной системы.

Предположение . Мы будем считать, что каждое из первых $ <\mathfrak r>_<> $ уравнений системы содержит в своей левой части хотя бы одну переменную с ненулевым коэффициентом.

Процесс получения системы такого вида из исходной системы уравнений называется прямым ходом метода Гаусса.

Исторический комментарий о Гауссе ☞ ЗДЕСЬ.

Установление множества решений

Теорема. Если хотя бы одно из чисел $ b_<<\mathfrak r>+1>^<[<\mathfrak r>-1]>,\dots , b_^<[<\mathfrak r>-1]> $ отлично от нуля, то исходная система линейных уравнений будет несовместной.

Для простоты мы будем иллюстрировать наши рассуждения на системах л.у. над $ \mathbb R_<> $, в этом же множестве искать решения. Каждое из преобразований метода Гаусса будем обозначать $ \to_<> $.

Пример. Решить систему л.у.

$$ \left\< \begin x_1&+x_2&-3\, x_3 =& -1 \\ 2\,x_1&+x_2&-2\, x_3 =& 1 \\ x_1&+x_2&+ x_3 =& 3 \\ x_1&+2\,x_2&-3\, x_3 =& 1. \end \right. $$

Решение. $$ \ \to \ \left\< \begin x_1&+x_2&-3\, x_3 =& -1 \\ &-x_2&+4\, x_3 =& 3 \\ &&4\, x_3 =& 4 \\ &x_2&=& 2 \end \right. \ \to \ \left\< \begin x_1&+x_2&-3\, x_3 =& -1 \\ &-x_2&+4\, x_3 =& 3 \\ &&4\, x_3 =& 4 \\ &&4\, x_3=& 5 \end \right. \ \to \ $$ $$ \to \ \left\< \begin x_1&+x_2&-3\, x_3 =& -1 \\ &-x_2&+4\, x_3 =& 3 \\ &&4\, x_3 =& 4 \\ &&0=& 1 \end \right. $$ Последнее равенство абсолютно противоречиво.

Ответ. Система несовместна.

Пусть теперь $ b_<<\mathfrak r>+1>^<[<\mathfrak r>-1]>=0,<>\dots, b_^<[<\mathfrak r>-1]>=0 $. Возможны два случая: $ <\mathfrak r>=n_<> $ и $ <\mathfrak r>предположения , имеем $ a_^ <[n-1]>\ne 0 $. Но тогда, поскольку система является конечной стадией прямого хода метода Гаусса, то и все коэффициенты $ a_^<[n-2]>, \dots, a_<22>^<[1]>, a_ <11>$ должны быть отличны от нуля — в противном случае метод Гаусса не остановился бы на системе такого вида; он называется треугольным: Из последнего уравнения системы можно однозначно установить значение $ x_ $: $$x_n=b_n^ <[n-1]>\big/ a_^ <[n-1]>\ .$$ Далее, подставляя это значение в $ (n-1) $-е уравнение системы, выражаем $ x_ $: $$ x_= \frac^ <[n-2]>— a_^<[n-2]>x_>< a_^<[n-2]>>= \frac< b_^ <[n-2]>— a_^ <[n-2]>b_n^ <[n-1]>\Big/ a_^<[n-1]>>< a_^<[n-2]>> . $$ Подставляем полученные значения для $ x_ $ и $ x_ $ в $ (n-2)_<> $-е уравнение системы, выражаем $ x_ $, и т.д., в конце концов приходим к первому уравнению, из которого выражаем $ x_ <1>$ если ранее уже получены выражения для $ x_2,\dots,x_ $.

Теорема. Если прямой ход метода Гаусса заканчивается треугольной системой, т.е. $ \mathfrak r = n_<> $ и $ b_<<\mathfrak r>+1>^<[<\mathfrak r>-1]>=0,<>\dots, b_^<[<\mathfrak r>-1]>=0 $, то исходная система линейных уравнений имеет единственное решение.

Пример. Решить систему л.у.

$$ \left\< \begin x_1&+3\,x_2&+ x_3 =&5 \\ 2\,x_1&+x_2&+ x_3 =& 2 \\ x_1&+x_2&+ 5\,x_3 =& -7 \\ 2\,x_1&+3\,x_2&-3\, x_3 =& 14. \end \right. $$

Ответ. $ x_1=1,\, x_<2>=2,\, x_3=-2 $ .

Исследуем теперь случай $ <\mathfrak r>1) : На основании предположения , в $ <\mathfrak r>$-м уравнении этой системы имеется хотя бы один ненулевой коэффициент в левой части, пусть $ a_ <<\mathfrak r><\mathfrak s>>^<[<\mathfrak r>-1]>\ne 0 $ — первый из них. Если $ <\mathfrak s>=n $, то из этого уравнения однозначно определится $ x_ $ $$ x_n=\alpha_n = b_<\mathfrak r>^<[<\mathfrak r>-1]> \big/ a_ <<\mathfrak r>n>^<[<\mathfrak r>-1]> \ . $$ Если же $ <\mathfrak s>предположения , в этом уравнении имеется хотя бы один ненулевой коэффициент в левой части; пусть $ a_<<\mathfrak r>-1, <\mathfrak k>>^<[<\mathfrak r>-2]>\ne 0_<> $ — первый из них. Поскольку мы преположили, что система является конечной стадией прямого хода метода Гаусса, то $ <\mathfrak k>по крайней мере две переменные, значения которых еще не были зафиксированы на предыдущих шагах. Это следует из предположения, что число уравнений $ <\mathfrak r>_<> $ меньше числа неизвестных $ n_<> $. Такое уравнение допускает бесконечное число решений, любое из которых в ходе дальнейших шагов может быть «доделано» до решения системы.

Теорема. Если прямой ход метода Гаусса заканчивается трапециевидной системой, т.е. $ \mathfrak r 2) матрицы $ A_<> $ (третьего порядка). Понятие определителя распространяется и на квадратные матрицы бóльших порядков; образно говоря, определитель — это функция элементов матрицы, отвечающая за единственность решения системы уравнений.

Дальнейший матричный анализ метода Гаусса ☞ ЗДЕСЬ.

Формулы Крамера

Рассмотрим систему линейных уравнений с квадратной матрицей $ A_<> $, т.е. такую, у которой число уравнений совпадает с числом неизвестных.

Теорема. Cистема

$$ \left\<\begin a_<11>x_1 +a_<12>x_2+\ldots+a_<1n>x_n &=&b_1\\ a_<21>x_1 +a_<22>x_2+\ldots+a_<2n>x_n &=&b_2\\ \ldots& & \ldots \\ a_x_1 +a_x_2+\ldots+a_x_n &=&b_n \end\right. $$ имеет единственное решение тогда и только тогда, когда определитель матрицы этой системы отличен от нуля: $$ \left| \begin a_ <11>& a_ <12>& \dots & a_ <1n>\\ a_ <21>& a_ <22>& \dots & a_ <2n>\\ \dots &&& \dots \\ a_ & a_ & \dots & a_ \end \right| \ne 0 \ . $$ В этом случае решение можно вычислить по формулами Крамера 3) : $$ x_k =\frac<\det \left[ A_<[1]>|\dots|A_<[k-1]>|<\mathcal B>|A_<[k+1]>|\dots|A_ <[n]>\right]> <\det A>\quad npu \quad k\in \ < 1,\dots,n \>\ . $$ Для получения значения $ x_ $ в числитель ставится определитель, получающийся из $ \det A_<> $ заменой его $ k_<> $-го столбца на столбец правых частей ( здесь $ <> | $ означает конкатенацию).

Доказательство ☞ ЗДЕСЬ

Пример. Решить систему уравнений

$$ \left\<\begin 2x_1& +3x_2&+11x_3&+5x_4 &=& \color2,\\ x_1& +x_2&+5x_3&+2x_4 &=& \color1 ,\\ 2x_1& +x_2&+3x_3&+2x_4 &=&\color<-3>,\\ x_1& +x_2&+3x_3&+4x_4 &=&\color<-3>. \end\right. $$

Решение. $$ x_1=\frac<\left|\begin \color2 & 3&11&5 \\ \color1 & 1&5&2 \\ \color<-3>& 1&3&2 \\ \color <-3>& 1&3&4 \end\right|> <\left|\begin 2& 3&11&5 \\ 1& 1&5&2 \\ 2& 1&3&2 \\ 1& 1&3&4 \end\right|>=\frac<-28><14>=-2, x_2=\frac<\left|\begin 2& \color2&11&5 \\ 1& \color1&5&2 \\ 2& \color<-3>&3&2 \\ 1& \color<-3>&3&4 \end\right|> <\left|\begin 2& 3&11&5 \\ 1& 1&5&2 \\ 2& 1&3&2 \\ 1& 1&3&4 \end\right|>=\frac<0><14>=0, \dots $$ Найдите оставшиеся компоненты решения. ♦

Решение системы линейных уравнений с квадратной матрицей $ A_<> $ является непрерывной функцией коэффициентов этой системы при условии, что $ \det A_<> \ne 0 $.

Кроме того, формулы Крамера начинают конкурировать по вычислительной эффективности с методом Гаусса в случае систем, зависящих от параметра. Подробнее ☞ ЗДЕСЬ.

Еще один способ решения системы основан на построении обратной матрицы: $$ AX= <\mathcal B>\quad \Rightarrow \quad X=A^<-1> <\mathcal B>\ . $$ Этот способ малоэффективен при фиксированных числовых $ A_<> $ и $ <\mathcal B>_<> $.

Найти достаточное условие существования общего решения систем уравнений:

$$ A_1 X = <\mathcal B>_1 \quad u \quad A_2 Y = <\mathcal B>_2 \ , $$ при квадратных матрицах $ A_1 $ и $ A_2 $ одинакового порядка.

Теорема Кронекера-Капелли

Матрица, получающаяся конкатенацией матрицы $ A_<> $ и столбца правых частей $ <\mathcal B>_<> $ $$ [ A| <\mathcal B>] = \left( \begin a_ <11>& a_ <12>& \dots & a_ <1n>& b_1 \\ a_ <21>& a_ <22>& \dots & a_ <2n>& b_2 \\ \dots &&& & \dots \\ a_ & a_ & \dots & a_ & b_m \end \right)_ $$ называется расширенной матрицей системы линейных уравнений $ AX= <\mathcal B>$.

Теорема [Кронекер, Капелли]. Система $ AX= <\mathcal B>$ совместна тогда и только тогда, когда ранг матрицы этой системы совпадает с рангом ее расширенной матрицы:

$$ \operatorname\, A = \operatorname\, [ A| <\mathcal B>] \ . $$ При выполнении этого условия, система имеет единственное решение, если число неизвестных $ n_<> $ совпадает с общим значением ранга $ \mathfrak r_<> $, и бесконечное множество решений, если $ n_<> $ больше этого значения.

Доказательство необходимости. Пусть существует решение $ x_1=\alpha_1,\dots,x_n=\alpha_n $ системы, тогда $$\alpha_1 A_<[1]>+\dots+\alpha_n A_<[n]>= <\mathcal B>\ ,$$ т.е. столбец $ <\mathcal B>$ линейно выражается через столбцы $ A_<[1]>,\dots,A_ <[n]>$. Но тогда $$ \operatorname \,\dots,A_<[n]>\>=\operatorname \,\dots,A_<[n]>,<\mathcal B>\> .$$ Следовательно $ \operatorname\, A = \operatorname\, [ A| <\mathcal B>] $.

Доказательство достаточности проводится в следующем пункте. ♦

Пример. Исследовать совместность системы уравнений

Решение. В этом примере число уравнений совпадает с числом неизвестных. Это обстоятельство несколько облегчает рассуждения. Обратимся к замечанию из предыдущего пункта: система л.у. с числом уравнений, совпадающем с числом неизвестных, как правило, совместна. Тогда попробуем установить условия, обеспечивающие противоположное свойство — несовместность. Оно, фактически, единственно: за все отвечает определитель системы $ \det A_<> $. Если он отличен от нуля — система совместна. $$\det A = \left| \begin<\color<\lambda>> &1&1&1 \\ 1&<\color<\lambda>>&1&1 \\ 1&1&<\color<\lambda>>&1 \\ 1&1&1&<\color<\lambda>> \end \right|= \left| \begin (<\color<\lambda>>-1) &(1-<\color<\lambda>>)&0&0 \\ 0&(<\color<\lambda>>-1)&(1-<\color<\lambda>>)&0 \\ 0&0&(<\color<\lambda>>-1)&(1-<\color<\lambda>>) \\ 1&1&1&<\color<\lambda>> \end \right| =(<\color<\lambda>>-1)^3 \left| \begin 1 &-1&0&0 \\ 0&1&-1&0 \\ 0&0&1&-1 \\ 1&1&1&<\color<\lambda>> \end \right|= $$ $ =(<\color<\lambda>>-1)^3(<\color<\lambda>>+3) $. По теореме Крамера при $ <\color<\lambda>>\ne 1 $ и при $ <\color<\lambda>>\ne -3 $ решение системы единственно: $$x_1=x_2=x_3=x_4=1/(<\color<\lambda>>+3) \ .$$

Осталось исследовать критические случаи: $ <\color<\lambda>>=1_<> $ и $ <\color<\lambda>>= -3 $: определитель системы обращается в нуль, но система может оказаться совместной. Придется вычислять ранги, но, к счастью, уже числовых матриц (а не зависящих от параметра, как исходная!). При $ <\color<\lambda>>= 1_<> $ имеем $$ \operatorname \left( \begin 1 &1&1&1 \\ 1&1&1&1 \\ 1&1&1&1 \\ 1&1&1&1 \end \right)= \operatorname \left( \begin 1&1&1&1&1 \\ 1&1&1&1&1 \\ 1&1&1&1&1 \\ 1&1&1&1&1 \end \right)=1 \ , $$ и система совместна. Она эквивалентна единственному уравнению $$x_1+x_2+x_3+x_4=1 \ ,$$ которое имеет бесконечно много решений.

При $ <\color<\lambda>>= -3 $: $$ \operatorname \left( \begin -3 &1&1&1 \\ 1&-3&1&1 \\ 1&1&-3&1 \\ 1&1&1&-3 \end \right)=3,\quad \operatorname \left( \begin -3 &1&1&1&1 \\ 1&-3&1&1&1 \\ 1&1&-3&1&1 \\ 1&1&1&-3&1 \end \right)=4 $$ и система несовместна.

Ответ. Система несовместна при $ <\color<\lambda>> = -3 $; она имеет бесконечное множество решений при $ <\color<\lambda>> = 1_<> $ и единственное решение при $ <\color<\lambda>> \not\in \ <-3,1\>$.

Система однородных уравнений

$$ \left\< \begin a_<11>x_1 &+a_<12>x_2&+ \ldots&+a_<1n>x_n &=0,\\ a_<21>x_1 &+a_<22>x_2&+ \ldots&+a_<2n>x_n &=0,\\ \dots & & & \dots & \\ a_x_1 &+a_x_2&+ \ldots&+a_x_n &=0 \end \right. $$ всегда совместна: она имеет тривиальное решение $ x_1=0,\dots,x_n=0 $. Для того, чтобы у нее существовало еще и нетривиальное решение необходимо и достаточно, чтобы определитель ее матрицы был равен нулю.

Пример. Найти условие, при котором три точки плоскости с координатами $ (x_1,y_1), (x_2,y_2) $ и $ (x_3,y_<3>) $ лежат на одной прямой.

Решение. Будем искать уравнение прямой в виде $ ax+by+c=0 $ при неопределенных коэффициентах $ a,b,c_<> $. Если точки лежат на прямой, то получаем для определения этих коэффициентов систему линейных уравнений: $$ \left\< \begin ax_1+by_1+c & =0\\ ax_2+by_2+c & =0\\ ax_3+by_3+c & =0 \end \right. $$ Получившаяся система является однородной, условие существования у нее нетривиального решения (т.е. набора $ (a,b,c)_<> $ при хотя бы одном из чисел отличном от нуля): $$ \left|\begin x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end \right|=0 . $$ ♦

Доказать, что для совместности системы

$$ \left\< \begin a_<11>x_1+a_<12>x_2+a_<13>x_3 &=& b_1 \\ a_<21>x_1+a_<22>x_2+a_<23>x_3 &=& b_2 \\ a_<31>x_1+a_<32>x_2+a_<33>x_3 &=& b_3 \\ a_<41>x_1+a_<42>x_2+a_<43>x_3 &=& b_4 \end \right. $$ необходимо, чтобы было выполнено условие $$ \left| \begin a_<11>&a_<12>& a_ <13>& b_1 \\ a_<21>&a_<22>& a_ <23>& b_2 \\ a_<31>&a_<32>& a_ <33>& b_3 \\ a_<41>&a_<42>& a_ <43>& b_4 \end \right|=0 \quad . $$ Является ли это условие достаточным для совместности?

An elementary treatise on determinants

в следующей формулировке.

Теорема. Для того чтобы система $ n_<> $ неоднородных уравнений была совместна, необходимо и достаточно, чтобы порядок наибольшего отличного от нуля минора был одинаков в расширенной и нерасширенной матрице системы.

Додсон — один из самых знаменитых математиков мира. Назовите его псевдоним.

Ответ ☞ ЗДЕСЬ

Общее решение

Пусть выполнено условие теоремы Кронекера-Капелли: $ \operatorname (A)=\operatorname[A\mid \mathcal B ] =\mathfrak $. По определению ранга матрицы, в матрице $ A $ существует минор порядка $ \mathfrak $, отличный от нуля; этот же минор останется и минором расширенной матрицы $ [ A\mid \mathcal B ] $. Пусть, для определенности, ненулевой минор находится в левом верхнем углу матрицы 4) : $$ \Delta = A\left( \begin 1 & 2 & \dots & \mathfrak \\ 1 & 2 & \dots & \mathfrak \end \right) = \left| \begin a_ <11>& a_ <12>& \dots & a_<1\mathfrak> \\ a_ <21>& a_ <22>& \dots & a_<2\mathfrak> \\ \dots &&& \dots \\ a_<\mathfrak1> & a_<\mathfrak2> & \dots & a_ <\mathfrak\mathfrak> \end \right| \ne 0 \ . $$ Тогда первые $ \mathfrak $ строк матрицы $ A $ линейно независимы, а остальные будут линейно выражаться через них. Это же утверждение будет справедливо и для строк матрицы $ [A\mid \mathcal B] $. Умножая первые $ \mathfrak $ уравнений системы на соответствующие числа и складывая их, получим любое оставшееся уравнение. Таким образом, система уравнений может быть заменена эквивалентной ей системой из первых $ \mathfrak $ уравнений: $$ \left\< \begin a_<11>x_1+\dots+a_<1\mathfrak>x_<\mathfrak>&+a_<1,\mathfrak+1>x_<\mathfrak+1>+ \dots +a_<1n>x_n&=&b_1, \\ \dots & & & \dots \\ a_<\mathfrak1>x_1+\dots+a_<\mathfrak\mathfrak>x_<\mathfrak>& +a_<\mathfrak,\mathfrak+1>x_<\mathfrak+1>+\dots +a_<\mathfrakn>x_n&=&b_\mathfrak \end \right. \quad \iff \quad A^ <\prime>X=<\mathcal B>^ <\prime>$$ Если $ \mathfrak=n $, то матрица $ A^ <\prime>$ квадратная. По предположению $ \det A^ <\prime>\ne 0 $. По теореме Крамера решение такой системы единственно.

Пусть теперь $ \mathfrak произвольных фиксированных значениях $ x_<\mathfrak+1>,\dots,x_n $: $$ x_j=\frac< \left| \begin a_ <11>& \dots &a_ <1,j-1>&\left[ b_1-(a_<1,\mathfrak+1>x_<\mathfrak+1>+\dots +a_<1n>x_n) \right] &a_<1,j+1>& \dots &a_<1\mathfrak> \\ \dots &&&\dots&&& \dots \\ a_<\mathfrak1> & \dots &a_<\mathfrak,j-1> & \left[ b_<\mathfrak>- (a_<\mathfrak,\mathfrak+1>x_<\mathfrak+1>+\dots +a_<\mathfrakn>x_n) \right] &a_<\mathfrak,j+1>& \dots &a_<\mathfrak\mathfrak> \end \right| > <\Delta>$$ $$ \mbox <при>\ j\in \<1,\dots, \mathfrak\> . $$ Таким образом, в этом случае система имеет бесконечное множество решений. Используя свойство линейности определителя по столбцу (см. свойство 5 ☞ ЗДЕСЬ ), формулы можно переписать в виде $$ x_j=\beta_j + \gamma_+1>x_<\mathfrak+1>+\dots+\gamma_x_n \ npu \ j\in \ <1,\dots, \mathfrak\> \ . $$ Здесь $$ \beta_j =\frac<1> <\Delta>\left| \begin a_ <11>& \dots &a_ <1,j-1>& b_1 &a_<1,j+1>& \dots &a_<1\mathfrak> \\ \vdots &&&\vdots&&& \vdots \\ a_<\mathfrak1> & \dots &a_<\mathfrak,j-1> & b_<\mathfrak> &a_<\mathfrak,j+1>& \dots &a_<\mathfrak\mathfrak> \end \right|\, , $$ $$ \gamma_ = -\frac<1> <\Delta>\left| \begin a_ <11>& \dots &a_ <1,j-1>& a_ <1k>&a_<1,j+1>& \dots &a_<1\mathfrak> \\ \vdots &&&\vdots&&& \vdots \\ a_<\mathfrak1> & \dots &a_<\mathfrak,j-1> & a_<\mathfrakk> &a_<\mathfrak,j+1>& \dots &a_<\mathfrak\mathfrak> \end \right| \ . $$ Эти формулы называются общим решением системы $ A X=\mathcal B $. Участвующие в них переменные $ x_<\mathfrak+1>,\dots,x_n $ называются основными (или свободными), а $ x_1,\dots,x_<\mathfrak> $ — зависимыми. Решение, получающееся из общего решения фиксированием значений основных переменных, называется частным решением системы уравнений.

Пример. Исследовать совместность и найти общее решение системы уравнений:

Решение проведем двумя способами, соответствующими двум способам вычисления ранга матрицы. Вычисляем сначала ранг матрицы $ A $ по методу окаймляющих миноров: $$ |2| \ne 0,\quad \left| \begin 2 & 1 \\ 6 & 2 \end \right| \ne 0, \quad \left| \begin 2 & 1 & 2 \\ 6 & 2 & 4 \\ 4 & 1 & 1 \end \right|=2 \ne 0 \ , $$ а все миноры, окаймляющие последний, равны нулю. Итак, $ \operatorname (A) =3 $. Для нахождения ранга расширенной матрицы $ [A\mid \mathcal B] $ достаточно проверить окаймление найденного ненулевого минора третьего порядка с помощью элементов взятых из столбца правых частей. Имеется всего один такой минор, и он равен нулю. Следовательно $ \operatorname[ A\mid \mathcal B ] =3 $, система совместна, и имеет бесконечное множество решений.

Ненулевой минор третьего порядка (базисный минор) находится в первой, второй и четвертых строках, что означает линейную независимость соответствующих уравнений. Третье уравнение линейно зависит от остальных, и может быть отброшено. Далее, указанный базисный минор образован коэффициентами при $ x_1,x_3 $ и $ x_4 $. Следовательно оставшиеся уравнения могут быть разрешены относительно этих переменных, т.е. они — зависимые, а $ x_2 $ и $ x_5 $ — основные. Использование формулы дает общее решение $$ \begin x_1&=&\frac<\left| \begin 2 & 1 & 2 \\ 3 & 2 & 4 \\ 1 & 1 & 1 \end \right|> <\displaystyle 2>-x_2\frac<\left| \begin -1 & 1 & 2 \\ -3 & 2 & 4 \\ -2 & 1 & 1 \end \right|> <\displaystyle 2>-x_5\frac<\left| \begin 3 & 1 & 2 \\ 5 & 2 & 4 \\ 2 & 1 & 1 \end \right|> <\displaystyle 2>=-\frac<1><2>+\frac<1><2>x_2+\frac<1><2>x_5, \\ & & \\ x_3&=&\frac<\left| \begin 2 & 2 & 2 \\ 6 & 3 & 4 \\ 4 & 1 & 1 \end \right|> <\displaystyle 2>-x_2\frac<\left| \begin 2 & -1 & 2 \\ 6 & -3 & 4 \\ 4 & -2 & 1 \end \right|> <\displaystyle 2>-x_5\frac<\left| \begin 2 & 3 & 2 \\ 6 & 5 & 4 \\ 4 & 2 & 1 \end \right|><\displaystyle 2>=3-4x_5, \\ & & \\ x_4 &=&\frac<\left| \begin 2 & 1 & 2 \\ 6 & 2 & 3 \\ 4 & 1 & 1 \end \right|> <\displaystyle 2>-x_2\frac<\left| \begin 2 & 1 & -1 \\ 6 & 2 & -3 \\ 4 & 1 & -2 \end \right|> <\displaystyle 2>-x_5\frac<\left| \begin 2 & 1 & 3 \\ 6 & 2 & 5 \\ 4 & 1 & 2 \end \right|> <\displaystyle 2>= 0. \end $$ Решим теперь ту же задачу, воспользовавшись методом Гаусса исключения переменных в системе линейных уравнений: $$ \left\< \begin 2x_1&-x_2&+x_3&+2x_4&+3x_5&=&2, \\ &&x_3&+2x_4&+4x_5&=&3, \\ &&&x_4&&=&0 \end \right. $$ Используя обратный ход метода Гаусса, снова приходим к полученным формулам.

Ответ. Общее решение системы: $ x_1=1/2 (x_2+x_5-1),\ x_3=3-4\,x_5,\ x_4=0 $.

Проанализируем теперь полученные общие формулы для общего решения. В этих формулах $ \beta_j $ представляет решение системы, получаемое при $ x_<\mathfrak+1>=0,\dots,x_n=0 $. Величины же коэффициентов $ \gamma_ $ вовсе не зависят от правых частей системы и будут одинаковыми при любых значениях $ b_1,\dots,b_m $. В частности, если $ b_1=0,\dots,b_m=0 $, то в формулах величины $ \beta_j $ обращаются в нуль и эти формулы превращаются в $$ x_j=\gamma_+1>x_<\mathfrak+1>+\dots+\gamma_x_n \ npu \ j\in \<1,\dots, \mathfrak\> \ . $$

Вывод. Формула общего решения системы $ A X=\mathcal B $: $$ x_j=\beta_j + \gamma_+1>x_<\mathfrak+1>+\dots+\gamma_x_n \ npu \ j\in \ <1,\dots, \mathfrak\> $$ состоит из двух частей: слагаемые, не содержащие свободных переменных, определяют частное решение неоднородной системы: $$ x_1= \beta_1,\dots, x_<\mathfrak>= \beta_<\mathfrak>,x_<\mathfrak+1>=0,\dots,x_n=0 \ ; $$ оставшиеся после их отбрасывания формулы задают общее решение системы $ AX=\mathbb O $. Этот результат обобщается в следующей теореме.

Теорема. Общее решение системы уравнений $ A X=\mathcal B $ представимо в виде суммы какого-то частного решения этой системы и общего решения соответствующей однородной системы $ A X=\mathbb O $.

Доказательство тривиально если система $ A X=\mathcal B $ имеет единственное решение. Если же решений бесконечно много, то выбрав какое-то одно частное $ X=X_1 $ мы получаем, что любое другое частное решение $ X=X_2 $ должно быть связано с первым соотношением $$ A(X_2-X_1)=\mathbb O , $$ т.е. разность частных решений неоднородной системы обязательно является решением однородной системы уравнений $ AX=\mathbb O $. ♦

Теперь посмотрим как можно описать общее решение однородной системы.

Система однородных уравнений

Система линейных уравнений называется однородной, если все коэффициенты правых частей равны нулю: $$ \left\< \begin a_<11>x_1 &+a_<12>x_2&+ \ldots&+a_<1n>x_n &=0,\\ a_<21>x_1 &+a_<22>x_2&+ \ldots&+a_<2n>x_n &=0,\\ \dots & & & \dots & \\ a_x_1 &+a_x_2&+ \ldots&+a_x_n &=0. \end \right. $$ или, в матричном виде: $$ A_X=<\mathbb O>_ $$

Задача ставится о поиске нетривиального решения. Оно не всегда существует. Так, к примеру, если матрица $ A_<> $ системы — квадратная и имеет ненулевой определитель, то, согласно теореме Крамера, нетривиальных решений у однородной системы нет. Теорема Кронекера-Капелли утверждает, что условие $ \det (A_<>) = 0 $ является и достаточным для существования нетривиального решения.

Теорема 1. Для того, чтобы система однородных уравнений с квадратной матрицей $ A_<> $ имела нетривиальное решение необходимо и достаточно, чтобы $ \det (A_<>) = 0 $.

Для произвольной (не обязательно квадратной) матрицы $ A_<> $ имеет место следующий общий результат.

Теорема 2. Если $ \operatorname (A)=\mathfrak r 5) $ A_^<> $.

Теорема 3. Множество решений системы однородных уравнений образует линейное подпространство пространства $ \mathbb A^ $. Размерность этого подпространства равна $ n-\mathfrak r $, а фундаментальная система решений образует его базис.

Пусть матрица системы $ AX=\mathbb O $ квадратная и

$$ \operatorname (A) =n_<>-1 \, .$$ Доказать, что если ненулевой минор матрицы порядка $ n_<>-1 $ соответствует какому-нибудь элементу $ j_<> $-й строки, то система алгебраических дополнений к элементам $ a_,\dots,a_^<> $ этой строки составляет ФСР для $ AX=\mathbb O_<> $. Например, для системы $$ \left\< \begin a_<11>x_1 +a_<12>x_2+a_<13>x_3&=0,\\ a_<21>x_1 +a_<22>x_2+a_<23>x_3&=0 \end \right. $$ ФСР состоит из решения $$ x_1=\left| \begin a_ <12>& a_ <13>\\ a_ <22>& a_ <23>\end \right| , \ x_2=-\left| \begin a_ <11>& a_ <13>\\ a_ <21>& a_ <23>\end \right| , \ x_3=\left| \begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right| \ , $$ если только хотя бы один из миноров отличен от нуля.

Теперь обсудим способы нахождения ФСР.

1. Первый из них получается из общего метода решения системы линейных уравнений, рассмотренного в предыдущем пункте. Так же, как и в том пункте, сделаем упрощающее обозначения предположение, что зависимыми переменными являются первые $ x_<1>,\dots,x_ <\mathfrak r>$, т.е. общее решение задается формулами $$ x_j=\gamma_+1>x_<\mathfrak+1>+\dots+\gamma_x_n \ npu \ j\in \<1,\dots, \mathfrak\> \ . $$ Иными словами, вектор столбец $$ X=\left(\begin \gamma_<1,\mathfrak+1>x_<\mathfrak+1>+\dots+\gamma_<1n>x_n \\ \gamma_<2,\mathfrak+1>x_<\mathfrak+1>+\dots+\gamma_<2n>x_n \\ \vdots \\ \gamma_<\mathfrak,\mathfrak+1>x_<\mathfrak+1>+\dots+\gamma_<\mathfrakn>x_n \\ x_<\mathfrak+1> \\ x_<\mathfrak+2> \\ \vdots \\ x_ \end\right) $$ будет решением однородной системы при любых наборах значений основных переменных $ x_<\mathfrak+1>,\dots,x_ $. Представим этот вектор в виде суммы векторов: $$ =x_<\mathfrak+1> \underbrace< \left(\begin \gamma_<1,\mathfrak+1> \\ \gamma_<2,\mathfrak+1> \\ \vdots \\ \gamma_<\mathfrak,\mathfrak+1> \\ 1 \\ 0 \\ \vdots \\ 0 \end\right)>_ + x_<\mathfrak+2> \underbrace<\left(\begin \gamma_<1,\mathfrak+2> \\ \gamma_<2,\mathfrak+2> \\ \vdots \\ \gamma_<\mathfrak,\mathfrak+2> \\ 0 \\ 1 \\ \vdots \\ 0 \end\right)>_+\dots+ x_ \underbrace<\left(\begin \gamma_ <1n>\\ \gamma_ <2n>\\ \vdots \\ \gamma_<\mathfrakn> \\ 0 \\ 0 \\ \vdots \\ 1 \end\right)>_> \ . $$ Таким образом, любое решение однородной системы представимо в виде линейной комбинации $ n_<>— \mathfrak r $ фиксированных решений. Именно эти решения и можно взять в качестве ФСР — их линейная независимость очевидна (единицы в нижних частях каждого вектора $ X_ $ расположены на разных местах, и ни какая линейная комбинация столбцов $ \ < X_1,\dots,X_\> $ не сможет обратить их одновременно в нуль).

Оформим этот способ построения ФСР в теорему:

Теорема 4. Если система уравнений $ AX=\mathbb O $ имеет структуру матрицы $ A_<> $ вида:

$$ A = \left[ E_ <\mathfrak r>\mid P_ <\mathfrak r \times (n-\mathfrak r)>\right] \ , $$ то ее ФСР состоит из столбцов матрицы $$ \left[ \begin — P^ <\top>\\ \hline E_ \end \right] \ . $$

Пример. Найти ФСР для системы уравнений

Решение. Приводим систему к трапециевидному виду: $$ \left\< \begin x_1-&x_2+&x_3-&x_4=&0, \\ &&x_3+&4x_4=&0 \end \right. $$ В качестве зависимых переменных можно взять, например, $ x_ <1>$ и $ x_ <3>$. $$ \begin x_1 & x_3 & x_2 & x_4 \\ \hline 1 & 0 & 1 & 0 \\ 5 & -4 & 0 & 1 \end $$

2. Этот способ напоминает вычисление обратной матрицы методом приписывания единичной матрицы. Транспонируем матрицу $ A_<> $ системы и припишем к ней справа единичную матрицу порядка $ n_<> $: $$ \left[ A^ <\top>| E_n \right] = \left(\begin a_ <11>& a_ <21>& \dots & a_ & 1 & 0 & 0 & \dots & 0 \\ a_ <12>& a_ <22>& \dots & a_ & 0 & 1 & 0 & \dots & 0 \\ a_ <13>& a_ <23>& \dots & a_ & 0 & 0 & 1 & \dots & 0 \\ \vdots & & & \vdots & \vdots & & & \ddots & \vdots \\ a_ <1n>& a_ <2n>& \dots & a_ & 0 & 0 & 0 & \dots & 1 \end \right) \ ; $$ здесь $ <> |_<> <> $ означает конкатенацию. Получившуюся матрицу элементарными преобразованиями строк приводим к форме: $$ \left( \begin \hat A & K \\ \mathbb O & L \end \right) = \left(\begin \color <\star>& * & * & \dots & * & * & * & * & * & * & * & \dots & * \\ 0 & \color <\star>& * & \dots & * & * & * & * & * & * & * & \dots & * \\ 0 & 0 & \color <\star>& \dots & * & * & * & * & * & * & * & \dots & * \\ \vdots & & & \ddots & & \vdots & & & \vdots & & & & \vdots \\ 0 & 0 & \dots & & 0 & \color <\star>& * & * & * & * & * & \dots & * \\ \hline 0 & 0 & \dots & 0 & 0 & 0 & 0 & 0 & \Box & \Box & \Box & \dots & \Box \\ \vdots & & & & & \vdots & & & \vdots & & & & \vdots \\ 0 & 0 & \dots & 0 & 0 & 0 & 0 & 0 & \Box & \Box & \Box & \dots & \Box \end \right) \begin \left.\begin \\ \\ \\ \\ \\ \end\right\> \mathfrak r \\ \left. \begin \\ \\ \\ \end\right\> n — \mathfrak r \end \ . $$ Элементы трапециевидной матрицы $ \hat A $, обозначенные $ \color <\star>$, могут быть равны нулю, но $ \operatorname(\hat A)= \mathfrak r_<> $. В этом случае строки матрицы $ L_<> $, образовавшейся в правом нижнем углу (ее элементы обозначены $ \Box $), составляют ФСР для системы $ AX=\mathbb O $.

Пример. Найти ФСР для системы уравнений

$$ \left\< \begin x_1 &+2\,x_2&+ x_3&+3\,x_4&-x_5&+2\,x_6=&0,\\ -3x_1 &-x_2&+ 2\,x_3&-4\,x_4&+x_5&-x_6=&0,\\ x_1 &+x_2&+ 3\,x_3&+2\,x_4&+x_5&+3\,x_6=&0,\\ -8\,x_1 &-7\,x_2&+ 4\,x_3&-15\,x_4&+6\,x_5&-5\,x_6=&0,\\ 6x_1 &+5\,x_2& +5\,x_3&+11\,x_4 &&+9\,x_6=&0. \end \right. $$ Решение. Преобразуем матрицу $ \left[ A^ <\top>| E_6 \right] $

$$ \left(\begin 1 & -3 & 1 & -8 & 6 & 1 \\ 2 & -1 & 1 & -7 & 5 & & 1 \\ 1 & 2 & 3 & 4 & 5 & & & 1 \\ 3 & -4 & 2 & -15 & 11 &&&& 1 \\ -1 & 1 & 1 & 6 & 0 &&&&& 1 \\ 2 & -1 & 3 & -5 & 9 &&&&&& 1 \end \right)_ <6\times 11>$$ к трапециевидной форме с помощью элементарных преобразований строк: $$ \rightarrow \left(\begin 1 & -3 & 1 & -8 & 6 & 1 \\ 0 & 5 & -1 & 9 & -7 &-2 & 1 \\ 0 & 5 & 2 & 12 & -1 &-1 &0 & 1 \\ 0 & 5 & -1 & 9 & -7 &-3&0&0& 1 \\ 0 & -2 & 2 & -2 & 6 &1&0&0&0& 1 \\ 0 & 5 & 1 & 11 & -3 &-2&0&0&0&0& 1 \end \right)\rightarrow $$ $$ \rightarrow \left(\begin 1 & -3 & 1 & -8 & 6 & 1 \\ 0 & 5 & -1 & 9 & -7 &-2 & 1 \\ 0 & 0 & 3 & 3 & 6 &1 &-1 & 1 \\ 0 & 0 & 0 & 0 & 0 &-1&-1&0& 1 \\ 0 & 0 & 8/5 & 8/5 & 16/5 &1/5&2/5&0&0& 1 \\ 0 & 0 & 2 & 2 & 4 &0&-1&0&0&0& 1 \end \right)\rightarrow $$ $$ \rightarrow \left(\begin 1 & -3 & 1 & -8 & 6 & 1 \\ 0 & 5 & -1 & 9 & -7 &-2 & 1 \\ 0 & 0 & 3 & 3 & 6 &1 &-1 & 1 \\ 0 & 0 & 0 & 0 & 0 &-1&-1&0& 1 \\ 0 & 0 & 0 & 0 & 0 &-1/3&14/15&-8/15&0& 1 \\ 0 & 0 & 0 & 0 & 0 &-2/3&-1/3&-2/3&0& 0 & 1 \end \right) $$

3. Еще один способ построения ФСР основан на теореме Гамильтона-Кэли.

Теорема. Пусть матрица системы $ AX=\mathbb O $ квадратная и $ \operatorname (A) = <\mathfrak r>$. Тогда характеристический полином матрицы $ A_<> $ имеет вид:

Пример. Найти ФСР для системы уравнений

Решение. Здесь $$ A= \left( \begin 1 & 1 & -1 & -1 \\ 2 & 3 & 1 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end \right), \quad \det (A-\lambda E) = \lambda^2(\lambda^2-4\lambda+1), $$ $$ A^2-4A+E= \left( \begin 0 & 0 & 4 & 1 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end \right) $$

Блок-схемы зависимости множества решений системы уравнений $ AX= \mathcal B $ от комбинации чисел $ n, \mathfrak r $ ☞ ЗДЕСЬ.

Геометрическая интерпретация

Геометрический смысл введенных определений поясним на примере $ \mathbb R^ <3>$. Уравнение $$ a_1x_1+a_2x_2+a_3x_3=b $$ — при фиксированных вещественных коэффициентах $ a_1,a_2,a_3 $ (хотя бы один из них считаем отличным от нуля) и $ b_<> $ — задает плоскость. Если, к примеру, $ a_1\ne 0 $, то из уравнения получаем выражение для $ x_ <1>$ как функции $ x_2,x_3 $: $$ x_1=\frac-\fracx_2-\fracx_3 \ . $$ В этом представлении переменные $ x_ <2>$ и $ x_ <3>$ могут принимать любые вещественные значения независимо друг от друга, а вот переменная $ x_ <1>$ полностью определяется заданием $ x_ <2>$ и $ x_ <3>$. С одной стороны, последняя формула определяет общее решения системы линейных уравнений (которая в нашем частном случае состоит из одного-единственного уравнения); переменные $ x_ <2>$ и $ x_ <3>$ выбраны основными, а $ x_ <1>$ оказывается зависимой. Строго говоря, координаты любой точки плоскости можно представить формулами $$x_1=\frac-\fract-\fracu,\ x_2=t,\ x_3=u \quad npu \quad \\subset \mathbb R \ , $$ которые называются параметрическим представлением плоскости. Таким образом, получили геометрическую интерпретацию общего решения системы уравнений. Идем далее: представим последние формулы в векторной форме: $$ \left( \begin x_1 \\ x_2 \\ x_3 \end \right)= \left( \begin b/a_1- t\, a_2/a_1- u\, a_3/a_1 \\ t \\ u \end \right)= \left( \begin b/a_1\\ 0 \\ 0 \end \right)+ t \left( \begin -a_2/a_1\\ 1 \\ 0 \end \right) + u \left( \begin -a_3/a_1\\ 0 \\ 1 \end \right) \ . $$ Какой геометрический смысл имеет каждое из слагаемых? Первое слагаемое $$ X_0=\left( \begin b/a_1\\ 0 \\ 0 \end \right) $$ получается при задании $ t=0,u=0_<> $ в общем решении. Это — частное решение нашего уравнения и определяет точку, через которую проходит плоскость. Два оставшихся столбца $$ X_1=\left( \begin -a_2/a_1\\ 1 \\ 0 \end \right) \quad u \quad X_2=\left( \begin -a_3/a_1\\ 0 \\ 1 \end \right) $$ не задают решения нашего уравнения — если только $ b\ne 0_<> $. Но оба удовлетворяют однородному уравнению $$ a_1x_1+a_2x_2+a_3x_3=0 , $$ Последнее также определяет плоскость — параллельную исходной и проходящую через начало координат. Первая плоскость получается из второй сдвигом (параллельным переносом) на вектор $ \vec $: и этот факт составляет геометрическую интерпретацию теоремы, сформулированной в конце ☞ ПУНКТА:

Теорема. Общее решение системы уравнений $ A X=\mathcal B $ представимо в виде суммы какого-то частного решения этой системы и общего решения соответствующей однородной системы $ A X=\mathbb O $.

Координаты произвольной точки плоскости $ a_1x_1+a_2x_2+a_3x_3=0 $ задаются соотношениями $$ \left( \begin x_1 \\ x_2 \\ x_3 \end \right)=tX_1+uX_2 \ . $$ Векторы пространства $ \vec $ и $ \vec $ являются базисными векторами плоскости — любой вектор $ \vec $, лежащий в плоскости, через них выражается и они линейно независимы. Но $ X_ <1>$ и $ X_ <2>$ определяют фундаментальную систему решений однородного уравнения. Таким образом, мы получили геометрическую интерпретацию для ФСР: она задает базисные векторы плоскости, проходящей через начало координат.

Теперь рассмотрим систему из двух уравнений: $$ \left\<\begin a_<11>x_1 +a_<12>x_2+a_<13>x_3 &=&b_1,\\ a_<21>x_1 +a_<22>x_2+a_<23>x_3 &=&b_2. \end\right. $$ Ее можно интерпретировать как пересечение двух плоскостей в $ \mathbb R^ <3>$. Здесь уже возможны варианты: пересечение может оказаться как пустым так и непустым. От чего это зависит? — В соответствии с теоремой Кронекера-Капелли, надо сравнить два числа $$ \operatorname \left( \begin a_ <11>& a_ <12>& a_ <13>\\ a_ <21>& a_ <22>& a_ <23>\end \right) \quad u \quad \operatorname \left( \begin a_ <11>& a_ <12>& a_ <13>& b_1 \\ a_ <21>& a_ <22>& a_ <23>& b_2 \end \right) \ . $$ Очевидно, ни одно из них не может быть большим $ 2_<> $. Если оба равны $ 2_<> $ и этот факт обеспечен, например, условием $$ \left| \begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right| \ne 0, $$ то решения системы определяют прямую в пространстве. Действительно, при таком условии систему можно разрешить относительно неизвестных $ x_ <1>$ и $ x_ <2>$ и представить общее решение в виде: $$ x_1= \frac<\left|\begin b_1 & a_ <12>\\ b_2 & a_ <22>\end \right|><\left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|>+ \frac<\left|\begin a_ <12>& a_ <13>\\ a_ <21>& a_ <23>\end \right|><\left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|>x_3 \ , \quad x_2= \frac<\left|\begin a_ <11>& b_ <1>\\ a_ <12>& b_ <2>\end \right|><\left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|>- \frac<\left|\begin a_ <11>& a_ <13>\\ a_ <21>& a_ <23>\end \right|><\left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|>x_3 \ . $$ В этих формулах переменная $ x_ <3>$ принимает любое значение, а значения переменных $ x_ <1>$ и $ x_ <2>$ линейно выражаются через $ x_ <3>$. Общее решение фактически задает прямую в параметрическом виде: координаты произвольной ее точки определяются формулами $$ \left( \begin x_1 \\ x_2 \\ x_3 \end \right)=X_0+tX_1 \ , $$ где вектор $$ \quad X_0 = \left(\frac<\left|\begin a_ <11>& b_ <1>\\ a_ <12>& b_ <2>\end \right|><\left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|> , \ \frac<\left|\begin a_ <11>& b_ <1>\\ a_ <12>& b_ <2>\end \right|><\left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|>,\ 0\right)^ <\top>$$ задает координаты точки, лежащей на прямой (т.е. принадлежащей пересечению плоскостей), а вектор $$ X_1= \left(\frac<\left|\begin a_ <12>& a_ <13>\\ a_ <21>& a_ <23>\end \right|><\left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|>,\ — \frac<\left|\begin a_ <11>& a_ <13>\\ a_ <21>& a_ <23>\end \right|><\left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|>, \ 1 \right)^ <\top>$$ является направляющим для прямой. С тем же успехом мы могли бы взять в качестве направляющего вектор, получающийся растяжением $ X_ <1>$: $$ \tilde X_1 = \left(\left|\begin a_ <12>& a_ <13>\\ a_ <21>& a_ <23>\end \right|,\ — \left|\begin a_ <11>& a_ <13>\\ a_ <21>& a_ <23>\end \right|, \ \left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right| \right)^ <\top>\ . $$ Очевидно, что любой из векторов $ X_ <1>$ или $ \tilde X_1 $ задает фундаментальную систему решений однородной системы уравнений 10) $$ \left\<\begin a_<11>x_1 +a_<12>x_2+a_<13>x_3 &=&0,\\ a_<21>x_1 +a_<22>x_2+a_<23>x_3 &=&0. \end\right. $$ Последняя определяет прямую в $ \mathbb R^3 $, проходящую через начало координат. Мы снова получаем интерпретацию теоремы: общее решение неоднородной системы получается сдвигом (параллельным переносом) общего решения однородной системы на вектор $ \vec $.

Мы рассмотрели пока только случай пересекающихся плоскостей в пространстве. Его можно считать общим, т.е. случаем «как правило»: две случайным образом выбранные плоскости в $ \mathbb R^ <3>$ пересекаться будут. Исследуем теперь исключительный случай — параллельности плоскостей. Исключительность этого случая может быть проверена и аналитикой. Для несовместности системы из двух уравнений необходимо, чтобы ранг ее матрицы $$ \left( \begin a_ <11>& a_ <12>& a_ <13>\\ a_ <21>& a_ <22>& a_ <23>\end \right) $$ оказался меньшим $ 2_<> $. Это равносильно тому, что все миноры второго порядка этой матрицы обращаются в нуль: $$ \left| \begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|=0,\ \left| \begin a_ <12>& a_ <13>\\ a_ <22>& a_ <23>\end \right| =0,\ \left| \begin a_ <11>& a_ <13>\\ a_ <21>& a_ <23>\end \right|=0 \ . $$ Эти условия можно переписать в виде $$ \frac>>=\frac>>=\frac>> \ ; $$ и, если обозначить общую величину последний отношений через $ \tau_<> $, то получаем: $$ (a_<11>,a_<12>,a_<13>)=\tau (a_<21>,a_<22>,a_<23>) . $$ Если вспомнить, что каждый из этих наборов коэффициентов задает вектор $ \vec> $ в $ \mathbb R^ <3>$, перпендикулярный соответствующей плоскости, то, в самом деле, плоскости, определяемые уравнениями, оказываются параллельными. Пересекаться они, как правило, не будут: для пересечения необходимо, чтобы расширенная матрица системы $$ \left( \begin a_ <11>& a_ <12>& a_ <13>& b_1 \\ a_ <21>& a_ <22>& a_ <23>& b_2 \end \right) $$ имела ранг меньший $ 2_<> $. Это возможно только при условии когда коэффициенты правых частей удовлетворяют соотношению $$ b_1 = \tau b_2 $$ при величине $ \tau_<> $ определенной выше. При выполнении этого условия второе уравнение получается из первого домножением на $ \tau_<> $ и соответствующие плоскости попросту совпадают.

Перейдем теперь к системе из трех уравнений: $$ \left\< \begin a_<11>x_1 +&a_<12>x_2+&a_<13>x_3=&b_1, \\ a_<21>x_1 +&a_<22>x_2+&a_<23>x_3=&b_2, \\ a_<31>x_1 +&a_<32>x_2+&a_<33>x_3=&b_3. \end \right. $$ Вариантов взаимного расположения трех плоскостей в $ \mathbb R^ <3>$ уже значительно больше. Какой из них будет самым распространенным, то есть случаем «как правило»? Геометрически ответ очевиден: если пересечение двух плоскостей определяет, как правило, прямую, то эта прямая пересекается с третьей плоскостью, как правило, в одной-единственной точке. И алгебра подтверждает геометрию: в комментарии к теореме Крамера говорится, что система, число уравнений которой совпадает с числом неизвестных, как правило, имеет единственное решение. Условие для этого случая «как правило» дается той же теоремой Крамера: $$ \left| \begin a_ <11>& a_ <12>& a_<13>\\ a_ <21>& a_ <22>& a_ <23>\\ a_ <31>& a_ <32>& a_ <33>\end \right| \ne 0 . $$

Теорема Кронекера-Капелли в этом случае не нужна — нет, она остается справедливой! — но проверка условия на ранги матриц тривиальна: они оба равны $ 3_<> $. Если же указанный определитель обращается в нуль, то этот факт эквивалентен тому, что три строки определителя линейно зависимы. Например, возможно, что строка $ (a_<31>,a_<32>, a_<33>) $ может быть представлена в виде линейной комбинации первых двух строк. Вспомним геометрический смысл этих строк: они задают координаты векторов, перпендикулярных соответствующим плоскостям. Если система уравнений $$ \left\<\begin a_<11>x_1 +a_<12>x_2+a_<13>x_3 &=&b_1,\\ a_<21>x_1 +a_<22>x_2+a_<23>x_3 &=&b_2 \end\right. $$ определяет прямую в $ \mathbb R^ <3>$, то оба вектора $ \vec> $ и $ \vec> $ при $ A^<[1]>= (a_<11>,a_<12>, a_<13>) $ и $ A^<[2]>= (a_<21>,a_<22>, a_<23>) $ перпендикулярны этой прямой; любая их комбинация также перпендикулярна этой прямой, а, следовательно, плоскость $$ a_<31>x_1 +a_<32>x_2+a_<33>x_3 =b_3 $$ будет ей параллельна.

Статья не закончена!

Ортогональность

Геометрические соображения из предыдущего пункта могут быть обобщены на случай когда размерности рассматриваемых пространств увеличиваются, и мы говорим о точках и векторах многомерных пространств. В последующих пунктах нам потребуются понятия линейной оболочки, линейного пространства, размерности, базиса и координат применительно к векторам-столбцам или векторам-строкам. Их можно найти ☞ ЗДЕСЬ.

Задача решения системы линейных уравнений $$ \left\< \begin 3x_1&+4x_2&-x_3&=2, \\ x_1&-2x_2&+3x_3&=1 \end \right. $$ может быть рассмотрена с двух точек зрения. С одной стороны, переписав систему в виде $$ x_1\left(\begin 3 \\ 1 \end \right)+ x_2\left(\begin 4 \\ -2 \end \right)+ x_3\left(\begin -1 \\ 3 \end \right)= \left(\begin 2 \\ 1 \end \right) \ , $$ можно говорить о поиске линейной комбинации столбцов $$ \left(\begin 3 \\ 1 \end \right),\ \left(\begin 4 \\ -2 \end \right),\ \left(\begin -1 \\ 3 \end \right) $$ равной заданному столбцу $$ \left(\begin 2 \\ 1 \end \right) \ . $$ В случае произвольной системы, записанной в матричном виде $$ A_X=\mathcal B_ \ $$ совместность системы интерпретировать в смысле принадлежности столбца $ \mathcal B $ линейной оболочке столбцов $ A_<[1]>,\dots,A_ <[n]>$: $$ \mathcal B=x_1 A_<[1]>+\dots+x_nA_ <[n]>\quad \iff \quad \mathcal B \in \mathcal L (A_<[1]>,\dots,A_<[n]>) \ . $$ В случае положительного ответа числа $ x_<1>,\dots,x_n $ интерпретируются как координаты столбца $ \mathcal B $ в системе столбцов 11) $ \,\dots,A_<[n]>\> $.

С другой стороны, к той же задаче решения системы уравнений, в предыдущем ПУНКТЕ мы подошли с другой стороны. Первое из уравнений системы $$ 3\,x_1+4\,x_2-x_3=2 $$ можно интерпретировать так: скалярное произведение векторов $ \vec<<\mathbf OA>^<[1]>> $ и $ \vec<<\mathbf OX>> $ равно фиксированному числу $ 2_<> $. Здесь вектора рассматриваются в пространстве строк $ \mathbb R_<>^ <3>$; считается, что каждый вектор имеет начало в начале координат $ \mathbf O=[0,0,0] $, а конец — в точке с координатами $ [3,4,-1] $ или, соответственно, $ [x_1,x_2,x_3] $. Если скалярное произведение векторов обозначать скобками $ \langle <> \mbox < >\rangle $, то систему уравнений можно переписать в виде $$ \langle \vec<<\mathbf OA>^<[1]>> ,\ \vec<<\mathbf OX>> \rangle=2,\ \langle \vec<<\mathbf OA>^<[2]>> ,\ \vec<<\mathbf OX>> \rangle=1 \quad npu \quad A^ <[1]>= [3,4,-1], A^<[2]>=[1,-2,3] $$ — строках матрицы $ A_<> $. И задачу решения такой системы понимать в смысле: найти координаты всех векторов-строк $ [x_1,x_2,x_3] $ которые обеспечат нам заданные значения скалярных произведений с двумя фиксированными векторами.

Геометрическая интерпретация еще более упрощается если рассмотреть случай однородной системы уравнений. Так, решить систему уравнений $$ \left\< \begin 3x_1&+4x_2&-x_3&=0, \\ x_1&-2x_2&+3x_3&=0 \end \right. $$ означает подобрать вектор $ \vec<<\mathbf OX>> $ перпендикулярный (ортогональный) одновременно обоим векторам $ \vec<<\mathbf OA>^<[1]>> $ и $ \vec<<\mathbf OA>^<[2]>> $. Очевидно, что таких векторов в $ \mathbb R^ <3>$ бесконечно много — найдя хотя бы один такой вектор $ \vec<<\mathbf OX>> $, другие получим его растяжением: $ \alpha \cdot \vec<<\mathbf OX>> $ остается перпендикулярным векторам $ \vec<<\mathbf OA>^<[1]>> $ и $ \vec<<\mathbf OA>^<[2]>> $ при $ \forall \alpha \in \mathbb R $.

Все эти геометрические соображения обобщаются в произвольное пространство $ \mathbb R_<>^ $ строк или столбцов, состоящих из $ n_<> $ вещественных чисел (компонент). Для этого приходится обобщать понятие скалярного произведения. В общем случае оно вводится аксиоматически (и, более того, в одном и том же множестве может быть определено разными способами, см. ☞ ЕВКЛИДОВО ПРОСТРАНСТВО ). Мы сейчас не будем залезать так глубоко в эту аксиоматику, а просто определим скалярное произведение двух строк $ X=[x_1,x_2,\dots,x_n] $ и $ Y=[y_1,y_2,\dots,y_n] $ формулой $$ \langle X,Y \rangle=x_1y_1+x_2y_2+\dots+x_ny_n \ $$ и продекларируем без обоснований, что все привычные нам по случаям $ \mathbb R^ <2>$ и $ \mathbb R^ <3>$ свойства скалярного произведения будут выполнены.

В терминах скалярного произведения, задачу решения системы линейных уравнений можно переформулировать как поиск строки $ X=[x_1,x_2,\dots,x_n] $, ортогональной всем строкам матрицы $ A_<> $: $$ \langle A^<[1]>,X \rangle=0, \langle A^<[2]>,X \rangle=0,\dots, \langle A^<[m]>,X \rangle=0 \ . $$ Множество таких строк образует линейное подпространство пространства $ \mathbb R_<>^ $, это подпространство является ортогональным дополнением линейной оболочки $ \mathcal L ( A^<[1]>, A^<[2]>,\dots, A^ <[m]>) $ в пространстве $ \mathbb R_<>^ $. Это подпространство называется нуль-пространством матрицы или ядром матрицы $ A_<> $ и обозначается 12) $ <\mathcal K>er (A) $. Фундаментальная система решений системы $ AX=\mathbb O $ составляет базис этого подпространства. Для произвольного линейного пространства количество векторов его базиса называется размерностью пространства и обозначается $ \operatorname $. Во введенных обозначениях теорема из ☞ ПУНКТА переформулируется так:

Теорема. $ \operatorname \left( <\mathcal K>er (A) \right)=n- \mathfrak r $, где $ n_<> $ — количество столбцов матрицы $ A_<> $, а $ \mathfrak r=\operatorname (A) $ — ее ранг.

Исследование СЛАУ. Общие сведения

В данной статье мы расскажем о методах, видах, условиях и определениях исследований решений систем линейных уравнений, что такое метод Кронекера-Капели, а также приведем примеры.

Общие сведения (определения, условия, методы, виды)

Системы линейных алгебраических уравнений с n неизвестными могут иметь:

  • единственное решение;
  • бесконечное множество решение (неопределенные СЛАУ);
  • ни одного решения (несовместные СЛАУ).

Пример 1

Система x + y + z = 1 2 x + 2 y + 2 z = 3 не имеет решений, поэтому она несовместна.

Система x + y = 1 2 x + 7 y = — 3 имеет единственное решение x = 2 ; y = 1 .

Система x + y = 1 2 x + 2 y = 2 3 x + 3 y = 3 имеет бесконечное множество решений x = t y = 1 — t при — ∞ t ∞ .

Перед решением системы уравнений необходимо исследовать систему, т.е. ответить на следующие вопросы:

  • Совместна ли система?
  • Если система совместна, то, какое количество решений она имеет — одно или несколько?
  • Как найти все решения?

Если система малоразмерна при m = n , то ответить на поставленные вопросы можно при помощи метода Крамера:

  • если основной определитель системы, то система совместна и имеет единственное решение, которое вычисляется методом Крамера;
  • если, и один из вспомогательных определителей, то система не является совместной, т.е. не имеет решений;
  • если и все, и один из коэффициентов СЛАУ, то система не является определенной и имеет бесконечное множество решений.

Ранг матрицы и его свойства

Бывают случаи, которые выбиваются из представленных вариантов решения СЛАУ, например, линейные уравнения с большим количеством уравнений и неизвестных.

Для такого варианта решения существует ранг матрицы, который представляет собой алгоритм действий в случае решения системы матрицы, когда

В математике выделяют следующие подходы к определению ранга матрицы:

  • при помощи понятия линейной зависимости/независимости строк/столбцов матрицы. Ранг равен максимальному количеству независимых строк (столбцов) матрицы
  • при помощи понятия минора матрицы в качестве наивысшего порядка минора, который отличается от нуля. Минор матрицы порядка k — определитель k-го порядка, составленный из элементов, которые стоят на пересечении вычеркиваемых k-строк и k-столбцов матрицы;
  • при помощи метода Гаусса. По завершении прямого хода ранг матрицы равняется количеству ненулевых строк.

Обозначение ранга матрицы: r ( A ) , r g ( A ) , r A .

Свойства ранга матрицы:

  1. квадратная невырожденная матрица обладает рангом, который отличается от нуля;
  2. если транспонировать матрицу, то ранг матрицы не изменяется;
  3. если поменять местами 2 параллельные строки или 2 параллельных столбца, ранг матрицы не изменяется;
  4. при удалении нулевого столбца или строки ранг матрицы не изменяется;
  5. ранг матрицы не изменяется, если удалить строку или столбец, которые являются линейной комбинацией других строк;
  6. при умножении все элементов строки/столбца на число k н е р а в н о н у л ю ранг матрицы не изменяется;
  7. ранг матрицы не больше меньшего из ее размеров: r ( А ) ≤ m i n ( m ; n ) ;
  8. когда все элементы матрицы равны нулю, то только тогда r ( A ) = 0 .

Пример 2

А 1 = 1 1 1 2 2 2 3 3 3 , B 1 = 1 0 0 0 0 0

r ( A 1 ) = 1 , r ( B 1 ) = 1

А 2 = 1 2 3 4 0 5 6 7 0 0 0 0 ; В 2 = 1 1 3 1 2 1 4 3 1 2 5 0 5 4 13 6

Решение систем линейных алгебраических уравнений, методы решения, примеры.

Решение систем линейных алгебраических уравнений (СЛАУ), несомненно, является важнейшей темой курса линейной алгебры. Огромное количество задач из всех разделов математики сводится к решению систем линейных уравнений. Этими факторами объясняется причина создания данной статьи. Материал статьи подобран и структурирован так, что с его помощью Вы сможете

  • подобрать оптимальный метод решения Вашей системы линейных алгебраических уравнений,
  • изучить теорию выбранного метода,
  • решить Вашу систему линейных уравнений, рассмотрев подробно разобранные решения характерных примеров и задач.

Краткое описание материала статьи.

Сначала дадим все необходимые определения, понятия и введем обозначения.

Далее рассмотрим методы решения систем линейных алгебраических уравнений, в которых число уравнений равно числу неизвестных переменных и которые имеют единственное решение. Во-первых, остановимся на методе Крамера, во-вторых, покажем матричный метод решения таких систем уравнений, в-третьих, разберем метод Гаусса (метод последовательного исключения неизвестных переменных). Для закрепления теории обязательно решим несколько СЛАУ различными способами.

После этого перейдем к решению систем линейных алгебраических уравнений общего вида, в которых число уравнений не совпадает с числом неизвестных переменных или основная матрица системы является вырожденной. Сформулируем теорему Кронекера — Капелли, которая позволяет установить совместность СЛАУ. Разберем решение систем (в случае их совместности) с помощью понятия базисного минора матрицы. Также рассмотрим метод Гаусса и подробно опишем решения примеров.

Обязательно остановимся на структуре общего решения однородных и неоднородных систем линейных алгебраических уравнений. Дадим понятие фундаментальной системы решений и покажем, как записывается общее решение СЛАУ с помощью векторов фундаментальной системы решений. Для лучшего понимания разберем несколько примеров.

В заключении рассмотрим системы уравнений, сводящиеся к линейным, а также различные задачи, при решении которых возникают СЛАУ.

Навигация по странице.

Определения, понятия, обозначения.

Будем рассматривать системы из p линейных алгебраических уравнений с n неизвестными переменными ( p может быть равно n ) вида

— неизвестные переменные, — коэффициенты (некоторые действительные или комплексные числа), — свободные члены (также действительные или комплексные числа).

Такую форму записи СЛАУ называют координатной.

В матричной форме записи эта система уравнений имеет вид ,
где — основная матрица системы, — матрица-столбец неизвестных переменных, — матрица-столбец свободных членов.

Если к матрице А добавить в качестве (n+1)-ого столбца матрицу-столбец свободных членов, то получим так называемую расширенную матрицу системы линейных уравнений. Обычно расширенную матрицу обозначают буквой Т , а столбец свободных членов отделяют вертикальной линией от остальных столбцов, то есть,

Решением системы линейных алгебраических уравнений называют набор значений неизвестных переменных , обращающий все уравнения системы в тождества. Матричное уравнение при данных значениях неизвестных переменных также обращается в тождество .

Если система уравнений имеет хотя бы одно решение, то она называется совместной.

Если система уравнений решений не имеет, то она называется несовместной.

Если СЛАУ имеет единственное решение, то ее называют определенной; если решений больше одного, то – неопределенной.

Если свободные члены всех уравнений системы равны нулю , то система называется однородной, в противном случае – неоднородной.

Решение элементарных систем линейных алгебраических уравнений.

Если число уравнений системы равно числу неизвестных переменных и определитель ее основной матрицы не равен нулю, то такие СЛАУ будем называть элементарными. Такие системы уравнений имеют единственное решение, причем в случае однородной системы все неизвестные переменные равны нулю.

Такие СЛАУ мы начинали изучать в средней школе. При их решении мы брали какое-нибудь одно уравнение, выражали одну неизвестную переменную через другие и подставляли ее в оставшиеся уравнения, следом брали следующее уравнение, выражали следующую неизвестную переменную и подставляли в другие уравнения и так далее. Или пользовались методом сложения, то есть, складывали два или более уравнений, чтобы исключить некоторые неизвестные переменные. Не будем подробно останавливаться на этих методах, так как они по сути являются модификациями метода Гаусса.

Основными методами решения элементарных систем линейных уравнений являются метод Крамера, матричный метод и метод Гаусса. Разберем их.

Решение систем линейных уравнений методом Крамера.

Пусть нам требуется решить систему линейных алгебраических уравнений

в которой число уравнений равно числу неизвестных переменных и определитель основной матрицы системы отличен от нуля, то есть, .

Пусть — определитель основной матрицы системы, а — определители матриц, которые получаются из А заменой 1-ого, 2-ого, …, n-ого столбца соответственно на столбец свободных членов:

При таких обозначениях неизвестные переменные вычисляются по формулам метода Крамера как . Так находится решение системы линейных алгебраических уравнений методом Крамера.

Решите систему линейных уравнений методом Крамера .

Основная матрица системы имеет вид . Вычислим ее определитель (при необходимости смотрите статью определитель матрицы: определение, методы вычисления, примеры, решения):

Так как определитель основной матрицы системы отличен от нуля, то система имеет единственное решение, которое может быть найдено методом Крамера.

Составим и вычислим необходимые определители (определитель получаем, заменив в матрице А первый столбец на столбец свободных членов , определитель — заменив второй столбец на столбец свободных членов, — заменив третий столбец матрицы А на столбец свободных членов):

Находим неизвестные переменные по формулам :

Основным недостатком метода Крамера (если это можно назвать недостатком) является трудоемкость вычисления определителей, когда число уравнений системы больше трех.

Для более детальной информации смотрите раздел метод Крамера: вывод формул, примеры, решения.

Решение систем линейных алгебраических уравнений матричным методом (с помощью обратной матрицы).

Пусть система линейных алгебраических уравнений задана в матричной форме , где матрица A имеет размерность n на n и ее определитель отличен от нуля.

Так как , то матрица А – обратима, то есть, существует обратная матрица . Если умножить обе части равенства на слева, то получим формулу для нахождения матрицы-столбца неизвестных переменных . Так мы получили решение системы линейных алгебраических уравнений матричным методом.

Решите систему линейных уравнений матричным методом.

Перепишем систему уравнений в матричной форме:

Так как

то СЛАУ можно решать матричным методом. С помощью обратной матрицы решение этой системы может быть найдено как .

Построим обратную матрицу с помощью матрицы из алгебраических дополнений элементов матрицы А (при необходимости смотрите статью методы нахождения обратной матрицы):

Осталось вычислить — матрицу неизвестных переменных, умножив обратную матрицу на матрицу-столбец свободных членов (при необходимости смотрите статью операции над матрицами):

или в другой записи x1 = 4, x2 = 0, x3 = -1 .

Основная проблема при нахождении решения систем линейных алгебраических уравнений матричным методом заключается в трудоемкости нахождения обратной матрицы, особенно для квадратных матриц порядка выше третьего.

Более подробное описание теории и дополнительные примеры смотрите в статье матричный метод решения систем линейных уравнений.

Решение систем линейных уравнений методом Гаусса.

Пусть нам требуется найти решение системы из n линейных уравнений с n неизвестными переменными
определитель основной матрицы которой отличен от нуля.

Суть метода Гаусса состоит в последовательном исключении неизвестных переменных: сначала исключается x1 из всех уравнений системы, начиная со второго, далее исключается x2 из всех уравнений, начиная с третьего, и так далее, пока в последнем уравнении останется только неизвестная переменная xn . Такой процесс преобразования уравнений системы для последовательного исключения неизвестных переменных называется прямым ходом метода Гаусса. После завершения прямого хода метода Гаусса из последнего уравнения находится xn , с помощью этого значения из предпоследнего уравнения вычисляется xn-1 , и так далее, из первого уравнения находится x1 . Процесс вычисления неизвестных переменных при движении от последнего уравнения системы к первому называется обратным ходом метода Гаусса.

Кратко опишем алгоритм исключения неизвестных переменных.

Будем считать, что , так как мы всегда можем этого добиться перестановкой местами уравнений системы. Исключим неизвестную переменную x1 из всех уравнений системы, начиная со второго. Для этого ко второму уравнению системы прибавим первое, умноженное на , к третьему уравнению прибавим первое, умноженное на , и так далее, к n-ому уравнению прибавим первое, умноженное на . Система уравнений после таких преобразований примет вид

где , а .

К такому же результату мы бы пришли, если бы выразили x1 через другие неизвестные переменные в первом уравнении системы и полученное выражение подставили во все остальные уравнения. Таким образом, переменная x1 исключена из всех уравнений, начиная со второго.

Далее действуем аналогично, но лишь с частью полученной системы, которая отмечена на рисунке

Будем считать, что (в противном случае мы переставим местами вторую строку с k-ой , где ). Приступаем к исключению неизвестной переменной x2 из всех уравнений, начиная с третьего.

Для этого к третьему уравнению системы прибавим второе, умноженное на , к четвертому уравнению прибавим второе, умноженное на , и так далее, к n-ому уравнению прибавим второе, умноженное на . Система уравнений после таких преобразований примет вид

где , а . Таким образом, переменная x2 исключена из всех уравнений, начиная с третьего.

Далее приступаем к исключению неизвестной x3 , при этом действуем аналогично с отмеченной на рисунке частью системы

Так продолжаем прямой ход метода Гаусса пока система не примет вид

С этого момента начинаем обратный ход метода Гаусса: вычисляем xn из последнего уравнения как , с помощью полученного значения xn находим xn-1 из предпоследнего уравнения, и так далее, находим x1 из первого уравнения.

Решите систему линейных уравнений методом Гаусса.

Исключим неизвестную переменную x1 из второго и третьего уравнения системы. Для этого к обеим частям второго и третьего уравнений прибавим соответствующие части первого уравнения, умноженные на и на соответственно:

Теперь из третьего уравнения исключим x2 , прибавив к его левой и правой частям левую и правую части второго уравнения, умноженные на :

На этом прямой ход метода Гаусса закончен, начинаем обратный ход.

Из последнего уравнения полученной системы уравнений находим x3 :

Из второго уравнения получаем .

Из первого уравнения находим оставшуюся неизвестную переменную и этим завершаем обратный ход метода Гаусса .

Более детальную информацию и дополнительные примеры смотрите в разделе решение элементарных систем линейных алгебраических уравнений методом Гаусса.

Решение систем линейных алгебраических уравнений общего вида.

В общем случае число уравнений системы p не совпадает с числом неизвестных переменных n :

Такие СЛАУ могут не иметь решений, иметь единственное решение или иметь бесконечно много решений. Это утверждение относится также к системам уравнений, основная матрица которых квадратная и вырожденная.

Далее нам потребуется понятие минора матрицы и ранга матрицы, которые даны в статье ранг матрицы: определение, методы нахождения, примеры, решения.

Теорема Кронекера – Капелли.

Прежде чем находить решение системы линейных уравнений необходимо установить ее совместность. Ответ на вопрос когда СЛАУ совместна, а когда несовместна, дает теорема Кронекера – Капелли:
для того, чтобы система из p уравнений с n неизвестными ( p может быть равно n ) была совместна необходимо и достаточно, чтобы ранг основной матрицы системы был равен рангу расширенной матрицы, то есть, Rank(A)=Rank(T) .

Рассмотрим на примере применение теоремы Кронекера – Капелли для определения совместности системы линейных уравнений.

Выясните, имеет ли система линейных уравнений решения.

Найдем ранг основной матрицы системы . Воспользуемся методом окаймляющих миноров. Минор второго порядка отличен от нуля. Переберем окаймляющие его миноры третьего порядка:

Так как все окаймляющие миноры третьего порядка равны нулю, то ранг основной матрицы равен двум.

В свою очередь ранг расширенной матрицы равен трем, так как минор третьего порядка

отличен от нуля.

Таким образом, , следовательно, по теореме Кронекера – Капелли можно сделать вывод, что исходная система линейных уравнений несовместна.

система решений не имеет.

Итак, мы научились устанавливать несовместность системы с помощью теоремы Кронекера – Капелли.

А как же находить решение СЛАУ, если установлена ее совместность?

Для этого нам потребуется понятие базисного минора матрицы и теорема о ранге матрицы.

Минор наивысшего порядка матрицы А , отличный от нуля, называется базисным.

Из определения базисного минора следует, что его порядок равен рангу матрицы. Для ненулевой матрицы А базисных миноров может быть несколько, один базисный минор есть всегда.

Для примера рассмотрим матрицу .

Все миноры третьего порядка этой матрицы равны нулю, так как элементы третьей строки этой матрицы представляют собой сумму соответствующих элементов первой и второй строк.

Базисными являются следующие миноры второго порядка, так как они отличны от нуля

Миноры базисными не являются, так как равны нулю.

Теорема о ранге матрицы.

Если ранг матрицы порядка p на n равен r , то все элементы строк (и столбцов) матрицы, не образующие выбранный базисный минор, линейно выражаются через соответствующие элементы строк (и столбцов), образующих базисный минор.

Что нам дает теорема о ранге матрицы?

Если по теореме Кронекера – Капелли мы установили совместность системы, то выбираем любой базисный минор основной матрицы системы (его порядок равен r ), и исключаем из системы все уравнения, которые не образуют выбранный базисный минор. Полученная таким образом СЛАУ будет эквивалентна исходной, так как отброшенные уравнения все равно излишни (они согласно теореме о ранге матрицы являются линейной комбинацией оставшихся уравнений).

В итоге, после отбрасывания излишних уравнений системы, возможны два случая.

Если число уравнений r в полученной системе будет равно числу неизвестных переменных, то она будет определенной и единственное решение можно будет найти методом Крамера, матричным методом или методом Гаусса.

Решите систему линейных алгебраических уравнений .

Ранг основной матрицы системы равен двум, так как минор второго порядка отличен от нуля. Ранг расширенной матрицы также равен двум, так как единственный минор третьего порядка равен нулю

а рассмотренный выше минор второго порядка отличен от нуля. На основании теоремы Кронекера – Капелли можно утверждать совместность исходной системы линейных уравнений, так как Rank(A)=Rank(T)=2 .

В качестве базисного минора возьмем . Его образуют коэффициенты первого и второго уравнений:

Третье уравнение системы не участвует в образовании базисного минора, поэтому исключим его из системы на основании теоремы о ранге матрицы:

Так мы получили элементарную систему линейных алгебраических уравнений. Решим ее методом Крамера:

Если число уравнений r в полученной СЛАУ меньше числа неизвестных переменных n , то в левых частях уравнений оставляем слагаемые, образующие базисный минор, остальные слагаемые переносим в правые части уравнений системы с противоположным знаком.

Неизвестные переменные (их r штук), оставшиеся в левых частях уравнений, называются основными.

Неизвестные переменные (их штук), которые оказались в правых частях, называются свободными.

Теперь считаем, что свободные неизвестные переменные могут принимать произвольные значения, при этом r основных неизвестных переменных будут выражаться через свободные неизвестные переменные единственным образом. Их выражение можно найти решая полученную СЛАУ методом Крамера, матричным методом или методом Гаусса.

Разберем на примере.

Решите систему линейных алгебраических уравнений .

Найдем ранг основной матрицы системы методом окаймляющих миноров. В качестве ненулевого минора первого порядка возьмем . Начнем поиск ненулевого минора второго порядка, окаймляющего данный минор:

Так мы нашли ненулевой минор второго порядка. Начнем поиск ненулевого окаймляющего минора третьего порядка:

Таким образом, ранг основной матрицы равен трем. Ранг расширенной матрицы также равен трем, то есть, система совместна.

Найденный ненулевой минор третьего порядка возьмем в качестве базисного.

Для наглядности покажем элементы, образующие базисный минор:

Оставляем в левой части уравнений системы слагаемые, участвующие в базисном миноре, остальные переносим с противоположными знаками в правые части:

Придадим свободным неизвестным переменным x2 и x5 произвольные значения, то есть, примем , где — произвольные числа. При этом СЛАУ примет вид

Полученную элементарную систему линейных алгебраических уравнений решим методом Крамера:

Следовательно, .

В ответе не забываем указать свободные неизвестные переменные.

, где — произвольные числа.

Чтобы решить систему линейных алгебраических уравнений общего вида, сначала выясняем ее совместность, используя теорему Кронекера – Капелли. Если ранг основной матрицы не равен рангу расширенной матрицы, то делаем вывод о несовместности системы.

Если ранг основной матрицы равен рангу расширенной матрицы, то выбираем базисный минор и отбрасываем уравнения системы, которые не участвуют в образовании выбранного базисного минора.

Если порядок базисного минора равен числу неизвестных переменных, то СЛАУ имеет единственное решение, которое находим любым известным нам методом.

Если порядок базисного минора меньше числа неизвестных переменных, то в левой части уравнений системы оставляем слагаемые с основными неизвестными переменными, остальные слагаемые переносим в правые части и придаем свободным неизвестным переменным произвольные значения. Из полученной системы линейных уравнений находим основные неизвестные переменные методом Крамера, матричным методом или методом Гаусса.

Метод Гаусса для решения систем линейных алгебраических уравнений общего вида.

Методом Гаусса можно решать системы линейных алгебраических уравнений любого вида без предварительного их исследования на совместность. Процесс последовательного исключения неизвестных переменных позволяет сделать вывод как о совместности, так и о несовместности СЛАУ, а в случае существования решения дает возможность отыскать его.

С точки зрения вычислительной работы метод Гаусса является предпочтительным.

Запись общего решения однородных и неоднородных систем линейных алгебраических с помощью векторов фундаментальной системы решений.

В этом разделе речь пойдет о совместных однородных и неоднородных системах линейных алгебраических уравнений, имеющих бесконечное множество решений.

Разберемся сначала с однородными системами.

Фундаментальной системой решений однородной системы из p линейных алгебраических уравнений с n неизвестными переменными называют совокупность линейно независимых решений этой системы, где r – порядок базисного минора основной матрицы системы.

Если обозначить линейно независимые решения однородной СЛАУ как ( – это матрицы столбцы размерности n на 1 ), то общее решение этой однородной системы представляется в виде линейной комбинации векторов фундаментальной системы решений с произвольными постоянными коэффициентами , то есть, .

Что обозначает термин общее решение однородной системы линейных алгебраических уравнений (орослау)?

Смысл прост: формула задает все возможные решения исходной СЛАУ, другими словами, взяв любой набор значений произвольных постоянных , по формуле мы получим одно из решений исходной однородной СЛАУ.

Таким образом, если мы найдем фундаментальную систему решений, то мы сможем задать все решения этой однородной СЛАУ как .

Покажем процесс построения фундаментальной системы решений однородной СЛАУ.

Выбираем базисный минор исходной системы линейных уравнений, исключаем все остальные уравнения из системы и переносим в правые части уравнений системы с противоположными знаками все слагаемые, содержащие свободные неизвестные переменные. Придадим свободным неизвестным переменным значения 1,0,0,…,0 и вычислим основные неизвестные, решив полученную элементарную систему линейных уравнений любым способом, например, методом Крамера. Так будет получено X (1) — первое решение фундаментальной системы. Если придать свободным неизвестным значения 0,1,0,0,…,0 и вычислить при этом основные неизвестные, то получим X (2) . И так далее. Если свободным неизвестным переменным придадим значения 0,0,…,0,1 и вычислим основные неизвестные, то получим X (n-r) . Так будет построена фундаментальная система решений однородной СЛАУ и может быть записано ее общее решение в виде .

Для неоднородных систем линейных алгебраических уравнений общее решение представляется в виде , где — общее решение соответствующей однородной системы, а — частное решение исходной неоднородной СЛАУ, которое мы получаем, придав свободным неизвестным значения 0,0,…,0 и вычислив значения основных неизвестных.

Разберем на примерах.

Найдите фундаментальную систему решений и общее решение однородной системы линейных алгебраических уравнений .

Ранг основной матрицы однородных систем линейных уравнений всегда равен рангу расширенной матрицы. Найдем ранг основной матрицы методом окаймляющих миноров. В качестве ненулевого минора первого порядка возьмем элемент основной матрицы системы. Найдем окаймляющий ненулевой минор второго порядка:

Минор второго порядка, отличный от нуля, найден. Переберем окаймляющие его миноры третьего порядка в поисках ненулевого:

Все окаймляющие миноры третьего порядка равны нулю, следовательно, ранг основной и расширенной матрицы равен двум. Базисным минором возьмем . Отметим для наглядности элементы системы, которые его образуют:

Третье уравнение исходной СЛАУ не участвует в образовании базисного минора, поэтому, может быть исключено:

Оставляем в правых частях уравнений слагаемые, содержащие основные неизвестные, а в правые части переносим слагаемые со свободными неизвестными:

Построим фундаментальную систему решений исходной однородной системы линейных уравнений. Фундаментальная система решений данной СЛАУ состоит из двух решений, так как исходная СЛАУ содержит четыре неизвестных переменных, а порядок ее базисного минора равен двум. Для нахождения X (1) придадим свободным неизвестным переменным значения , тогда основные неизвестные найдем из системы уравнений
.

Решим ее методом Крамера:

Таким образом, .

Теперь построим X (2) . Для этого придадим свободным неизвестным переменным значения , тогда основные неизвестные найдем из системы линейных уравнений
.

Опять воспользуемся методом Крамера:

Получаем .

Так мы получили два вектора фундаментальной системы решений и , теперь мы можем записать общее решение однородной системы линейных алгебраических уравнений:
, где C1 и C2 – произвольные числа.

Найдите общее решение неоднородной системы линейных алгебраических уравнений .

Общее решение этой системы уравнений будем искать в виде .

Исходной неоднородной СЛАУ соответствует однородная система

общее решение которой мы нашли в предыдущем примере
.

Следовательно, нам осталось найти частное решение неоднородной системы линейных алгебраических уравнений .

Ранг основной матрицы системы равен двум, ранг расширенной матрицы системы также равен двум, так как все миноры третьего порядка, окаймляющие минор , равны нулю. Также примем минор в качестве базисного, исключим третье уравнение из системы и перенесем слагаемые со свободными неизвестными в правые части уравнений системы:

Для нахождения придадим свободным неизвестным переменным значения , тогда система уравнений примет вид , откуда методом Крамера найдем основные неизвестные переменные:

Имеем , следовательно,

где C1 и C2 – произвольные числа.

Следует заметить, что решения неопределенной однородной системы линейных алгебраических уравнений порождают линейное пространство размерности , базисом которого является фундаментальная система решений.

Решение систем уравнений, сводящихся к СЛАУ.

Некоторые системы уравнений с помощью замены переменных можно свести к линейным. Рассмотрим несколько примеров.


источники:

http://zaochnik.com/spravochnik/matematika/issledovanie-slau/slau/

http://www.cleverstudents.ru/systems/solving_systems_of_linear_equations.html