Условия ограниченности решения разностного уравнения

Разностные уравнения

Содержание:

Разностные уравнения

Понятие разницы и разностного уравнения

Если для значений переменной x1, x2, x3, . функция f (x) принимает значения f (x1), f (x2), f (x3) . , то приращения функции составляют f (x2) – f (x1), f (x3) – f (x2), .

Приращение функции при переходе от значения xi к значению xi+1 будем обозначать: В частности можно взять в качестве значения независимых переменных x и x + 1 . Разность Δf (x) = f (x + 1) — f (x) называется первой разностью или разностью первого порядка. Она может рассматриваться в свою очередь как функция от x, а потому и для нее можно определить разницу:

Введем обозначения ΔΔf (x) = Δ 2 f (x), тогда Δ 2 f (x) = f (x + 2) — 2 f (x + 1) + f (x) и называется разностью второго порядка.

Аналогично можно найти разности третьего, четвертого и т. д. порядков.

Определим разности некоторых важнейших функций.

1) Если f (x) = С, где С — постоянная величина, то
Δf (x) = f (x + 1) – f (x) = С – С = 0.

Понятно, что и все разности следующих порядков будут также равняться нулю.

2) Если f (x) = ax + b, то
Δf = Δf (x + 1) — f (x) = a (x + 1) + b — ax — b = a.

Разница первого порядка линейной функции равна постоянной, а все остальные будут равны нулю.

3) Если f (x) = ax 2 + bx + c, то

Поскольку разница первого порядка является линейной функцией, то разница второго порядка — постоянная, а все последующие разности равны нулю.

4) Если f (x) = a x , то

В экономических исследованиях часто встречаются задачи, в которых время t является независимой переменной, а зависимая переменная определяется для времени t, t + 1, t + 2 и т. д.

Обозначим yt — значение функции y в момент времени t; yt+1 — значение функции в момент, сдвинутый на одну единицу, например, на следующий час, на следующую неделю и т. д., yt+2 — значение функции y в момент, сдвинутый на две единицы и т. д.

Очевидно, что

Откуда:

За разность второго порядка, имеем или
поэтому

Аналогично можно доказать, что

Итак, любую функцию

можно представить в виде: (7.50)
и наоборот.

Определение. Уравнение
(7.51)
называется разностным уравнением n-го порядка.

Решить разностное уравнение n-го порядка — это значит найти такую ​​функцию yt, которая превращает уравнение (7.50) или (7.51) в тождество.

Решение, в котором есть произвольная постоянная, называется общим; решение, в котором постоянная отсутствует, называется частным.

Определение. Уравнение
(7.52)
где a0, a1, . an — постоянные числа, называется неоднородным разностным
уравнением n-го порядка с постоянными коэффициентами.

Если в уравнении (7.52) f (t) = 0, то уравнение называется однородным разностным уравнением n-го порядка с постоянными коэффициентами:
(7.53)

Уравнение есть однородное разностное уравнение первого порядка с постоянными коэффициентами a и b, а уравнение неоднородное разностное уравнение второго порядка с постоянными коэффициентами a, b, c.

ТЕОРЕМА 1. Если решениями однородного разностного уравнения (7.53) является y1 (t) и y2 (t), то его решением будет также функция y1 (t) + y2 (t).

ТЕОРЕМА 2. Если y (t) является решением однородного разностного уравнения (7.53), то его решением будет также функция Ay (t), где А — произвольная постоянная.

ТЕОРЕМА 3. Если y (t) — частное решение неоднородного уравнения (7.52) и y (t, A1, A2, . An) — общее решение однородного уравнения (7.53), то общим решением неоднородного разностного уравнения будет функция: y (t) + y (t, A1, A2, . An).

Эти теоремы схожи с теоремами для дифференциальных уравнений, которые были приведены нами в предыдущем разделе.

Разностные уравнения первого порядка с постоянными коэффициентами

Рассмотрим неоднородное разностное уравнение
(7.54)

Соответствующее ему однородное уравнение будет:
(7.55)

Возьмем функцию и убедимся, что она будет решением уравнения (7.55). Поскольку , тогда . Подставим yt и yt-1 в уравнение (7.55):
Итак, является решением уравнения (7.55).

По теореме (2) общее решение однородного разностного уравнения (7.55) является функция , где А — произвольная постоянная.

Пусть — частное решение неоднородного разностного уравнения (7.54). По теореме (3) общим решением неоднородного разностного уравнения (7.54) будет функция

Частное решение найти нетрудно, если f (t) = α, где α — некоторая постоянная. На самом деле, если где u — постоянная. Подставим в уравнение (7.54), имеем: u — au = α, откуда
Итак, общее решение уравнения (7.54) запишем в виде: .

Разностные уравнения второго порядка с постоянными коэффициентами

Пусть задано неоднородное разностное уравнение второго порядка с постоянными коэффициентами:
(7.56)
и соответствующее ему однородное уравнение
(7.57)

Убедимся, что функция будет решением уравнения (7.58). Подставим в уравнение (7.57) (λ ≠ 0), получим Поскольку λ ≠ 0, то поделим на λ t-2 , имеем λ 2 + aλ + b = 0 (7.58)

Это уравнение называется характеристическим уравнением для уравнения (7.57).

Здесь могут иметь место следующие три случая:

1. D = a 2 – 4b > 0, тогда уравнение (7.58) будет иметь два действительных различных корня.
Общее решение уравнения (7.57) запишется в виде:

а общее решение неоднородного уравнения (7.56) запишется так:

2. D = a 2 – 4b = 0, тогда и и

В этом случае однородное уравнение (7.57) примет вид:
(7.59)
Тогда

Легко убедиться, что решением уравнения (7.59) является также функция
Поэтому общим решением уравнения (7.59) является функция а общим решением неоднородного уравнения (7.56) функция

3. D = a 2 – 4b 2 – 5λ + 6 = 0 будет иметь действительные разные корни (D = 25 – 24 = 1 > 0), λ1 =2, λ2 = 3.
Общим решением однородного уравнения является функция

Далее положим, что yt = y — частное решение неоднородного уравнения, тогда

Таким образом, общим решением неоднородного уравнения является функция Постоянные A1 и A2 определим из начальных условий: y0 = 5, y1 = 9. Тогда для t = 0 и t = 1 соответственно будем иметь:

Решим эту систему уравнений относительно A1 и A2:

Откуда

Итак, — общее решение заданного в условии разностного уравнения.

Примеры применения разностных уравнений в экономических задачах

Пример 1. Пусть некоторая сумма средств выдается под сложный процент p, то к концу t-го года ее размер будет составлять:
Это однородное разностное уравнение первого порядка. Его решением будет функция , где A — некоторая постоянная, которую можно найти из начальных условий.

Если положить y0 = F , то A = F, откуда

Это известная формула величины фонда F, который выдается под сложный процент.

Пример 2. Пусть величина предложения сельскохозяйственной продукции в t-м году есть функция цены прошлого года а спрос на эту продукцию есть функция цены в этом году. Следовательно, спрос: а предложение

Цена равновесия для данной продукции определяется равенством:
а это разностное уравнение первого порядка.

Положим, что функция спроса определяется формулой а функция предложения — формулой

Цена равновесия запишется: то есть Решением этого уравнения является функция Постоянная A определяется из начальных условий, для t = 0 цена составляет p0.

Тогда p0 = A и решением уравнения является функция
Если начальная цена p0 = 0, то pt = 0 для всех значений t.

Следовательно, цена не подлежит изменению.

Вообще говоря, функция предложения — возрастающая, а потому b > 0; а функция спроса — убывающая, и поэтому a

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Основные понятия и определения дифференциальных уравнений

Дифференциальным уравнением называется уравнение, связывающее независимую переменную , искомую функцию и её производные , т. е. уравнение вида

Если искомая функция есть функция одной независимой переменной , дифференциальное уравнение называется обыкновенным ; например,

Когда искомая функция есть функция двух и более независимых переменных, например, если , то уравнение вида

называется уравнением в частных производных. Здесь — неотрицательные целые числа, такие, что ; например

Порядком дифференциального уравнения называется порядок наивысшей производной, входящей в уравнение. Например, дифференциальное уравнение — уравнение первого порядка, дифференциальное уравнение , где — известная функция, — уравнение второго порядка; дифференциальное уравнение — уравнение 9-го порядка.

Решением дифференциального уравнения n-го порядка на интервале называется функция , определенная на интервале вместе со своими производными до n-го порядка включительно, и такая, что подстановка функции в дифференциальное уравнение превращает последнее в тождество по на . Например, функция является решением уравнения на интервале . В самом деле, дифференцируя функцию дважды, будем иметь

Подставляя выражения и в дифференциальное уравнение, получим тождество

График решения дифференциального уравнения называется интегральной кривой этого уравнения.

Общий вид уравнения первого порядка

Если уравнение (1) удается разрешить относительно , то получится уравнение первого порядка, разрешенное относительно производной.

Задачей Коши называют задачу нахождения решения уравнения , удовлетворяющего начальному условию (другая запись ).

Геометрически это означает, что ищется интегральная кривая, проходящая через заданную точку плоскости (рис. 1).

Теорема существования и единственности решения задачи Коши

Пусть дано дифференциальное уравнение , где функция определена в некоторой области плоскости , содержащей точку . Если функция удовлетворяет условиям

а) есть непрерывная функция двух переменных и в области ;

б) имеет частную производную , ограниченную в области , то найдется интервал , на котором существует единственное решение данного уравнения, удовлетворяющее условию .

Теорема дает достаточные условия существования единственного решения задачи Коши для уравнения , но эти условия не являются необходимыми . Именно, может существовать единственное решение уравнения , удовлетворяющее условию , хотя в точке не выполняются условия а) или б) или оба вместе.

1. . Здесь . В точках оси условия а) и б) не выполняются (функция и её частная производная разрывны на оси и неограниченны при ), но через каждую точку оси проходит единственная интегральная кривая (рис. 2).

2. . Правая часть уравнения и ее частная производная непрерывны по и во всех точках плоскости . В силу теоремы существования и единственности областью, в которой данное уравнение имеет единственное решение
является вся плоскость .

3. . Правая часть уравнения определена и непрерывна во всех точках плоскости . Частная производная обращается в бесконечность при , т.е. на оси , так что при нарушается условие б) теоремы существования и единственности. Следовательно, в точках оси возможно нарушение единственности. Легко проверить, что функция есть решение данного уравнения. Кроме этого, уравнение имеет очевидное решение . Таким образом, через каждую точку оси проходит по крайней мере две интегральные линии и, следовательно, действительно в точках этой оси нарушается единственность (рис. 3).

Интегральными линиями данного уравнения будут также линии, составленные из кусков кубических парабол и отрезков оси , например, и др., так что через каждую точку оси проходит бесконечное множество интегральных линий.

Условие Липшица

Замечание. Условие ограниченности производной , фигурирующее в теореме существования и единственности решения задачи Коши, может быть несколько ослаблено и заменено так называемым условием Липшица .

Говорят, что функция , определенная в некоторой области , удовлетворяет в условию Липшица по , если существует такая постоянная ( постоянная Липшица ), что для любых из и любого из справедливо неравенство

Существование в области ограниченной производной достаточно для того, чтобы функция удовлетворяла в условию Липшица. Напротив, из условия Липшица не вытекает условие ограниченности ; последняя может даже не существовать. Например, для уравнения функция не дифференцируема по в точке , но условие Липшица в окрестности этой точки выполняется. В самом деле,

поскольку а . Таким образом, условие Липшица выполняется с постоянной .

Теорема. Если функция непрерывна и удовлетворяет условию Липшица по в области , то задача Коши

имеет единственное решение.

Условие Липшица является существенным для единственности решения задачи Коши. В качестве примера рассмотрим уравнение

Нетрудно видеть, что функция непрерывна; с другой стороны,

и условие Липшица не удовлетворяется ни в одной области, содержащей начало координат , так как множитель при оказывается неограниченным при .

Данное дифференциальное уравнение допускает решение где — произвольная постоянная. Отсюда видно, что существует бесконечное множество решений, удовлетворяющих начальному условию

Общим решением дифференциального уравнения (2) называется функция

зависящая от одной произвольной постоянной , и такая, что

1) она удовлетворяет уравнению (2) при любых допустимых значениях постоянной ;

2) каково бы ни было начальное условие

можно подобрать такое значение постоянной , что решение будет удовлетворять заданному начальному условию (4). При этом предполагается, что точка принадлежит области, где выполняются условия существования и единственности решения.

Частным решением дифференциального уравнения (2) называется решение, получаемое из общего решения (3) при каком-либо определенном значении произвольной постоянной .

Пример 1. Проверить, что функция есть общее решение дифференциального уравнения и найти частное решение, удовлетворяющее начальному условию . Дать геометрическое истолкование результата.

Решение. Функция удовлетворяет данному уравнению при любых значениях произвольной постоянной . В самом деле,

Зададим произвольное начальное условие . Полагая и в равенстве , найдем, что . Подставив это значение в данную функцию, будем иметь . Эта функция удовлетворяет заданному начальному условию: положив , получим . Итак, функция является общим решением данного уравнения.

В частности, полагая и , получим частное решение .

Общее решение данного уравнения, т.е. функция , определяет в плоскости семейство параллельных прямых с угловым коэффициентом . Через каждую точку плоскости проходит единственная интегральная линия . Частное решение определяет одну из интегральных кривых, а именно прямую, проходящую через начало координат (рис.4).

Пример 2. Проверить, что функция есть общее решение уравнения и найти частное решение, удовлетворяющее начальному условию .

Решение. Имеем . Подставляя в данное уравнение выражения и , получаем , т. е. функция удовлетворяет данному уравнению при любых значениях постоянной .

Зададим произвольное начальное условие . Подставив и вместо и в функцию , будем иметь , откуда . Функция удовлетворяет начальному условию. Действительно, полагая , получим . Функция есть общее решение данного уравнения.

При и получим частное решение .

С геометрической точки зрения общее решение определяет семейство интегральных кривых, которыми являются графики показательных функций; частное решение есть интегральная кривая, проходящая через точку (рис.5).

Соотношение вида , неявно определяющее общее решение, называется общим интегралом дифференциального уравнения первого порядка.

Соотношение, получаемое из общего интеграла при конкретном значении постоянной , называется частным интегралом дифференциального уравнения.

Задача решения или интегрирования дифференциального уравнения состоит в нахождении общего решения или общего интеграла данного дифференциального уравнения. Если дополнительно задано начальное условие, то требуется выделить частное решение или частный интеграл, удовлетворяющие поставленному начальному условию.

Так как с геометрической точки зрения координаты и равноправны, то наряду с уравнением мы будем рассматривать уравнение .

Решения разностных уравнений

Разностные уравнения для чайников

На этой странице мы рассмотрим примеры решения типовых задач, встречающихся в курсе дифференциальных и разностных уравнений, а именно нахождение общего или частного решения линейного разностного уравнения с постоянными коэффициентами. Чаще всего в контрольных встречаются уравнения второго или третьего порядка:

$$ a_0 y(x) + a_1 y(x+1) + a_2 y(x+2)=f(x), \\ a_0 y(x) + a_1 y(x+1) + a_2 y(x+2)+ a_3 y(x+3)=f(x). $$

Здесь $a_i$ — постоянные коэффициенты, $f(x)$ — правая часть (неоднородность уравнения), $y(x)$ — искомая неизвестная функция.

Решение разностных уравнений практически полностью аналогично решению линейных дифференциальных уравнений с постоянными коэффициентами (см. тут примеры): ищется решение однородного уравнения через составление характеристического уравнения, и частное решение неоднородного уравнения по виду правой части.

Примеры решений разностных уравнений

Задача 1. Решить разностное уравнение: $y(x+2)-4y(x+1)+4y(x)=2^x$

Задача 2. Найти общее решение линейного разностного неоднородного уравнения второго порядка с постоянными коэффициентами.

Задача 3. Решить разностное уравнение третьего порядка

$$ y(x+3)-16y(x+2)+83y(x+1)-140y(x)=0, \quad y(0)=3, y(1)=18, y(2)=120. $$

Задача 4. Найти частное решение однородного разностного уравнения:

Помощь с разностными уравнениями

Если вам нужна помощь с решением задач и контрольных по дифференциальным и разностным уравнениям (и другим разделам математического анализа), обращайтесь в МатБюро. Стоимость подробной консультации от 100 рублей , оформление производится в Word, срок от 1 дня.


источники:

http://mathhelpplanet.com/static.php?p=osnovnye-ponyatiya-i-opredeleniya-differentsialnyh-uravneniy

http://www.matburo.ru/ex_ma.php?p1=marazn